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The following theorem is proved. Let D(w) be an operator with eigenvalues and 
eigenfunctions! d,Jw), vk(w)j, where w is a complex parameter. Given a complex number 
dM), let Wo be such that dk(wo) = <l\(wo)ID(wo)lvk(wo) ) = dko> where vk(CUo) is the 
dual eigenfunction to Vk(WO)' Suppose lJ1 and IJi approximate vk(Wo) and vk(CUo), 
respectively, to order E. Then, if D(w) is analytic in cu in the neighborhood of CUo, and 
if w' is such that <IJiID(cu')IlJ1> = dkQ, cu' usually will approximate CUa to order 
E2. By applying this theorem it is shown that roots of the inhomogeneous plasma 
dispersion relation usually will be accurate to second order if the associated normal 
modes and their duals are known merely to first order. The theorem can also be applied 
to solutions of the dispersion relation in a truncated function space. 

INTRODUCTION 

A standard result from operator theory is that the ei
genvalues of a Hermitian operator can be calculated to sec
ond order accuracy if the trial eigenfunctions used are accu
rate merely to first order. Here we consider a related but less 
obvious result. We consider an eigenvalue problem in which 
a complex parameter (r) appears. and we prove a theorem 
about how accurately the parameter frJ can be calculated 
such that an approximate eigenvalue (which is a function of 
(v) attains a specified value. Then we apply the theorem to 
the problem of determining the roots of the inhomogeneous 
plasma dispersion relation. A formula is derived for the val
ue of OJ for which an approximate eigenvalue of the disper
sion matrix vanishes; we show that this procedure is usually 
equivalent to solving approximately the dispersion relation. 
We refer to a procedure (given in Ref. 1) for determining a 

priori an approximate normal mode, and, for the case ofHa
miltonian systems, show that an approximate dual to the 
normal mode follows automatically. Finally, we prove a 
theorem relating roots of the dispersion relation for a small 
truncation of the dispersion matrix to roots of the exact dis
persion relation. 

FORMULATION OF THE PROBLEM 

Let D «(,») be an operator on vectors in a Hilbert space, 
where the complex number {v appears as a parameter. The 
eigenvalues and eigenvectors of D ((v) satisfy 

(I) 

D «(r)) may not be Hermitian so we cannot, in general, guaran
tee that its eigenfunctions are orthogonal. [We note that the 
eigenfunctions may also not be complete, that is, two or 
more of them may become degenerate, if two or more eigen
values dk (lrJ) are degenerate. Typically, i.e., if D (lrJ) depends 
in a nontrivial way on lrJ, this will happen only at certain 
discrete values of (r). This possibility does not invalidate our 

present argument.] Thus we introduce the dual set [i\ (lrJ) J 
(a tilde will always denote adjoint quantities), belonging to 
the adjoint operator [D (lrJ)] t: 

[D(lrJ)]\ik(lrJ) = Jk(lrJ)Vk(lrJ). (2) 

The following relationships are satisfied (we use Dirac's 
bracket notation for inner products): 

<1\ Ivk .) = 15w (3) 

and 

(4) 

where an asterisk denotes complex conjugation. From Eqs. 
(1) and (3) we obtain the eigenvalue dk(lrJ) as 

<i\ID«(r)lvk> _ 
dk(w) = _ = <vkID(lrJ)lvk)· (5) 

<vk Ivk > 
Let us now focus on a particular eigenvalue dk (lrJ) and 

henceforth drop the subscript k. Given an arbitrary complex 
number do, let (Va be such that 

(6) 

where we have introduced the notation vo_v(lrJo) and 
Vo v({va). Suppose that Vo and VA are not known exactly but 
only to order E: 

t/J = Vo + tV, 

o = l~o + tV), 

(7a) 

(7b) 

where t ~ 1. The eigenvectors va and Va have been normalized 
to one, and normalizing t/J and!f similarly, <!flt/J> = 1, im
plies that 

<volv,> + <vdvo) = - £(vdv). (8) 

Now let us solve an equation similar to Eq. (6); namely, let us 
solve for the value of lrJ' near lrJo, for which the approximate 
eigenvalue of D (lrJ') equals the number do: 

<!fID (lrJ') I t/J) = do. (9) 
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We have the following theorem. 

Theorem J: Let If; and if approximate to order € a par
ticular eigenfunction and its dual, respectively, of the opera
tor D (lU), for a particular value lUo of the complex parameter 
lU. Let lUo be such that the corresponding eigenvalue of D (lU) 
evaluated at lUo equals a given complex number do, 
d (lUo) = do. If D (lU) is an analytic function of lU in the neigh
borhood of lUo, then the value lU' which satisfies Eq. (9), will 
approximate lUo to order €2, except in special circumstances. 
(The special circumstances will be exhibited in the proof.) 

Proof If D (lU) is an analytic functionof lU in the neigh
borhood of lUo, we have the expansion 

D (lU) = D (lUo) + (lU - lUo)(dD) 
dlU '"0 

= Do + (lU - lUo)D ~ + -i<lU - lUo)2D ~ + .... (10) 

Substitute Eqs. (7) into Eq. (9) to obtain 

do = <vo + €V1ID(lU')lvo + €V1) 

= <voiD (d) I vo) + €«i\!D(lU'})vo) 

+ <Vo) D(lU'») VI» 
(11) 

In the last equation, for D (lU') substitute the expansion (10). 
Using Eqs. (4), (6), and (8) and the definition of the adjoint, 
we obtain 

o = (lU' - lUo)< voiD ~)Ivo) + +(lU' - lUo)\ vol D~lvo) 

+ €(lU' - lUo)«vl)D ~Ivo> + <voiD ~)VI» 

We now assume that 

(12) 

<voID~lvo>*O, (13) 

and that € and lU' - lUo are sufficiently small so that 

€1<vIID~lvo) + <voID;)lvl>I<I<voID~)lvo)1 (14) 

and 

(15) 

According to the Hellman-Feynman theorem/· J condition 
(13) will fail if lUo is a multiple root ofEq. (6). Condition (14) 
requires that lUo not be, even approximately, a multiple root 
of Eq. (6). Failure of this condition is the special circum
stance referred to in the theorem. If conditions (14) and (15) 
hold, we may neglect all but the first and fourth terms in Eq. 
(12) to obtain 

lU' = lUo + €,<vt\do -.Do I1l1
) + o (€'). 

<voIDolvo) 
(16) 

The result (16) shows that condition (15) will hold if condi
tion (14) holds and € is small enough. Condition (13) is suffi-
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cient to guarantee that condition (14) holds if € is sufficiently 
small. 

APPLICATION TO THE PLASMA DISPERSION 
RELATION 

Now we apply the theorem just proved to the solution of 
the inhomogeneous plasma dispersion relation. After we es
tablish the connection between the theorem and the solution 
ofthe dipersion relation, we show that roots of the dispersion 
relation usually will be accurate to second order if the associ
ated normal modes and their duals are known merely to first 
order. This is what is meant by the phrase "variational na
ture" of solutions of the dispersion relation. The result to be 
proved here was first discovered4

•
5 numerically while study

ing the stability of Bernstein-Greene-KruskaI6 equilibria 
using the recent stability formalism of Lewis and Symon. I 
Quantities associated with the approximate normal mode 
appear in several places in the dispersion relation. A note of 
caution here,4.5 from a computational point of view, is that 
the variational nature of solutions of the dispersion relation 
holds only if the same approximation to the normal mode is 
used everywhere in the dispersion relation. 

If the perturbation distribution function is eliminated 
from the linearized Vlasov and field equations, the self-con
sistent, Laplace transformed perturbation potential, ¢1(X,6J), 
is determined from the equation I 

D (X,lU )¢I(X,lU) = 1 (X,lU), (17) 

where D (X,lU) is the dispersion operator, which operates on 
functions of x, J (X,lU) is the initial value term for the pertur
bation, lU is the Laplace transform variable, and a caret over 
a variable denotes the Laplace transform of the variable. In 
general x stands for the vector x, ¢l(X,lU) may be a column 
vector containing the perturbation scalar and vector poten
tials as components, D (X,lU) is a dispersion operator matrix, 
and J (X,lU) is the vector of initial perturbations. 

The solution of Eq. (17) is 

¢ (X,lU) = D -1(x,lU)1 (X,lU). (18) 

The normal modes of ¢J (x,t ) arise from the poles of ¢ (x,U). If 
we imagine evaluating the right member ofEq. (18) by ex
panding in eigenfunctions of D (X,lU), we see that the poles 
occur at frequencies lUo, where D (x,lUo) has a zero eigenvalue 
d k (lUo) = 0, and that the form of the normal mode is given by 
the corresponding eigenfunction vo(x) of D (X,lUo). Ifwe know 
an approximation tfJ(x) to vo(x), and a corresponding ap
proximation ¢<x) to the dual vo(x), good to order €, then our 
Theorem I shows that a solution lu' of the approximate dis
persion relation 

<if(x)ID(x,lU')ltfJ(x» = f dx[¢(x)]*D(x,lU')If;(x) = a 
(19) 

will approximate lUo to order €', provided luo is a simple zero 
of d k (lu). 

All that remains before applying Theorem I to Eq. (19) 
is to establish that D (lu) has the required analytic properties 
in lu. In the work of Lewis and Symon it is shown that the 
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dispersion operator D (w) is an analytic function of w for 
complex w, and that D (w) has discrete branch points along 
the realw axis. D (w) is defined originally with its branch cut 
along the realw axis, but D (w) can be analytically continuted 
from the upper half w-plane into the lower half w-plane by 
redefining the branch cuts,as long as the equilibrium distri
bution function and initial data are analytic as required. 
Therefore, even if Wo is a real frequency which is not a branch 
point of D (w) (we do not consider such a possibility), the 
expansion (10) is still valid, but then it must be understood 
that it is the analytic continuation of the dispersion operator 
that is used. 

Now the theorem can be applied, so from Eq. (16) (with 
do = 0) the final formula for the approximate eigenfre
quency w' is 

(20) 

This result holds if Wo is a simple zero of a nondegenerate 
eigenvalue d (wo). [It is easy to show that Wo is a simple zero of 
d (w) if and only if <voiD ~lvo)*O]. 2.3 

In practice, we may solve Eq. (17) for ¢ (x,w) by expand
ing the same in some set of basis functions t 17" (x»). In the 
stability analysis of Lewis and Symon' for inhomogeneous 
Vlasov equilibria, the freedom to choose appropriate basis 
functions is provided by introducing a certain transforma
tion on the particle distribution function. An operator A (x) 
is obtained whose eigenfunctions, l17n (x) l, are used in ex
panding the perturbation potential. SinceA (x) may not be a 
Hermitian operator, we introduce the dual set, t ii nCx) l, 
which are eigenfunctions of the adjoint [A J t, satisfying the 
orthogonality condition 

(21) 

The integral in the last equation is to be performed over all 
configuration space consistent with whatever boundary con
ditions exist on ¢,(x,w). It is often possible to choose A so 
that one of its eigenfunctions, 17" say, is a good approxima
tion to an eigenfunction of D (x,wo) so that the above theorem 
can be applied.'·4., 

Let us assume the perturbation potentials of interest 
can be represented by a finite expansion 

, N 

<p,(x,w) = L aJw)17JX), (22) 
rl = I 

where N may be arbitrarily large (though finite). An infinite 
expansion leads to an infinite-dimensional dispersion matrix 
whose determinant may not converge. Rather than burden 
ourselves with determining under what conditions the deter
minant will be guaranteed to exist, we simply consider a 
finite (perhaps large) N XN dispersion matrix and limit the 
present argument to situations where this approximates well 
enough the exact case. The Laplace transformed expansion 
coefficients an (w) are obtained by substituting Eq. (22) into 
Eq. (17) and inverting: 

.V 

a,,(w) = ! D ,,~;.I(w)In'(w), (23) 
n' = I 
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where 

(24) 

is the dispersion matrix (in the basis {17 n' ii n D, and 
[n(w) = < iinlI (x,w». We will useD (w) to denote the disper
sion matrix. 

The poles of an (w) give rise to normal modes of ¢h(X,t ), 
so the roots of the dispersion relation or "eigenfrequencies" 
Wo are solutions of the equation 

deW (wo) = O. (25) 

Since the determinant of a matrix equals the product of its 
eigenvalues, if Wo satisfies the dispersion relation (25), then 

d k (wo) = O. (26) 

for some k. Thus condition (26) is equivalent for a finite
dimensional matrix D (w) to the dispersion relation (25). It is 
possible for Wo to be a simple zero of the dispersion relation 
and yet have Eq. (26) satisfied for two k 's; in this case, if Wo is 
not real it can be shown' that the two corresponding eigen
vectors of D (wo) and the two dual eigenvectors of [D (wo») t 
become degenerate (i.e., linearly dependent). We will not 
consider this special case any further. 

The extent to which the dispersion matrix is diagona
lized at the frequency w is a measure of how well the basis 
function f 17 fl' ii n) approximate the eigenfunctions 
(Vk (x,w), Vk (x,w) l· Therefore, one useful way to choose a 
set of basis functions which converges rapidly to a particular 
normal mode at frequency Wo is to choose a basis which will 
diagonalize approximately the dispersion matrix in the 
neighborhood of Wo. In other words, choose a set of basis 
functions such that one member of the set is a first order 
approximation to the normal mode, tf = 17n (x) = Vo + o (e). 

It is shown in Ref. 1 that for a completely Hamiltonian 
system (particle and field equations derivable from a single 
variational principle), the operator D (x,w) is a Hermitian 
function of w, that is, its adjoint is given by 

[D (x,w)P = D (x,w*). (27) 

It follows that if we have an analytic procedure for determin
ing an approximation tf(x,w) to an eigenfunction of D (x,w), 
the same procedure should lead to an approximation to its 
dual 

If(x,w) = ",(x,w*). (28) 

This result simplifies the application of Eq. (19) to such sys
tems [with tf(x) = tf(x,wo)]. This procedure has been demon
strated'" for a class of Bernstein-Greene-Kruskal equilib
ria, when a crude guess, flo, of the exact eigenfrequency Wo is 
known a priori. Thus it is possible to determine a priori an 
approximate normal mode, tf(x): 

tf(x) = Vo + eVJ(x), (29) 

where eo( l. tf may depend parametrically on 110 , For the 
Bernstein-Greene-Kruskal equilibria, the approximate nor
mal mode tf is independent of flo to lowest order. The next 
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nonvanishing order involves no\ and since for this problem 
no (and indeed wo) are purely imaginary, n o*2 = n o2

, so by 
Eq. (27) the basis functions are dual to themselves. 

SOLUTION IN A TRUNCATED FUNCTION 
SPACE 

Generally the most that one can hope to derive a priori 
is a field operator A (x), one of whose eigenfunctions is close 
to the normal mode. If an even better approximation to the 
normal mode is desired than that furnished by the one eigen
function alone, or if it is not possible to derive a priori an 
appropriate A operator, one might hope that an M-term ex
pansion [like Eq. (22), but with M small] would yield an 
accurate approximation to the normal mode. In practice 
what is done is to assume that an M-term expansion (typical
ly M 5. 10) of the normal mode is adequate, and then an 
M X M dispersion matrix is constructed, yielding an ap
proximate eigenfrequency w'. If the remaining terms (n > M) 
in the expansion (22) are at most of order E, we would like to 
be able to claim from Theorem I that w' is within order E2 of 
Wo. To do this, we must establish that the exact and the ap
proximate expansion coefficients for 1 <,n <,M differ by at 
most order E. This is the subject of the following theorem. 

Theorem II. Let Wo yield a zero eigenvalue of the opera
tor D (w); and let rf> be the corresponding eigenvector: 

D(wo)¢ = 0. (30) 

Let S be a subspace within which rf> can be approximated to 
order E: 

(31) 

where P is a projection operator onto S, and rf>, S are suitably 
normalized vectors. Assume the dual ¢; can likewise be ap
proximated to order E in S. Let!! (w) be the operator D (w) 
restricted to the subspace S: 

D(w) =PD(w)P. (32) 

Let w' yield a zero eigenvalue of 12 (OJ): 

D(w')rf> = 0, (33) 
- -

where ~ lies in S: 

P1. = 1: (34) 

Then, if Wo is a simple root ofEq. (30), Eq. (33) has a root w' 
which approximateswo to order E2. The corresponding eigen
vector J. approximates rf> to order E. 

Proof Expand D (w') in a Taylor series: 

D (w') = D (wo) + ~(w' - wo)kD (k l(wo) + "', (35) 
k! 

where 

D (I< l(wo) = a
k 

D ~w) ) (36) 
B{i) (tl -= (1)1' 

is the lowest order derivative of D (w) for which 

D(k)(wo)rf>=I-=0. (37) 

If Wo is a simple root of Eq. (30) (for fixed rf> ), k = 1. We 
assume that for E sufficiently small, Eq. (33) has a root which 
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approximates Wo in the sense that 

w' - Wo ~ E a, a > O. (38) 

Project Eq. (30) onto the subspace S, and use Eqs. (31), (32) 
and (35): 

PD (wo)rf> = !!. (w')rf> + EPD (wo)s 

- (w' ~ !Wot PD (k )(wo)P¢ + ... = 0. (39) 

Subtract Eq. (39) from Eq. (33): 

D (o/)(rf> - dY ) 

P ( )k (w' - wo)k (k) 
= E 'D Wo!> - PD (wo)Prf> + "', 

k! 
(40) 

where dots represent higher order terms in (w' - (Vo). 

In view of the definition (32) and since p 2 = P, we can 
replace rf> by Prf> on the left in Eq. (40). Let Nbe a projection 
operator onto the null space of!! (w'). Since Eq. (33) allows 
us to add to dJ any vector in the null space of D (w'), we can 
arrange that- -

(1 - N)C.2, - PdY) = 1. - Prf>, 

where 1 is the unit operator in S. Define the operator 

D'V = (1 - N)!2 (w')(1 - v). 

(41) 

(42) 

Within the subspace orthogonal to the null space of D (w'), 
D'V has an inverse Ds -1. Project Eq. (40) onto that subSpace, 
use Eq. (41), and solve for rf> - Prf>. In view of Eq. (31), we 
can write the solution in the form 

Now assume that 

ka;>l. 

Then we have 

(43) 

(44) 

(45) 

which is the second conclusion of the theorem. A similar 
argument shows that (b approximates ¢; to order E. In con
cluding the result (45)from Eq. (43), we are assuming that E 

is small enough that there are no other roots of the dispersion 
relation in the neighborhood of (VD that is specified by Eq. 
(38). Since 1.. and t lie in S, 

<i!:? (ev)I:e) = <i ID (w)I!t), (46) 

and we can apply Theorem I to deduce the first conclusion of 
Theorem II. (In this case, k = 1.) 

A simple extension of the argument leading to Eq. (16) 
shows that for k > 1, 

w' = {Vo + 0 (E 2Ik). 

Comparison of Eqs. (47) and (38) yields 

a = 21k, 

(47) 

(48) 

which is compatible with assumption (44). A similar argu-
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ment from the contrary assumption (ka < 1) leads to an 
inconsistency. 

REMARKS 
(1) In a fixed subspace S, the order E of the error in

volved in projecting l/J onto the space S is fixed. Statements 
like (45) strictly apply only as E-o, i.e., as the subspace S 
increases to approach the Hilbert space containing l/J. In that 
case, the projection operator P will depend on E. This does 
not invalidate our argument. 

(2) In applications where S is a fixed subspace, usually 
of small dimensionality, Theorem II will guarantee that Wi 

approximates Wo with a relative error of order of magnitude 
E2 only if there is no other root ofEq. (30) near wo, i.e., only if 
the term k = 1 in Eq. (35) dominates the later terms. 

(2) When S is finite dimensional, solving the dispersion 
relation 

ID (w/)1 = 0 (49) 

yields a root Wi for which Eq. (33) has a solution l/J. 

(4) Equation (33) has in general many solutions l/J and 
Wi. Likewise Eq. (30) has at least as many, usually many 
more solutions l/J, Wo· Therorem II does not guarantee that 
every solution of Eq. (33) approximates a solution of Eq. 
(30), but only that, for each solution ofEq. (30) satisfying the 
specified conditions there is a solution of Eq.(33) which ap
proximates it. In many cases which arise in practice, Eq. (33) 
has other solutions which lie far from any solution of Eq. 
(30). 
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(5) The practical significance of Theorem II is that it 
may be computationally more efficient to expend additional 
effort generating a carefully chosen set of basis functions 
with which to expand a normal mode of interest (so that only 
a small number of terms are needed in the expansion), than it 
is to follow the standard procedure of expanding the normal 
mode in eigenfunctions of the Laplacian (which may require 
a large number of terms). 

(6) Theorem II refers only to zero eigenvalues of D (w) 
because that is the important case for the applications we 
have in mind. At a cost of a slight additional algebraic com
plexity, the proof can be generalized as in Theorem I to the 
case of an eigenvalue of D (w) having any fixed value do. 
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We present a description of I3-KMS equilibrium states with respect to some one· parameter subgroup of 
(TX R ]~ jK. over an asymptotically Abelian algebra of observables (here TX R J is the group of time 
and space translations and K a compact group acting on R J). In the case where K = SO(3), the group of 
space rotations, we get a characterization of the angular momentum of such states as a parameter 
occurring in their description, similar to the chemical potential, and classify all of them according to their 
in variance group, a closed subgroup of TX R X SO(2). 

INTRODUCTION 

In their work (quoted in Ref. 1) describing the algebraic 
background ofthe chemical potential, Araki et al. are using a 
C *-system !.7, T X G,a X r I, where .7 is the field algebra, 
T X G the direct product of the group of time translations by 
a general compact gauge group, a X r a continuous represen
tation of T X Gby *-automorphisms 0[,7, the G-fixed point 
subalgebra ~l of ,,/ being the algebra of observables. 

In the present work, we give an analogous description 
of the angular momentum as a parameter occurring in the 
characterization of equilibrium states through the KMS 
condition with respect to a one-parameter subgroup of the 
group (T XR 3)OSO(3). [RereR 1 is the group of space trans
lations and SO(3) the group of space rotation, 0 being the 
semidirect product.] 

In the first half of this work, we discuss, more generally, 
the case of a compact group K [instead of SO(3)] acting on 
R 1. As in the work of Araki et al., we have two algebras: ~l, 
the algebra of observables, and ~l K' the fixed points under 
the action of K. In Secs. III and V, we show that a state on 
9l K , of "KMS type at zero energy" with respect to time and 
space (this condition being deduced from some stability re
quirement under perturbations by K-fixed observables as 
shown in Sec. IV) can be extended, under some hypothesis 
(some clustering property of the state and some asymptotic 
Abelianness condition over ~l and ~[K ), as a state on ~[, KMS 
with respect to time, space, and K transformations. 

After a study of the representations generated by such 
states (Sec. VI), we return to the case of a state invariant by 
some closed subgroup of T XR ' OSO(3) (the structure and 
construction of such subgroups being worked out in Sec. II). 
We show in Sec. VII that states KMS (in a nontrivial way) 
with respect to time, space, and rotations can be invariant by 
closed subgroups of T X R X SO(2) only, with SO(2) (the 
group of plane rotations) acting trivially on R, and we give a 
complete description of all of them. We close this part by 
giving another description of the angular momentum in 
terms of Radon-Nikodym derivative. As our situation con
tains the Araki et al. one, and as the case K Abelian is espe-

cially interesting, we take this opportunity to present some 
specific proofs adapted to this case. 

I. NOTATION AND DEFINITION 

We consider the following locally compact symmetry 
group: 

;Ii = TX(R1DK)=(TXR1)DK= [(t,x,k)l, (1) 

where 

lET: time evolution group, isomorphic to the reals R, 

xER ': space translations group, 

kEf(: compact group of (eventually trivial) continuous 
actions on R I. 

In what follows, K will be SO(3), the group of space 
rotations acting on R " but it can also represent any compact 
gauge group as in Ref. 1, commuting with T XR ) and with
out any action on it. 

Tht: sign 0 denotes the semidirect product (reducing to 
the direct product in the case of trivial actions) 

(t,x,k )(t '.x',k ') = (t + t ',x + kx',kk '). (2) 

We will prove, in the next part, that all closed sub
groups J( of :5 are extensions (denoted 0 A, where A means 
some factor system), 

/( = ,(/O",IV, 

where d is a closed subgroup of T XR J and 

1 = If.l(k ),k I. 
where 

(3) 

f.l(k )ET XR lid withf.l(k,k,) = f.l(k,) + kt/1(k,), (4) 

is a closed group of "screwing operations," i.e., actions k 
followed by translations f.l(k ) in the quotient space 
T X R 'l.c:I, If f.l = 0, these "screwing operations" are "pure 
operations" and .W is then a closed subgroup of K. 

~l will be a C *-algebra of quasilocal observables (or of 
fields as Ref. 1) acted upon by ,(;j, i.e., there is a faithful 
homomorphism 
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(5) 

from f1 to the group of *-automorphisms of VI such that 
(r,x,k )~(l.x.k) (a) is norm continuous for any aEVI. 

We will assume the existence of an automorphism 1" of VI 
commuting with ,0/ (for instance 1" = at for some t) with 
respect to which W is weakly asymptotically Abelian, i.e., 

M,,! w(a [r"b,c]d) J 

1 N 
= lim - I w(a[1""b,c]d) = 0, a,b,c,dEVf, (6) 

N-""N,,=_N 

where [ , ] denotes the commutator. 

Let us mention that the group (T n,nEZ ] could be re
placed by any amenable group of * automorphisms of vr (for 
instance T), M" being replaced by any invariant mean on it. 

Vf K will be the fixed point sub-C * algebra ofVf under the 
action of K (the group of all pure operations). 

If K is Abelian [for instance, K = SO(2)], let Kbe its 
(discrete) dual group. The sets 

~f(P) = ! aEVr, aka = (p,k )a, kEK J, pd, (7) 

are all nonvoid, 1" and at (tET) invariant, fulfiIl 

2r(P)·2r(q) = n(pql, 

2I(P)' = 21(P ') 

vr(O) = Vf
K

, 

"-
p,q,EK, 

(8) 

and have a linear closure dense in W for the weak topology. 

Let w be a state on VI, invariant with respect to some 
closed subgroup of ,0/, 

This state will be said to be weakly T clustering if 

w(ra) = w(a), aEW, 

M,,! w(a1""b) I = w(a)w(b), a,b,E2f, 

(9) 

(10) 

where M" has been defined in (6). It is known2 that, if 2f is 
weakly asymptoticaly Abelian, (10) is equivalent to the ex
tremal T invariance of w. The remark following (6) being 
valid in (10), if! 1" ",nEZ I is replaced by T, then (10) means 
that w represents a "pure phase." 

We call VI,~ the fixed point sub-C * algebra of 2f under 
the action of the subgroup K", of all pure operations in dl',v' 
Of course, 

(11) 

but if £'", is such that J1=1=O, then K(V = ( 1] and 2f,o = Vf; on 
the other hand, if J1 = 0, then K,v = %'0 and 2f,,)=I=2I unless 
%", = (q. 

At this point, it is interesting to notice a phenomenon 
that will play an important role in the sequel. If w is invariant 
with respect to (9), the state w restricted to 2fK and denoted 
wKcan be invariant with respect to some subgroup crY',u, such 
that 

d we d w,! «t,x),J1(k »;(t,x)Ed ,jJ1(k ),k )E% wJ. 

985 

This is due to the fact that if 

w(a(t.Xp(;L(k ),k)a) = w(a), 
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(12) 

then 

w(a«t,x)./I(kl0) = w(A), AE2fK' 

and so 

But, conversely, if 

wK(a(u.yy4) = wK(A), (U,Y)EJff,u" AEVfK, 

then Lemma III,2(l) (see Sec. III) will prove the existence of 
some kEK, depending on (u,y), such that 

(u(a(u,yPka) = w(a), aEVf, 

i.e., (u,y,k )E,W,,), and is such that 

(u,y,k) = «t,x),{J-L(k ),k », 
(t,X)E,W'd' (J-L(k ),k )EA,u' J1(k) = T XR J I d,,). 

Hence (u,y) = «t,x),J1(k », which proves (12), and we can 
notice that .('/,,) = cW,v, if an only if J1 = 0 or .A", is trivial. 

Our last definition will be the so-called KMS condition, 
a mathematical formalization of the notion of a "limit Gibbs 
state." Let us first say that a pair of tempered distributions 
on R is a ,8-KMS pair (f3ER ) if 

(S,cp) = (efJET,cp) = (T,efJRcp), cpE.Y(R), EER, 
(13) 

where"- means the Fourier transform. Then, if at is a con
tinuous one-parameter group of automorphisms of 2f, w is 
said to be ,8-KMS with respect to at whenever the functions 

fat,{t) = w(b.O' {l), gub (t) = W(O' {l·b ), 

from a,8-KMS pair of distributions. 

(14) 

It is known that a,8-KMS statew is automatically invar
iant. Therefore, the functions (14) are linear combinations of 
positive type functions and their Fourier transforms are 
bounded Radon measures. The,8-KMS condition can also 
be stated as the fact that 

f vet )fub(t) dt = f w(t) gah(t) dt, (15) 

where V,WE(z) (R ) are such that w(E) = ef3EV(E), EER, or 
that there exists a function u(z) holomorphic in the strip 
0< Irnz <,8, continuous and bounded on its closure and such 
that 

fab(t) = u(t), gab(r) = u(t + i,8). (16) 

It is also known that the left kernel M", = [aE2I,w(a*a) = 0 J 

is a two-sided ideal of V[ such that M,,) = Kef1T'il if 1T,u is the 
cyclic representation ofVl deduced from w through the GNS 
construction. Hence the faithfulness of wand 1T(oJ are then 
equivalent, and automatic if 2f is simple. On the other hand, 
there exists a unique faithful normal state won the von Neu
mann algebra 1T,J2f) " such that 

(17) 

where iTt is the modular automorphism of &. Moreover, if p 
is an automorphism of 2I such that wop = wand if w is faith
ful (or 2f is simple), then 

(18) 
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II. STRUCTURE AND CONSTRUCTION OF 
CLOSED SUBGROUPS OF [§ 

We use here techniques already introduced in Refs. 3 
and 4. 

Let dY' be a closed subgroup of :-f and 

d = (TXR 3)ndY'. (19) 

d is a closed normal subgroup of dY', and it is possible to 
define the quotient group 

.Jf = dY' / d. (20) 

LetN ( d) be the normalizer of d into:-f: it contains d and 
T X R 3 as normal subgroups and dY' as a closed subgroup. 
Hence we can define the quotient groups 

Q = N( ,r;ff)/(T xR 3) and JV = N( d)!d. (21) 

It is easy to check that Q is the closed subgroup of K keeping 
d globally invariant and that 

and 

N( d) = (T XR 3)DQ. 

On the other hand, the maps 

dY'-+.Jf 

(22) 

having the same kernel (i.e., d), there exists a continuous, 
injective, nonnecessarily closed mapping q:; from .Jf into Q 
such that q:;(K) is a (nonnecessarily closed) subgroup of Q. 

Let us now notice that it is possible to write 

T xR 3 = dDAT xR 3/.#, (23) 

where A means some central extension. Hence, if (t,x,k )EdY, 
we can write 

(t,x,k) = (! (t,x).w" Ji-l ,k ) = «t,X).of ,1)(! O,Ji-l ,k) 

where (l,x)", Ed, Ji-ET xR 3/ d, (p,;k )E.Jf. 

As q:;«p"k» = k and q:; is injective, then 

Ji- = Ji-(k ) with Ji-(k.k ') = Ji-(k ) + kJi-(k '), 

(24) 

(25) 

where k acts on T X R 3/ d through the quotient action be
cause kEq:; ( .Jf ) C Q stabilizes d. Moreover, using this 
quotient action, 

TXR3DQ. 
d 

(26) 

Hence, dY' being closed into N ( d), .Jf is also closed into 
JV, and because the mapping 

{Ji-(k ),k )E.Jf -+Ji-(k )ET X R 3/ d (27) 

is a projection parallel to a compact, the set 

{Ji-(k ),kEq:; ( .Jf) I (28) 

is closed into T X R 3/ d. All these considerations allow us to 
write 

N(d)=(TXR 3)OQ=( d~ T~R3)DQ 
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= d~' { T ~ 3 DQ} = d~' JV, (29) 

where the extension A ' can easily be deduced from the exten
sion A. Consequently, 

(30) 

where d is some closed subgroup of T xR 3 and.Jf some 
closed subgroup of JV made of "screwing operations" 
(Ji-(k ),k ), where Ji- is some cocycle (if Ji- = 0, then .Jf is a 
closed subgroup of "pure operations" in K), the extension A ' 
being deduced from the extension (23). 

In the special case whereK = SO(3) [or SO(2)] it can be 
considered as the connected component of 0(3) [or 0(2)], 
the extension ofSO(3) [or SO(2)] by the operation ( -I) 
defined according to ( -I)x = - x. If the closed subgroup 
.Jf can also be extended by some operation (fi( - 1),( - I», 
then Ji- is the restriction to q:;( .Jf) of some cocycle [i, on 
q:;( .Jf) X ( -I) such that [i,( -I)ET X R 3/ d and 

[i,« -I)k ) = [i,(k.( -I) = ji( -I) + ( -1)Ji-(k) 
= Ji-(k ) + k[i,( -I) 

or (31) 

Ji-(k) - ( -1)Ji-(k) = (I - k )[i,( -I). 

Calling[i, 1 (k ) the projection of[i,(k ) on the "space" part 
of T X R 3/ d, we get 

Ji- ik ) + Ji-1 (k ) = (I - k )[i, 1 ( -I). (32) 

So if Ji-o is an element of T X R 3/ d such that 
Ji-o + Ji-o = ji( - I), then 

Ji-1 (k ) = (I - k )Ji-01' (33) 

which means that Ji-1 is a coboundary and shows that, in the 
case when q:;( .Jf) acts trivially on T X R 3/ d, such an exten
sion of j)/' by (fi( - 1),( - I» is possible only if [i,( - I) = O. 

U sing the language of exact sequences, we can represent 
this whole construction in Fig. 1. 

III. EXTENSION OF INVARIANT STATES 

The main theorem of this part relies on two successive 
lemmas that we recall without proof because they are identi
cal to (Ref. 1, Lemma II.l and Theorem II.l): 

Lemma III. 1 : If UJ is weakly l' clustering on [(, the norm 

closure C !JK) of 

C :"(K) = (kEK-+f:(k) = UJ(alfl),aE[(! c'G'(K) (34) 

coincides with 'G' (K," "K). 

Lemma III.2: (1) If UJI and UJ2 are two weakly l' cluster
ing states on [( (nonnecessarily asymptotically Abelian with 
respect to 1') and if their restrictions to [(K are equal, then 
there exists a kEK such that UJ2 = UJ}oaK with 
K w, = k -IKw,k (k is unique up to an element of KwJ 

(2) If [( is weakly asymptotically Abelian relative to l' 
and if the state UJ K on [(K is weakly l' clustering, then there 
exists an extension UJ of UJ K to a weakly l' clustering state of[(. 

This lemma proves that either UJ K has a unique K -invar
iant extension or UJ K has a plurality ofnon-K-invariant ex
tensions labeled by the elements of K. 
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As the case K Abelian will be one of the most interesting 
ones in what follows, we will give a new proof of Lemma 
111.2(1) adapted to this situation. It depends on the following 
lemma: 

Lemma III.3: If w is weakly l' clustering, and K Abe
lian, the set 

I", = ( PER: there exists aE~( (pl with w(a )~O l (35) 
A 

is a subgroup of K. 

Proof Let p,qEI,v' aE~[(Pl, bE~[(q) with w(a)~O and 
w(b )~O.AsMn{ w(a1'nb) 1 = w(a)w(b )~O, there exists some 
nEZ such that w(a1'tlb )~O. As a1'nbE~[(Pq), then pqEI{v' On 

the other hand, as a*E~r(P'l and w(a*) = w(a)~O, p-'EIw ' 

Proof of Lemma III.2(1) in the case K Abelian: Let 
aE~l(Pl, bE~r(P'), pEl(, nEZ. Then a1'nbE2[(O) = ~K and so 

w,(a1'''b) = w2(a1'''b ). Applying Mn to both sides, we get 
wrCa)UJ,(b) = wla)w/b) and in particular (if b = a*) 
I w,(a) I = I wia) I which means that I,v, = I{u," Ifpuw , 

(of Iw) we can, thanks to Lemma 111.3, choose b such that 
wlb )~O and so wia) = [w,(b )/wz<b )]w,(a) = cpw,(a), 
where c p is a constant depending onp, of modulus 1 and such 
that cp " = cp = cp- I. If paw,' we have the same (but now 
trivial) relation with cp arbitrary. Moreover, ifp = qr 
(q,rUw , = Iw) and if we replace b by c1'md, where cE~I(q') 
and dE2I(r'), then w,(a)w,(c)w,(d) = wla)w2(c)w2(d) and so 
cqr = cqcr• He~ce cp is a character on the (discrete) group 
I,,,, = 2,.0, CK, which can be extended in an arbitrary way to 
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FIG. 1. 

a character on K. Hence there is some kEK such that 
w2(a) = (p,k >w,(a) = w,«p,k >a) = w,(axa), from which 
we deduce w, = w,oaK over 2I by linearity and density. 

Theorem III.3; If w is a weakly l' clustering state on 2I 
(nonnecessarily asymptotically Abelian with respect to r) 
and if W K = w I ~JI, is "invariant" under some continuous 
one-parameter subgroup apx, of d w. C T XR J (i.e., 
woapx, = w on WK , in spite on the fact that apx, is not an 
automorphism ofWK), then there exists a unique continuous 
one-parameter family klEK with 

k(t + I' = ( - Xl + k"xl,k"kJ = ( - x l,1)(O,k,,)(x,,1)(O,k t ) 

= ( - X, ,,1 )(O,k, )(x, ,,1 )(O,k,.) (36) 

such that w is invariant under the continuous one-parameter 
subgroup of JY'w:{apx,ak,). If krXt' = XI" the family kl is a 
continuous one-parameter subgroup of K. The family k, is 
nontrivial if and only if I1~O and JY".o is nontrivial. 

Proof Let WI be the state on ~ defined according to 
w,(a) = w(apx a), aE2I: Ollis a weakly l' clustering state on 2I, 
which is differe~t from w if and only if ap x,ed OJ (i.e., if and 
only if f.l~O and %,v is nontrivial), and whose restriction to 
2IK coincides with w by hypothesis. By Lemma 111.2(1), 
there exists k 1- IEK, nontrivial if and only if f.l~O and % w is 
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nontrivial, and hence unique, such that 
wt(a) = w(apxp) = w(k t- la), aEm:, or else 
w(a) = w(apx,ak,a), aE~I. 

Because w(a(axp) = weak, .a) and 

w(al,xl,a) = weak, .a), then 

=w(ak, .a __ x,,+k, 'x,a k , .a) 

and consequently, 

k t~\' = (- k ,-: lX" + k ,-; 'k 1-- IXt"k ,-: lk ,-- I), 

or else 

Then 

(t,x"kt )(t' ,x, "k, ,) 

and so a( ax,ak, is a continuous one-parameter group, 

IV. A STABILITY REQUIREMENT 

In what follows, we will assume that w verifies, on lli: K , a 
"KMS-type" relation at zero energy, i.e" 

(remember that apx, is not an automorphism ofm:K). We are 
first going to show that this condition can be deduced from 
some stability requirement as follows, Let us consider the 
two automorphisms on m:: at ax, and a( ax,ak,' and let hEm:K" 
be some self-adjoint element of m:K , Because ak,h = h, the 

unitary cocycle P ~ defined equivalently by 

i~P~=P~apx(h), P~=I 
dt ' 

or (38) 

i~P~=P~apXak(h), P3=I dt I I 

allows us to define the two perturbed automorphisms on m: 5: 
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(atax/(a) = P7a ,ax ,(a)P7", 

(a(aXPk/(a) = P7a (a X Pk,(a)P7" 

= (a, ax/oak,(a), 

which coincide on lli: K : 

(at a x / (A) = (at a x,ak/ (A), AEm:K , 

(39) 

(40) 

(41) 

Consequently, if w is weakly r clustering, the element k 7EK 
which, according to Lemma III. 2, is such that 

w«a, ax, ak/(a») = w«a( ax/ ak:,(a»), aE~L, 

can be chosen equal to ak,' hence independent of h. As it is 
known that any KMS state on ~{ is stable under local pertur
bations of the dynamic,6 it is natural, conversely, to say that 
w is stable on ~rK for some perturbation by a self-adjoint 
hEll{~t if there exists some application h_-+U)h from some ab

sorbing neighborhood 'Y' of 0 in lli:~t into the set of weakly r 
clustering states of m: such that 

wh «al ax/(A») = wh (A ), A Em:K , (42a) 
k.() 

WAh (A) -+ w(A), AEm:K , (42b) 

wh (at ax,(A » -+ w(A ), AEllLK • (42c) 
t-- .. ± 00 

Moreover, condition (42a) implies, according to Theorem 
111.3, the existence of k 7 such that 

wh«apX/ak:,(a» =wh(a), aEm:. (43) 

We will assume moreover (as is already the case for w) that, 
for any hand wh

, 

k7 = k,. (44) 

We then have the following theorem. 

Theorem IV. 1 : Let w weakly r clustering on llf such that 
WK is "invariant" with respect to a, ax,. Let us assume the 

existence of a dense set m:~ in ~{K such that (L I-Abelian 
asymptotism): 

f 
+- 00 

__ 00 II (B,a t a x, (A) llidt < 00, A,BE2r~. (45) 

Then, if w is stable on m:K under perturbations hEm:,;(a" then 

f_+ooOO w(A.apx,B)dt= f-+: w(apx,B·A)dt, A,BEm:K · 

(46) 

Proof According to (42a), (44), and Theorem 111.3, 

wh «at aX,ak;t(a» = wheal, aEm:, 

and, by differentiation for any a in the dense set of differen
tiable elements, 

wh (~ I (at aX,ak / (a») = 0, aEm, 
dt ,=() 

or else, according to (38) and (40), 

Wh(~ I ataxPk,(a») = iwh([h,a]), aEm:. 
dt (=0 
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Let 

a= iT atax,(A)dt= iT atax,ak,(A)dt, AE2l;;. 

Then 

~ I ataxa k (a) = aTax (A) - asax (A) 
dt (=0 " , , 

and so 

wh(aTaX,(A)-asax,(A»=iwh((h, iT atax,(A)dt]). 

If s-+ - 00 and T -+ + 00, we get, thanks to (42c) and (45), 

O=iwh(L+oooo [h,atax,(A)]dt). hE~r;.nr, AE2l;' 

and finally, thanks to (42b), 

0= L+oooo w([h,atax,(A)])dt, 

which leads to (46) by linearity and density. 

Remark: Following the same procedure as in Ref. 7, 
end of Sec. II, we might get a stronger theorem by replacing 
2lK by the smallest C * algebra of fixed points under the action 
of[apk,xER \kEK J andaskingtowtobeinvariantunderat 

and stable under perturbations h such that apkh = h for 
any xER J and kEK. 

v. EXTENSION OF KMS STATES 

In this part, we will prove that if (37) is true, then w is 
KMS on 2l with respect to some one-paremeter group 
a t a x,a k,' The strategy of the proof is the following one. Start
ing from a "KMS-type" condition on 2lK' (37), with respect 
to apx,' we first get a true KMS condition at zero energy on 
\!{", with respect to at ax, (where xt is some averaged direc
tion) if f-l = 0 and with respect to at ax,ak , if wi=O (and then 
2l,v = \!{). We then transform this KMS condition at zero 
energy into a KMS condition for any energy, and so we are 
done if f-l=l=O. If f-l = 0, we have to move this KMS condition 
on ~r,v with respect toat ax, up to a KMS condition on 2l with 
respect to some one-parameter subgroup at ax, a k ,: This can 
be done only up to some "asymmetry subgroup" of Kw' 

The first step is contained in 

Theorem V.l: Let w, weakly 1" clustering on 2l weakly 1" 

asymptotically Abelian, such that (37) is true and WK is "in
variant" with respect to at ax,' Then 

f-+ 0000 w(a.at ax,ak,b )dt = f_+",oo w(at ax,ak,b.a)dt, 

a,bE~Iw> (47) 

where k t is given by Theorem 111.3. Since the proofis identi
cal to that in Ref. 1, Lemma II.S where k (E) = bo(E), we do 
not reproduce it. 

Corollary V.2: If f-l = 0, k, = I and we get 

f
+OO f+oo 

_ 00 w(a.at ax,b )dt = _ 00 w(at ax,b.a)dt, a,bE\!{w' 

(48) 
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But 2l", and w being respectively fixed and invariant under 
Kw, this can be written 

f-+ 00"" w(a.at ax,b )dt = f-+ 00

00 

w(at ax,b.a)dt, a,bE2lw' 

(49) 

where 

xt = 1 kXt dt and Kw xt = xt 
K., 

(50) 

so that at ax,is now an automorphism of\!{", and (49) is a true 
KMS condition on \!{,v at zero energy with respect to at ax," 

If f-l=l=O, \!{w = 2l and (47) is a true KMS condition on \!{ 
at zero energy with respect to at ax,ak," 

The second step is now given by 

Theorem V.3: Let w weakly 1" clustering on 2l such that 
(37) is true and w K is "invariant" with respect to a tax,' with 
X, = xt if f-l = O. Let us assume that \!{", is simple and weakly 
asymptotically Abelian with respect to 1" and at ax,ak ,' Then, 
if the spectrum of a, a x,a I is not one-sided, 

d [w(a.apx,ak,b)] '(E) = ePEd [w(apx,ak,b.a)] '(E), 

a,bE2lw' /3ER. 

Proof Let us rewrite (47) with a = alT'a2 and 

b = bIT' b2, ah a2, b" b2E2lw' 

= f-+: w(atax,ak,(bl1"nb2)·al1"na2)dt. 

(51) 

By 1"-Abelian asymptotism [see Lemma V.7, (56)], this equa
lity will be equivalent, in the mean M nt to 

whose mean is, by weak 1" clustering, 

= f-+ 00

00 

w(apx,ak,bl·al)w(apx,ak,b2·a2)dt, 

and the proof follows in the same way as in Refs. 5 or 8 
thanks to the results of (Ref. 9, final remark), which we re
produce here for completeness. 

Lemma VA: Let w be weakly 1" clustering on \!{w and w K 

"invariant" on 2lK with respect to at ax," Let us assume that 
\!{w is simple and weakly 1" and at a x a k -asymptotically Abe-, , 
lian. Let (1T w,Uw) the representation of (\!{w,at ax,ak) gener
ated by w. Then we have the following alternative: 

(i) The spectrum of U is one sided (contained in R + or 
R -). 

(ii) The spectrum of U is the whole of R. 

We are now left with the last step (Jl = 0). For that purpose 
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we first need the following lemma, whose proof can be found 
in Ref. 3, Lemma 11.3 and 11.4: 

Lemma V.5: Let UJ be weakly T clustering on m,,) weakly 
T asymptotically Abelian. There exists a closed normal sub
group G,u of K", such that 

C",(K,,,) n C",(K,,,) * = Cf,' (K,,,IG,,,) (52) 

and 

C""(K,,,) = C""(K,,,)* = C[3(KjG",), (53) 

where 

C",(K",) = ! kEK,u---+f~,b(k) = UJ(a.akb), a,bEm J (54) 

and UJI = UJI~I, .. This subgroup is defined by 

G,u = ! kEK,u:UJ(a·akb) = UJ(ab), a,bEmJ (55) 

and is trivial if UJ is faithful. This lemma leads to the follow
ing theorem as in Ref. 3, Theorem 11.4: 

Theorem V.6: With the hypothesis of Theorem V.3 with 
IL = 0, there exists a continuous one-parameter subgroup k, 
of K,u commuting with G,u such that 

(i) The restriction of UJ to ~(G,., is KMS with respect to 

atax,ak ,; 

(ii) The image kt = k t G,u of k t into KjG", is in the cen
ter of Kj G,u; 

(iii) the G,u spectrum of UJ (i.e., the set of all irreducible 
representationsp ofG", contained in U,uIG",) is one-sided 
(i.e., if PI and p, are in the G,u spectrum, PI ® p, is also in it, 
and if both p and its conjugate p are in it, then p = I). 

Here too, we are going to give a new proof of this theo
rem in the case where K is Abelian. For that purpose, we 
need the following lemmas. 

Lemma V. 7: Let UJ be weakly T clustering on ~r weakly T 

asymptotically Abelian. Then 

(i) if aha"b"b,Em, all = alTlla2, bn = b,Tnb" nEZ, 

Mn! UJ(an·a, ax,bn) J = UJ(al·a, ax,b,)UJ(a,.a, a"b,), 

Mn!UJ(a t ax,bn,an) J = UJ(a, ax,bl,al)UJ(at ax,b"a,), 

(ii) the set 

e", = ! (p,q)EK,uxi,u:there exists aE~r(P),bE~r(ql, 

(56) 

with UJ(ab )*0 J (57) 
[or in an equivalent way UJ(a'a P x b ):i=o or UJ(a P x b,a ):i=0] is 
stable for the composition law i~duced by the on~ of i,u' If 
UJI~( is faithful (in particular ifm,u is simple) e,u is a group 
containing the antidiagonalL1 = ! (P,p-'),pEK J. If e,u = .1, UJ 
is K", invariant, and non-K", invariant otherwise. 

Proof (i) It is sufficient to prove the first line of (56). 

Mn! UJ(an,apx,bn) 1 = Mnl UJ(a"aPx,bl'Tn(a"apx,b,» 1 

by T-Abelian asymptotism and is also equal to UJ(a"apx,b,) 
XUJ(a"apx,b,) by weak T clustering. 

(ii) Let (p,q) and (P',q')Ee,u and a,Em(Pl, a,Em(P'), b,Em(ql, 

b,Em(q') such that UJ(a"apxb,):i=o and UJ(a"apxb,):i=O. By , , 
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(56) there exists some nEZ such that UJ(an,ap",b,,):i=O. But 
anE~(PP') and b"E9!(qq) and (pp' ,qq')Ee",. If (0 I ~I .. is faithful, 

and aE~{(P) such that a*O, then a*E~{(P '), aa*E~(") = ~[,,' 

UJ(aa*)*O, and so (p,p')Ee", for any pEK". Ife" = .1, @", is 
a group and UJ is zero on all 9f(PJ, p* I which means that UJ is 
K", invariant. 

If .1 ce"" let (p,q)Ee", with q*p". Then 
(p,q)(q,q") = (pq,I)Ee,,) and (p",q)(p,q) = (l,pq)Ee,,; hence 
(pqr,r')Ee,u and (r',pqr)Ee(,) for any rEK",. On the other 
hand, if '1E~{(P), bE9(q) with UJ(ab )*0, then abE9f(Pq), 

b *a*E~[(P 'q 'J, and (o(b *a*) = UJ(ab) *0 which means that 
(p",q")Ee,u' This proves that e", is a group made of an 
array of manifolds "parallel" to .1. Moreover, 
UJ(a" (ab» = <pq,k )UJ(ab )*(v(ab) and (v is non-K" 
invariant. 

Lemma V.8: (i) Let!" and gil be a,8-KMS pair of linear 
combinations of positive type functionals such that 

!,,(t) ~ .. f(t) and gJt) ---+ g(t) pointwise. Thenfand g 
n -+x; n 'OC 

are a ,8-KMS pair. 

(ii) Letfn and gil be a,8-KMS pair oflinear combinations 
of positive type functionals. Then/v(t) 

= l/NL~~ Nfn(t)andgN(t) = l/NL;~' .",g,,(t) area 
,8-KMS pair. 

(iii) If am E9(P..l, bnE9f(q,,), m and n = 1,2,. .. ,k, p",EK,." 

qnEK,u' rr~n ... iPm = rr~ ~ (qn = I, and if (0 is ,8-KMS on 
9{'O' = 9(,., with respect to ap.X? then II~ • I(v(a",.ap.x,b",) 

and II;n ~ IUJ(apx,bm,am) are a,8-KMS pair. 

Proof If J~(t ) !,,(t ) dt = J~(t ) g,/t ) dt as in (15), then 
J~(t )f(t) dt = J~(t) g(t) dt by Lebesgue's dominated conver
gence theorem. In the same way, (ii) is straightforward by 
linearity of the integrals. Note that if I T",nEZ ! is replaced by 
an amenable group G and Mn by some invariant mean: 

lim _1_ ( ,dm(h), 
II 'X m(Gn) J(;" 

where dm is the Haar measure of G and G" an increasing 
sequence of neighborhoods ofthe unit in G, the same conclu
sion holds for function it, (t) and gil (t) continuous in hEG 
and tER, and 

and 

1 -
Iv (t) = --J . it,(t) dm(h) 

m(Gv) G, 

1 J-gN(t)= -- . gh(t)dm(h) 
m(G,v) G, 

thanks to Fubini's theorem. 

Let us prove (iii) first when k = 2. Thenp,'p, = 1, 

q"q2 = 1, a,Tna2E~l"" b,Tnb2E~("" and the pair 
UJ(a,Tna2,apx (b,Tnb,», (v(apx (b,T"b,),a,Tlla2)' is a,8-KMS , , 
pair by hypothesis. The conclusion comes from Lemma 
V.7.(i) and points (i) and (ii) of the present lemma. It is then 
sufficient to proceed by induction replacingpk by Pk'Pk + I' q" 
by qk'qk + I' ak by akTnak t I' b" by bkT"bk t I. applying M" 
and using the same trick. 
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Proof of Theorem V.6 when K is Abelian and w faithful 
on &,u (for instance &w simple): Let us start from the ,8-KMS 
pair (see Lemma V.S) II~ = Iw(am,ap/x,bm) and 

II~ = Iw(apx,bm·am) with II~ = lame&cu' II~ = Ibme&w' 
Writing (15) in Fourier transform, we get 

f V(E)[ dill w(am,apx,bm) r(E) 

= f W(E)[d }t w(apx,bm,am) r(E), 

where v and W can now be continuous bounded functions 
such that w(E) = ef3Ev(E). Using the fact that Fourier trans
form turns products into convolution, we get 

f k ~ 

v(El + E2 + ... + E k ) }11 [dw(am·apx,bm)] (Em) 

f k ~ 

= w(El + E2 + ... + E k) }11 [dw(apx,bm·am)] (Em)' 

If we replace bm by at,px,bm (which changes nothing to the 
hypothesis as a k and apx, commute) we get 

f 
k ~ 

V(El + E2 + ... + Ed JL e - t",E", [dw(am.apx,bm)] (Em) 

=jW(El +E2+"'+Ek ) IT e-t",E", 
m= I 

which proves that, if we take v = I, 

k ~ n [dw(am,xPx,bm)] (Em) 
m= I 

If k = 2 and (p,q)eew' then (p-l,q-l)eew and we can choose 
w(a2·apxbJ=EO. Hence, for some convenient functionf(E2), 
we have 

[dw(al·apx,b l)] ~(El) 
_fiE ~ 

Se-- f(E2)[dw(aPx,b2·a2)] (E2) 

sf(E2) [dw(a2·a P x,b2)] (E2) 

As this relation is trivial if (p,q)ee w' there exists some con
stant cp.q (arbitrary if (p,q)ee",l such that 

[dw(a.apx,b )(E) = Cp ,qef3E [dw(apx,b.a)(E), 

for ae&(P), be&(q),p,qEK",. Thanks to the above product for
mula we get 

k k k n cpmqm = 1 if IT Pm = IT qm = I, 
m=1 m=1 m=1 

-I 
cp -'. q-' = cp •q ' 
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On the other hand, if we remark that 

[dw(a*.apx,b *)(E) = [dw(a.apx,b )](E) 

and 

[dw(a.apx,b )](E) = [dw(apxp·b )( - E), 

we get 

- d- I cp.q = cq-, ,p-' an cp ,q = cq,p , 

which, combined with the preceding formulas, gives 

Hence we can take cp, q real and cp,p' > 0, asw(a.apxp*) and 
w(apxp*·a) are both of positive type, As w is by hypothesis 
K", invariant, e", = L1 which means that the only nontrivial 
relation is 

[dw(a.apx,b )(E) 
_BE ~ (P) b (P') 

= Cp,p'~ [dw(apx,b.a)] (E), ae& ,E& . 

Writing 

C - C C - c2 - efJd(p) p,p-' - p.l· I,p-' - p,l - , 

where 

d (p,q) = d (P) + d (q) and d (P-l) = - d (P), 

we get 

[dw(a'apx,b )(E - d (P» = efJE [dw(apx,b.a) ( 

X(E-d(P», 
but 

[dw(a'apx,b )(E - d (P» = d [e - id(P)tw(a'apx,b )(E). 

As e - id (P)t is, for each t, a character on K"" there exists some 
ktEK", such that e - id(P)t = (p,kt ) and k t is a one-parameter 
group, and we get 

d [e - id(P)tw(a'apx,b )(E) = [dw(a.apx,ak,b )(E) 

and 

[dw(a.apx,ak,b )(E) = ef3E [dw(apx,ak,b.a)(E), 

which proves the theorem. 

Remark I: If K is Abelian, the faithfulness of won &,u is 
sufficient to ensure the triviality of G",. If ae&(P), a*O, and 
peK"" then w(a*a~) = (p,k )w(a*a). If w is faithful, 
(p,k )w(a*a) = w(a*a) implies that k = I. 

Remark 2: If K", = SO(2) = l' (the one-dimensional 
torus), then K", = Z. Hence p is some relative integer and 
there exists a real constant v such that d (n) = vn, and cp,p' 
= ef3vn:v is nothing but the angular momentum of w. 

VI. ANALYSIS OF REPRESENTATIONS AND 
VON NEUMANN ALGEBRAS 

In this part, we just want to recall that all results of Ref. 
1 about the analysis of representations 1T ", and their associat
ed von Neumann algebras, and the restoration of the broken 
K invariance remain valid here (Ref. 1, Theorems 111.2.1, 
111.2.3, 111.3.2, 111.3.3, Corollaries 111.3.5 and 111.3.6). 
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More precisely, let us call 

(58) 

the unique K-invariant extension of W K = WI~I, to 2f and let 
us consider the following von Neumann algebras: 

(59) 

(60) 

(61) 

= ! aEm :ak(a) = U,,(k )aU",(k )-1 = a,kEK J, (62) 

(63) 

We have the following equalities: 

Theorem Vl.l: 

(i) w = S K" }..~odk, where dk is the measure on the 
quotient space K" \K, 

(ii) (1T,;j,U,-J = Ind (1T,u'U,,,) in the sense of Ref. 10, 
K",K 

(iii)(rJI,K,a k )= Ind (m,K,,),ad in the sense of Ref. 11, 
K,,'/( 

(v) /1/ K". == /.;11\, 

(vi) II == /11 K,,' 

(vii) If (lJ is seperating, N K = //. 

Theorem VI.2: (i) If G", is trivial, any automorphism v 
of /Ii leaving // pointwise invariant and commuting with 7 is 
of the type v = a k " with k,.EK",. 

(ii) m is the dual crossed product of n by some dual 
action rof K", on /l and the action r of K'd on 1'71 is the dual of 
y. 

Corollary V1.3: Theorem VI.2 provides an alternative 
proof of Theorem V.6(i) and (ii). 

VII. THE CASE OF THE ROTATION GROUP AND 
THE ANGULAR MOMENTUM 

From now on, we will assume that K = SO(3), the con
nected real three-dimensional orthogonal group. Its closed 
proper subgroups are the finite ones, cyclic of order n:Cn 

(rotations of 21Tk In around an axis), dihedral Cnh (add the 
rotations of 1T around the perpendicular axis) and those re
lated to the regular polyhedrons: tetrahedral, octahedral, 
and icosahedral; the nonfinite ones: SO(2) (all rotations 
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around an axis) and 0(2) (add the rotations of 1T around a 
perpendicular axis). 

According to (I8) apxak has to be in the center of 
'{; '" = .W' ,uD" dY',,,. Hence, if' , 

and 

we get 

[(t + u,y, + k, y),{j1(k, k ),k, k )] 

= [(u + t,y + ky,),(u(kkJ,kkl )], 
which implies that 

y, + k,y = y + ky" k,k = kk" YE,w,u,{j1(k ),k )sW',,,, 
(64) 

or, equivalently, 

y, = ky" y = k,y, k,k = kk,. (64') 

Let ({,(oY,,,) C Q", be the (non necessarily closed) projection of 
W'", into Q",. We can distinguish three cases. 

First case: ({' (?Y",) = SO(3) or a finite group ct. 0(2). In 
such a case ({'(J(",) has a trivial center, which implies that 
k, = I, and no fixed directions, which implies that y, = O. 
Hence W is only an al-KMS state and /j '" is a closed sub
groupof(T XR 1)OSO(3)not included into(T XR )00(2) as 
a subgroup. 

Second case: ({' CW,,) = 0(2) or SO(2) or a finite group 
C 0(2). In such a case ({'(W I,,) is Abelian, and kkl = k", is 
always true, whiley andy, have to be in the fixed axis of 0(2). 
Hence .cv",CR and (u is an apx,a(}l(k,).u-KMS state. If the 
state is moving uniformly, k, = vt andy, = vt where v is the 
angular momentum and v the velocity. Moreover, ,'j '" is a 
closed subgroup of (T X R )00(2). 

Third case: cp (.WJ = I. All required conditions (64) 
are satisfiedandw is an apx,-KMS state while ,Cfj ") is a closed 
subgroup of T X R 1. 

I t would be interesting to list all closed subgroup of 
(1' XR ')OSO(3). This can be done using the techniques of 
Sec. II. The first step consists in the construction of all closed 
subgroups of T X R J and their corresponding Q. 

A. Construction of the closed subgroups of 
TxR3 

Asitiswellknown, the closed subgroups ofT XR ';:::;R 4 

are all isomorphic to: 

O,Z,R,Z ',Z Ell R,R ',Z \Z' Ell R,Z Ell R ',R " 

Z.,Z J Ell R ,Z ' Ell R ',Z Ell R 'oR 4 (65) 

But this classification is not detailed enough for us because 
$7 is acting of the space component of .w only. Hence we 
have to be more precise and specify the relative position of 
these subgroups with respect to time and space. For this 
purpose, let us construct the closed subgroups of T X R J us
ing the techniques of Sec. II. The procedure is here much 
more simple because R J does not act onto T. We get three 
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kinds of situations according to the type of "pure time 
translations. " 

(1) The pure time translations are the whole ofT 

In such a case we get the direct product of Tby a closed 
subgroup of R " that is to say 

T[Q = SO(3)], T XZ[Q = 0(2)], T XR [Q = 0(2)], 

T xZ z (Q finite), 

T X(ZtBR) (Q finite),T XR Z [Q = 0(2)], 

T X Z 3 (Q finite), 

T X (Z Z tB R ) (Q finite), T X (Z tB R 2) [Q = 0(2)], 

T xR 3 [Q = SO(3)]. 

(66) 

A more precise description of these subgroups can be given 
by the choice of a basis (a) i = 1,2,3 of R 3: their generic 
element can then be written 

(t, itl fai + j~t+ I nia)). tER,riER,niEZ, (67) 

where p and r are integers such that O<p<r< 3 called, respec
tively, the dimension and the rank of the space component of 
these groups. 12 

(2) The pure time translations are a subgroup Z of R 

The structure of these subgroups is 

.zIT (x(x),x), (68) 

where x describes some closed subgroup of R \ X some con
tinuous additive (hence linear) map from such closed sub
group of R 3 into the one-dimensional torus and;\, the natural 
extension of Z by this torus, that is to say 

Z [Q = SO(3»), .zIT (x,Z)[Q = 0(2)], .zIT(x,R) 

[Q = 0(2)], 

.zIT (x,Z 2) (Q finite if X = 0, trivial if X*,O), 

.zIT (x,Z tB R ) (Q finite if X = 0, trivial if X*,O), 

.zIT(x,R 2) [Q = 0(2) if X = 0, trivial ifX*'O], (69) 

.zIT (x,Z 3) (Q finite if X = 0, trivial if X*,O), 

.zIT (x,Z 2 Ell R ) 

(Q finite if xlz' = 0, trivial if xlz'*,O), 

.zIT (x,Z Ell R 2) 

[Q = 0(2) if xlz' = 0, trivial if xlz'*'O], 

.zIT (x,R 3) [Q = SO(3) if X = 0, trivial if X*,O]. 

If a is the fundamental length of Z and (a;)i ~ 1.2.3 some basis 
of R 3, the generic element of these subgroups can be written 
[with the same notation in (67)] 

(3) The pure time translations reduce to ! ° 1 
The closed subgroups are then the closed graphs of con

tinuous linear applications (x(x),x) from some (nonneces
sarily closed) subgroup of T xR 3 to R. Being closed sub
groups of R " there exists a basis eh eZ,e3,e. of R • = T xR 3 

such that 

(x (x),x) = f riei + i njep 
i~1 j~p+1 

(the conditionp<3 coming from the fact that all pure time 
translations are zero). In the canonical basis EoET, 
(E h E2,E3)ER 3 of T xR 3, 

3 

e1 = a?Eo + I aiel = a?Eo + ai 
[= I 

= x(a)Eo + ai = (x(a),a;), (72) 

with a,40, i.e., for any i there is some I such that a;*,O, and 
so 

but now the (a;}i ~ I .... , are not necessarily linearly 
independent. 

Another way to represent these groups is to write 

.f. 3 ,3 
X = 2.. I fa;E[ + I I njaJE[ 

i=I[~1 j~p+I[~1 

(73) 

where A is the 3 Xrmatrix (a;) andy = (r1,".rP,nP + I, ... ,n') . 
Hence y describes a closed subgroup of R • and 

(x(x),x) = (x(Ay), Ay) = (k·y, Ay), k = (k;) = (x(a;). 
(73') 

Let us list the different cases, with their corresponding Q. 

- r = p = 0, ~ = ! ° J, Q = SO(3), 

- r = 1, p = 0, .W' = n(x(a),a)-Z, 

a*,O, aER \ nEZ; Q = 0(2), 

- r = 1, P = 1, ~ = r(x(a),a)-R, 

a*,O, aER 3, rER; Q = 0(2), 

- r = 2, P = 0, ~ - Z >, but we have to distinguish dif
ferent cases. 

(na + itl fx(a;) + j ~ t+ I nix(a), 

itl fai + j~t+ I niaj} 
(70) 1st case: al and az are linearly independent. Let 

X (az) = ax(a1). Then ~ = ! (nl + an Z)x(a1),n1a1 + n2az) I. 
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The R J projection is Z " the T projection is Z or dense accord
ing to whether a is rational or not. Q is finite if X = ° and is 
otherwise trivial. 

2ndcase:a, = Aa,*O,x (a,)*0[x (a,)andx (a,)cannot 
both be zero by independence e, and e,], X (a,) = ax (al), 
a*A (for the same reason). Then sf = I «n' + an')x(a,), 
(n' + An')a,), a*A, A irrationalj, the condition A irra
tional coming from the nullity of pure time translations. The 
R J projection is dense in the one-dimensional subspace gen
erated by a" the T projection is Z or dense according to a 
rational or not. As X*O, Q is trivial. 

- r = 2,p = 1, sf ~Z 63R, and we should have two 
cases as before, but the second one is excluded by the fact 
that r + An can be zero for nonzero values or rand n, giving 
rise to nonzero time translations. Hence we have a, and a, 
linearly independent, X (a,) = ax (a,),.rf = I «r + an)x(a,), 
rat + na,) j. The R J projection is Z 63 T and the T projection 
is R. Q is finite if X = ° and trivial otherwise. 

- r = 2,p = 2 sf ~ R ' with only one case as above. 
With a, and a, linearly independent, X (a,) = ax (a,), 
.r:! = I «r' + ar')x(a,),r'a, + r'a,) j. TheR J projection isR >, 
the T projection is R. Q = 0(2) if X = 0, trivial otherwise. 

- r = 3,p = O,.r:! ~Z', but we have to distinguish dif
ferent cases. 

1st case: a"a, and aJ linearly independent. Let 
X (a,) = ax (a,),x (a J) = (3x (a,). Then d = I (n' + an' 
+ (3n J)x(a,), nla, + n'a, + n'a J J. TheR 1 projection iszl, the 
T projection is Z or dense according to a and (3 both rational 
or not. Q is finite if X = ° and trivial otherwise. 

2nd case: a, = Aa2 + .uaJ'X (al)*Oand 1 - Aa - .u(3*0 
for the linear independence of the (eJ Then .r;ff = «n' 
+ an J + .BnJ)x(a,),(n'A + n')a, + (nl.u + nl)aJ) with A or.u 

irrational. TheR 1 projection ifmadeofZ' (from n'a2 + nJa,) 
and of Z [from n'(Aa2 + .uaJ»), with dense projection on a, or 
a l or both, the T projection is Z or dense according to a and (3 
both rational or not. As X*O, Q is trivial. 

3rd case: a l = Aa, = .uaJ' This case is impossible by the 
linear independence of the (eJ 

- r = 3,p = 1, d ~Z' 63 R with three different 
cases. 

1st case: a"a"aJ linearly independent. With the same 
notations, .r:f = I r' + an' + .BnJ)x(a ,),r'al + n'a2 + nJaJ J . 

TheR 'projection isZ 263 R, the Tprojection isR. Qisfiniteif 
xiz' is zero, (i.e., a and.B zero) and trivial otherwise. 

2nd case: a, = Aa, + .ua],x(a,)*O, 1 - aA - (3.u*0. 
Then .w = I (r' + an' + .Bn')x(al),(r'A + n')a, 
+ (r'.u + nl)a, I with A and.u not both zero and A l.u irratio

nal to avoid pure time translations. The R J projection is 
made of Z' and R, the T projection is R. Q is trivial. 

3rd case: a, = Aa, = /-La, is impossible as above. 

- r = 3, P = 2, .W ~ Z 63 R ' with three different cases. 
cases. 

1st case: a"a"a, linearly independent, X (al) = ax (a,), 
X (a,) = .Bx (aJ). Then d = [(ar' + (3r + nl)x(a,),r'a, 
+ ra, + nla, I. TheR 1 projectionisZ 63 R ',the Tprojection 
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is R. Q is 0(2) if XIR' is zero (i.e., if a =.B = 0) and trivial 
otherwise. 

2nd case: a, = Aa, + .u,a, is impossible if we do not want 
pure time translations. 

3rd case: a, = Aa, = .ua, is impossible as above. 

- r = 3, P = 3, .r:f ~ R 1 with three cases. 

1st case: a"a"al linearly independent, X (a,) = ax (a,), 
X (al) =.Bx (a,). Then sf = [(r' + ar + .Br')x(a,),r'a, 
+ ra, + r'a,l. TheR 'projectionisR " the TprojectionisR. 
Q = SO(3) if X = ° and trivial otherwise. 

The 2nd and 3rd cases are excluded for the same reasons 
as above. 

- r = 4, P = 0, .r:! - Z, with four different cases. 

1st case: a"a"a"a,linearly independent. This is impossi
ble because R ' is of dimension 3. 

2nd case: a, = Aa, + .ua, + val, x(a,)*O, 
x(a,) = ax(a,), x(a,) = (3x(a,), X(a,) = yx(a,), 
aA +.B.u + yv - 1*0. Then.r:! = I (n'a + n'/3 + nly 
+ n')x(a,),(n' + n4A )a, + (n' + n4.u )a, + (n' + n4v)al l 

with A or.u or v irrational. The R ' projection is made of Z ' 
and Z, with projection on a, or a, or a, dense according to the 
irrationality of A or.u or v; the T projection is Z or dense 
according to a, /3 and yall rational or not. Q is trivial. 

3rd and 4th cases (i.e., a, = Aa, + /-La, and 
a4 = va, + 8a" or a, = Aa, = .ua] = va,) are impossible by 
linear independence of the (eJ 

- r = 4, P = 1, .r:f - Z 1 63 R: also four cases, the only 
realistic one being, with the same notation and conditions as 
before, .r:! = \ (n'a + n'(3 + nly + r')x(a,),(n' + Ar')a, 
+ (n 2 + .ur')a, + (nl + vr')all with A l.u or .ulv or vi A irra

tional. The R ' projection is made of Z 1 and R, the T projec
tion is R. Q is trivial. 

- r = 4,p = 2,d' ~Z'63R '.Herealso,onlyonecaseis 
realistic, .r:! = [(nla + n'/3 + rly + r ')x(a4),(n' + Ar')a, 
+ (n' +.ur ')a, + (rl + vr')a3 I with /-Llv irrational. The R 3 

projection is made of Z' 63 Rand R. Q is trivial. 

- r = 4, P = 3 and r = 4, P = 4 are all impossible. 

B. Construction of the closed subgroups of 
TXRDSO(2) 

As the sequel of the construction of closed subgroups of 
(T xR 3)OSO(3) is rather tedious, let us proceed only in the 
most interesting case (cf. second case) of closed subgroups of 
(T X R )OSO(2). In such a case, the .rf's reduce to the follow
ing list, Qbeing always 0(2), where T means the one-dimen
sional torus: 

(a) 

s:I = T Xl = \ (t,O),lET \; T XR = R;.1/ = R XSO(2) 
s:I 

(b) sf = T xZ = I (t,na),tET,nEZ J; T XR = T R; 
.if 

.;Y' = T R xSO(2) 
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(c) 

,r::! = T X R = I (t,ra),tET,rER !; T XR = I; ,f' = SO(2) 
.W 

TxR 
(d).r::/ = Z Xl = [(nto,O),nEZ!; -- = 'frXR; 

.# 

.1/' = ('frXR )XSO(2) 

(e) 

.r::! = ZO'(;r,Z) = l(nto + mt"ma),n,mEZ}; 

(t) 

T XR = l' 7 X l' R; A~ = (1'[ X'f R )XSO(2) 
.W 

.W = ZO' (;f,R ) = [(nto + rtj,ra),nER,rER j; 

TXR ='f/~,V='frxSO(2) 
,c! 

(g) 

.W = [= (0,0); T XR = T XR;, {" = (T XR )XSO(2) 
.c.f 

TXR 
(h).c.f = (;f,Z) = [n(to,a),nEZ J; -- -IRX'f; 

.c.f 

. I '- (IR X 'f) X SO(2) 

(i) 

,c/=(;f,R)= [r(to,a),rER j; TXR -1R;.I-RxSO(2) ,w 
(j) 
,c/ = Z, = [n(to,a) + m(ato,Aa), a*A,A irrational, 

n,mEZ J; 

T XR _ l' X 1';, V'- (1' X T) X SO(2) 
.c.f 

(a) We have to determine a closed subgroup ,W' of 
R XSO(2)-Rx'f, whose universal covering is R', 

p 

R XR -+ R XSO(2), KerP = Z. (75) 

Hence P -leW) is closed subgroup of R " with closed projec
tion onto the first factor R and intersection with P-I(R ) in
cluded into KerP (to avoid pure space translation). So 

p-IeJf) = I (nxo + amxo,(n +Am)a) I 
= In(xo,a)+m(aXo,Aa)I-Z\ 

wherexo,a,A,aER, n,mEZ, xo=r'=0 and A irrational (to exclude 
pure space translations), a rational (to get a closed projec
tion onto R ), (n + Am )a*2krr for any nonzero couple of 
integers nand m if a=r'=0 or else for any n=r'=0 and m integers if 
a = ° (to avoid pure space translations); or else 

P-j(,'J'tj = [n(xo,a)j -Z, aER,nEZ, 

with na=r'=2krr for n*O if xo*O; or else 

P-'(cJY) = /r,aj-R, rER,aER. 

This gives rise to the three following groups: 

~fj = [(t,(n + am)xo,n(J, + m(Jz) I, 
where t,xoER, n,mEZ, xo=r'=O, (Jj,e,ESO(2), A = (e,/e j) irra
tional, a rational, n(Jj + m(J,=r'=2krr for any nonzero couple 
of integers nand m if a*O or else for any n=r'=0 and m inte-
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gers if a = 0; 

y = [(t,nxo,n(Jo) I 
where t,xoER, nEZ, (JoESO(2), eo/21T irrational if xo=r'=0; 

;I} = [(t,r(Jo)], 

with t,rER, eoESO(2). The corresponding states are at, at 
and aPo,-KMS, respectively. 

(b) By the same kind of discussion, we get 

:Y = {(t,(nxo,mx,),m 2; )}, 
where t,xoER, m,n,kEZ, xjE'f R' kXI = 0; xo=r'=0 and 

~~. = I (t,(nxo,rx I),reo) I 
where t,xo,rER, nEZ, (JoESO(2), 21TX/(Jo = 0, xo=r'=0. The 
corresponding states are, respectively, at and apx,ae,

KMS. 

(c) We immediately get 

.3 = [(t,x)], 

with t,xER, or else 

,~ = {(t,x,n 2; )}, 
with t,xER, n, kEZ, and 

~ = [(t,x,r(Jo) I, 
with t,x,rER, eoESO(2). The corresponding states are, re

spectively, apx , apx, and apx,ao:KMS. 

(d) We have to determine a closed subgroup ,r of 
'fT X R X SO(2) whose projections onto R X SO(2), l' 7 X R 
and R have to be closed. Hence, using the results of (1), we 
get 

,(fj = [«pto,(n + (3m )ll),(n + am )xo,ne j + me,) I, 
where to,xoER,p,n,mEZ, tIET/I xo=r'=O, (JI,(J,ESO(2), 
A = «(J,/(JI) irrational, a is rational, n(J1 + m(J,*2krrfor any 
nonzero couple of integers nand m if a and (3 are not both 
zero, or else for any n=r'=0 and m integers if a and (3 are both 
zero, 

.1 = [ ((pto,ntl),nxo,n(Jo) I 
where to,xoER, p,n,EZ, tjE'f" (JoESO(2), «(Jo/21T) irrational if 
xo=r'=0, (JI = tl = 2rr/k if Xo = 0, (Jo = 2rr/k if Xo = tl = 0; 

,'I = [ ((pto,rt 1 ),reo) j, 

where loER, tjE'f n pEZ, rER and eoESO(2). The last one 
alone gives rise to an at ao,-KMS state. 

(e) Here all projections oLW on any factor have to be 
closed. Using the results of (b) , we get 

;Ej = [(nto,mt"pt,),(mxo,pxl),peo)], 

where to,xoER, tl,t,E'f 7' xjE'f R, eoESO(2), n,m,pEZ, xo=r'=O, 
eo = 21T/k, kX j = 0, kt, = t l; 

~ = 1 «nto,mt"rt,),(mxo,rxj),reo)] , 

whereto,xoER, 11,t,E'f nXjE'f R, (JoESO(2), n,mEZ, rER,xo=FO, 

21TX 1 = 0, 
80 
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The second group only gives rise to an apx,ae;KMS state. 

(t) Here )liP is similar to the corresponding one in (2) 
with exchange of time and space. So 

f§ = ! «nto,rtl,mt2),rxO,mOo) I, 
with n,mEZ, rER, to,xoER, tht2E'f T> 00ESO(2), 00 = 21T/k, 
kt2 = 0, xo:i=O. 

f§ = I «nto,rthr't2),rxO,r'00) I, 
with nEZ, r,r'ER, to,xoER, tl,t2ET T> 00ESO(2), (21T/Oo)t2 = o. 
xo:i=O. The second group gives rise to an apxae-KMS state. , , 

(g) We have to determine a closed subgroup df' of 
T X R X SO(2) - R 2 X 'f whose universal covering is R 1 

P 

T XR XR ----+ T XR XSO(2),KerP = Z. (75') 

Hencep-I(JliP) is a closed subgroup ofT XR XR, with closed 
projection onto T X R and intersection with P -I (T X R ) in
cluded into KerP. We then get 

f§ I «n + am + {Jp)to,(n + am + {jp)xo,nO I + mOl + pOl) I, 
where n,m,pEZ, to,xoER, Oh02,OlESO(2), a rational, {J,{jER, fJ 
and v not both rational, Xo and to not both zero, 
nOI + m02 + pOl:i=2k1T for any nonzero triple of integers n, 
m andp, if a,{J, {jnot all zero, or for any nonzero couple (n,p) 
and any integer m if a = 0, or for any nonzero couple (m,n) 
and any integer p if (3 and a are both zero, offor any n:i=O and 
any m and p if a, {J and {j are all zero. If to (or xo) are zero, we 
have the case of (a), and then OJ = 0, {j = 0 (or (J = 0). 

f§ [«n + am)to,(n + (Jm)xo,nOI + m(2) I, 
where n,mEZ, to,xoER, Oh02ESO(2), a,(3ER, Xo and to are not 
both zero, a rational if xo:i=O and {J rational if to = 0, 
nOI + m02:i=2k1T for any nonzero couple of integers nand m 
if a and {J are not both zero or for any n:;i=O and m integers if 
a and (J are both zero. 

f§ = [(nto,nxo,nOo) I, 
where to,xoER, nEZ, 00ESO(2), 00!21T is irrational if Xo and to 
are not both zero, 00 = 21T/k if Xo and to are both zero. 

f§ = [(reo) J, 

where rER and 00ESO(2). Only the last group gives rise to an 
ae,-KMS state. 

(h) The closed subgroups )liP are similar to the corre
sponding ones in (d). Then 

f§ = [«Pto + (n + am)t b,(n + (Jm)tl), 

with to,t b,xo,xbER, p,n,mEZ, tlET T> xlET R' (to/xo) = (tJx l), 
tot b + xxb = 0, Ohe2ESO(2), t band xb are not both zero, 
xo:i=O, A. = (02/01) irrational, a rational, nOI + m02:i=2k1T 
for any nonzero couple of integers nand m if a and{J are both 
zero, or else for any n:i=O and m integers if a and {J are both 
zero; 

f§ = I «(Pto + nt b,ntl),(pxo + nxb,nxl),nOo) I , 
with to,t b,xo,xbER, p,n,ER, tlET T> xlET R' 00ESO(2), (00!21T) 
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irrational if t band xb are not both zero, 00 = x I = t I = 21T I k 
ift b andxb are both zero, 00 = 21T/k ift b, xb, tl andXI are all 
zero; 

f§ = ! «(pto,rtl),(pxo,rxl),rOo) I, 
with to,xoER, pEZ, rER, tlET T> xlET R' xo:i=O, 00ESO(2). The 
last group gives rise to an apx,ae,-KMS state. 

(i) Here)liP is similar to the corresponding group in (a). 
So 

f§ = ! (rto + (n + am)t b,rxo + (n + am)xb,nOI + m(2) I, 
with to,xo,t b,xbER, n,mEZ, rER., Oh02ESO(2), xo:i=O, t band xb 
are not both zero, tot b + xoXb = 0, A. = (02/(}1) irrational, a 
rational, nOI + m02:i=2k1T for any nonzero couple of integers 
nand m if a:i=O or for any n:i=O and m integers if a = 0; 

f§ = (rto + nt b,rxo + nxb,n(}o) I 
with to,xo,t b,xbER, nEZ, rER, (}oESO(2), xo:i=O, tot b + xoXb 
= 0, (}0!21T irrational if t band xb are not both zero, 

,ct} = (rto,rxo,r' (}o) 

with to,xoER, r,r'ER, (}oESO(2), xo:i=O. These groups give rise 
respectively to at ax,-,a t ax,-,at axPe,-KMS states. 

(j) The groups)liP are the sames as in (5). Hence, 

f§ = ((n + am)to,p(1 + a)tl),«n + A.m)xo,p(l + A. )XI), 
p(}o) I, 

with to,xoER, tlE'f T> xIE'f R' (tolxo) = (tJx l), a,A.ER, a:i=A., A. 
irrational, xo:;i=O, n,mEZ, (}oESO(2), eo = (21T/k), 
k (1 + a)tl = k (1 + A. )XI = 0; 

;§ = ((n + am)to,r(l + a)tl),«n + A.m)xo,r(l + A. )xl), 
reo) I, 

with to,xoER, tlET T> xIE'f R' (tolxo) = (tllx l), a,A.ER, A. irra
tional, a:;i=A., n,mEZ, Xo=FO, 80ESO(2), rER, 
(21T/(}0)(1 + a)t, = (21T/(}0)(1 + A. )x, = 0. The last group 
gives rise to an apx,ae,-KMS state. To sum up the situation, 
let us list the groups giving rise to apx,ae,-KMS states with 
X t and (), nontrivial. 

l.e., 

From (b) we get 

f) = (t,(nxo,rxl),r8o) I = \ (t,rxo,rOo) I 

[9 = T X helix of axis R. 

From (c) we get 

f§ = \t,x,r(}o)l = TXR XSO(2). 

From (e) we get 

,ct} = \ «nto,mt1),mxO) J X \ (rt2,rxl,rOO) j. 

(76) 

(77) 

(78) 

This group can be described as a Z family of helixes 
with axis displayed along a Zo X Ro array of equation in the 
(T,R ) plane, 

t = (to,t l) + nto (xo:i=O). 
Xo 

From (t) we get 

f§ = ((nto,rtl),rxo) I X (r't2,r'00) J. (79) 

This group can be described as the product of an helix along 
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T by the real line Ro of equation in the (T X R ) plane, 
t = «O,t,)/xo)x. 

From (h) we get 

;g = \ (pto,pxo) J X I (rt"rx , ,rOo) J, 

i.e., 

;§ = helix along R o, (80) 

where Ro is the line of equation, in the (T XR ) plane, 

to t= -x. 
xo 

From (i) we get 

[§ = I (rto,rxo,r'Oo) J, 
i.e., 

[§ = R oXSO(2), (81) 

where Ro is the line of equation, in the (T,R ) plane, 

t= ~x. 
xo 

From (j) we get 

[§ = I «n + am)to,(n + Am)xo) J 
xl(r(1 +a)t"r(l +A)x"rOo)J. (82) 

This group can be described as a Z family of helixes with axis 
displayed along a Zo X Ro array of equation, in the (T,R ) 
plane, 

(1 + a)to 
t = x + nxo· 

(l +A )xo 

C. Algebraic introduction of the angular 
momentum 

We now would like to show how, starting from U)1~1.,' 
extremal-KMS on ~r,u with respect toa, ax, (and hence facto
rial), in the case where f.l = 0 and ff '" is nontrivial, it is 
possible to define the angular momentum by using objects 
related to &,u only. For that purpose, let us assume the exis
tence on ~r,u of some inner automorphism p such that 

(83) 

where v, is a continuous one-parameter family of unitaries in 
&"" fulfilling the cocycle relation, 

(84) 

and such that (uoP and U) are quasiequivalent on &,u (i.e., the 
von Neumann algebras 17'",0/&",)" and 17'",(~f)" are equal). 
The existence of such p is given by the following theorem. 

Theorem VII.l: Let UE& a unitary such that 
apU = einOu, OESO(2). Thenp = Adu is an automorphism 
verifying (83) and (84) with 

v, = eillc'u*apj,p, where c is some arbitrary constant. 

Proof It is just a matter of computation to show that 
p-'oa,ax,op = Ad(u*a,a,p)oa,ax, and that u*atax,u obey 

(84). Hence v, = eiA'u*apx,u by the factoriality of U) and A 
can be written A = nco On the other hand, as 
Uw(ao)17',u(u)fl", = 17',japU)f1,u = ein017'",(u)fl", and u is uni
tary, the spectrum of U)s not one-sided and Gw = I. Hence 

997 J. Math. Phys., Vol. 20, No.6, June 1979 

U) is KMS on & and f1 w is separating for 17' J&)". Of course, 
17'",I&",on~", = I 17',,,(a)fl,,,,aE&,,, I is identicaIto17''''19!,,: In the 

same way, 17' "'opl?!," is identical to 17'",1 &'" on ~ 
= \17',,,(au*)fl,u,aEfl,,,1 and is a subrepresentation of 17',ul&", 

on the Hilbert space dY' of 17',u. Let E the projection from ~'u 
into ~ : EE17' w(&'u)' and the central supportF of E in 17' J&,J' 
is the projection onto [17' ",(&",)'~ w]. But 

[17',i&')'dY',u]:::> [17',,,(&,)'fl,u]:::> [17',,,(&)'fl J =~, 
as fl,,, is separating for 17',,,(&)", and then cyclic for 17' w(&)'. So 
F = I, which means that 17',,,I~r,,,, i.e., 17',uln . .' is quasiequivalent 

to 17',ul&,,), and also to 17' w opI91".' which is a subrepresentation. 
Q.E.D. 

Let W,E17'",(&w)" the Radon-Nykodym derivative'3 

WI = (D(U)°p): DU),. (85) 

The modular operators of U) and U)0p on 17'",(&,,,)" being re
spectively the extension of a __ p, ax n, andp-'oa _ p, ax ",op 
(Ref. 13), we have 

17',,,(P-JOa -PI ax op(a» 
11, 

=w,17')a_ ppx fI,(a»w;, aE&,,,, 

but on the other hand 

17',,,(p-'Oa .. (3{l x ,,,Op(a») 

= 17',,,(V _ p, )17'o,(a _ pPx fI' (a»17',u(V - p,)*' 

Hence, by the factoriality of U), 

w, = (D(U)op): DJ, = e -iA(3I17'w( - vp'), 

(86) 

(87) 

(88) 

where A is a kind of angular momentum. More explicitly, in 
the case of the hypothesis of Theorem VII.i, let us consider 
U) and U)0Adu* on m = 17',,,(&)": 

(89) 

where a';' is the modular automorphism of U) on m, or else 

(D(U)oAdu*): D",), = 17'ju*)17'w(a -pPx IP-/3vIU), 

= e - in/3v,17' (u*a fY- u) 
(t) -. {3r-- x Hr ' 

= e - ;/I/3v'e - ;n/3cl17' (v ) 
(I) - PI , (90) 

and, by restriction to ~r"" 

W = (D (U)0p) . D ) = e _. ;11/3(" + c)l17' (v) (9 I) 
t \' • (.() I w -- Pt , 

where v is the angular momentum and c an arbitrary con
stant which can be chosen to equal zero independently of u). 

VIII. CONCLUSION 

Besides the characterization of all apx,ao,-KMS states 
for the (T XR 3)OSO(3) symmetry group and the algebraic 
definition of the angular momentum, one of the main con
clusions of this work is the fact that the algebraic back
ground of Ref. I can be generalized to a group with a semi
direct product structure. 

Nevertheless, this result might be improved in several 
ways; first of all by starting from a KMS condition with 
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respect to time only on the C * subalgebra of fixed points 
under R 'OK, deduced from a stability requirement under 
perturbations by observables in this subalgebra. 

On the other hand, we might replace SO(3) by the Lo
rentz group, which seems to be necessary because a space 
rotation of an infinite medium leads to infinite velocities. 

In these both directions, we would have to replace K by 
a noncompact group, i.e., from a mathematical point of 
view, to substitute the Tatsumma-Takesaki duality to the 
Tannaka one. 
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It has been observed by Miura that the solutions of the modified Korteweg-deVries 
equation can be mapped into those of the Korteweg-deVries equation. In this note we 
show that all of the solutions of the former, decaying sufficiently rapidly as Ixl- 00, 

map into a sparse solution set of the KdV equation. We use certain results regarding 
the second Painleve transcendent to exhibit this fact. 

1. INTRODUCTION 

A key step in the development of the inverse scattering 
transform was the discoveryl that every solution of the modi
fied Korteweg-deVries equation (MKdV). 

(1.1) 

maps into a solution of the Korteweg-deVries equation 
(KdV), 

U t + 6uu x + uxxx = 0, 

under the transformation 

(1.2) 

(1.3) 

Since (1.3) is a transformation between solutions of partial 
differential equations, it is usually called a Backlund trans
formation. The purpose of this note is to examine some of the 
consequences of this transformation. 

Perhaps our most important conclusion is that the 
range of the transformation is quite restricted. Specifically, 
the set of all solutions of MKdV that evolve from smooth, 
rapidly decaying initial data maps into a sparse set of solu
tions of KdV. Hence, almost every solution of KdV that 
evolves from smooth, rapidly decaying initial data cannot be 
obtained from a rapidly decaying solution of MKdV by this 
transformation. 

The restricted range of( 1.3) can be anticipated from the 
following simple argument. Let u(x,to) be a given smooth 
solution ofKdV that vanishes rapidly as Ixl-oo, evaluated 
at some t = to. Let vex) denote the corresponding solution of 
the ordinary differential equation (1.3), subject to the initial 
condition that 

v-o, as x- + 00. (1.4) 

These two conditions uniquely determine v, including its be
havior as x- - 00. Except for very special u, v will not van
ish rapidly (i.e., faster than lIx) as x-+ - 00. Consequently, 

"JPermanent address: Department of Mathematics, Clarkson College of 
Technology, Potsdam, New York 13676. 

this solution ofKdV cannot be the transformation of a solu
tion of MKdV that vanishes rapidly as Ixl-oo. (There are 
restrictions on u to ensure that v has no poles on the real axis; 
these are only inequality restrictions and do not lower the 
dimensionality of the function space.) 

Because this argument applies at fixed t, the solution of 
(1.3) need not solve MKdV. In order to relate solutions of 
MKdV to solutions of KdV, we characterize each by the 
appropriate "scattering data." Both problems (on 
- 00 < x < 00) can be solved by inverse scattering trans

forms, although the required linear eigenvalue problems are 
different (see, for example, Ref. 2). We denote the scattering 
data for KdV by p(k ); as will be shown in Sec. 2 and an 
Appendix, given almost any smooth initial function for KdV 
for which 

f~ 00 (1 +x2
) luldx< 00, 

p(O) = - 1. 

(1.5) 

(1.6) 

One can show that (1.6) requires that the corresponding as
ymptotic (t- 00 ) solution of KdV contains a relatively thin 
transition layer across which the character of the asymptotic 
solution changes abruptly (cf. Ref. 3). Consequently, these 
transition layers are a typical feature ofKdV solutions; they 
are absent only for those very special initial conditions for 
which (1.6) fails. 

For MKdV, the linear eigenvalue problem is different, 
and we denote the scattering data by r(k ). In this case, we 
assume v decays rapidly as Ixl-oo, so that certainly 

f~oolvldX<oo. (1.7) 

By virtue of this r(k ) may be extended into the upper half
plane and 

- 1 < reO) < 1. (1.8) 

It can be shown that the corresponding asymptotic solutions 
ofMKdV contain no transition layers. All of these solutions 
are related by (1.3) to solutions ofKdV that contain no tran
sition layers, but the set of such KdV solutions is extremely 
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sparse. Typical KdV solutions (with transition layers) can
not be obtained by (1.3) from rapidly decaying solutions of 
MKdV. 

The asymptotic results for MKdV have important con
sequences regarding the global behavior of the second Pain
leve equation, 

w" = zw -\- 2w'. 

Some of the recent work on (1.9) is outlined in Sec. 3. 

2. BEHAVIOR OF THE SOLUTIONS 

(1.1) may be solved in the following way': 
Solve 

K (x,y;t) -\- F(x + y;t) - IJ. LX K (x,z;t )F(z + s;t) 

X F (s + y;t )dz ds = 0, 

where 

I I-f. 
F(x;t) = z;; 

and then 

l' = - 2K (x,X;/ ). 

( 1.9) 

(2.la) 

(2.1 b) 

(2.lc) 

The scattering data (r(k ) = r*( - k » are obtained from the 
initial conditions u(x,O) by solving the related scattering 
problem at the initial instant. The scattering problem is 

WI\ = - i::-W1 + vW" W2 , = is-W, + vW,. (2.2) 

If we define the (improper) eigenfunctions 6, U!, J, as 
solutions 

(~:) 
determined by 

1ft ~ (~)e ':" as x -. -- ex, 

(0) .. rJ,- 1 (',,., as x- + :x: , 

- (1) , z!, -' 0 e IS-'\ as x- + oc, 

and a(; ),b (t;) by 

6 = aJ, + bl/> ~(a c" i;"') as x- + oc, 
b (/" 

(2.3a) 

(2.3b) 

(2. 3c) 

(2.3d) 

then res ) b (S)! a(S). The value reO) turns out to be crucial 
in the analysis. It is easily seen from (2.2) that for t; = 0, 

= (COSh(f y V(X')dX')) 

6 sinh(r Y. v(x')dX') , 

hence 

r,,==r(O) = tanh(f'" 'l_ vdx ). 

Since JX x. vdx < oc, this means ro is real and 

- I <ro < 1. 
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(2.4) 

(2.5) 

(2.6) 

The condition (2.6) has important implications regarding 
the solutions ofMKdV. The behavior of F (x,t) as t- 00 giv
en by (2.1 b) can be expressed in terms of elementary func
tions. Following the methods of Ref. 3 we find the solution of 
MKdV has the following asymptotic form. [The methods in 
Ref. 3 require that the initial data decay faster than any expo
nential as Ix [--. 00. Consequently, the formulas (2.7), (2.8), 
(2.17)-(2.19) have been established only for these rapidly 
decaying initial functions. However, this restriction seems to 
be a consequence of the particular method, whereas the 
weaker restrictions (1.5) and (1.7) are intrinsic to the respec
tive problems.] For TI x/(3t )'f\~ 1 (bisimilarity region) 

u- [r( ~ (;}12)/C3t) 1!3]Ai(7J), (2.7a) 

where Ai(7J) is the Airy function. For 
11 =c x/(3t )'; = 0 (1) (ordinary similarity region), 

1 
/'--- g(Tl), (2 7b) Ot )1' . 

where g( 11) is that unique solution of the Painleve equation 
(1.9) with asymptotic boundary conditions, 

g(r/)-r"Ai(7J), as 7J-. + 00. (2.7c) 

For 7J¢" - 1 (again a bisimilarity region), 

u~ 7J sin -( - 7J)312 - !d 'In( - 7J) + eo (- )
1/4

d (2 ) 
(31 )11l 3 

where 
(2.7d) 

d 2 = -~In(t- IrCV -x/12t )1 2
). (2.7e) 

7T 

(2.7a), (2.7b), and (2.7d) are the dominant terms in the as
ymptotic expansions as t---+ 00. These expansions match in 
their respective overlap regions. Two points are to be noted 
here: (i) there are three regions to the asymptotic solution of 
MKdV; and (ii) (2.6) has important implications regarding 
the behavior of the Painleve equation (1.9). This condition 
(2.6) assures that the solution of (1. 9) is bounded for all7J, 
and hence, matches (2.7d) and (2.7e). However, if ro = ± 1 
the Painleve transcendent becomes unbounded. Although 
this never happens for MKdV, it virtually always happens 
for KdV. The behavior of the solution of (1. 9) will be more 
fully di.scussed in Sec. 3, and has been noted in Refs. 4 and 3. 

By virtue of Miura's transformation (1.3), we can map 
all the solutions of MKdV into solutions of KdV. For com
pleteness we list the results of this computation. For 7J~ I, 

u ~ - [r( ~ (;J 1/2) (3t)2/3 ] Ai'(7J). (2.8a) 

For 1/ = 0 (l), 

1 
u- (3t )213 f(7J), 

wheref(7J) satisfies 

f'" + 6ff - (2f -\- 7Jf') = 0, 

subject to the asymptotic boundary condition 

f- - roAi'(7J), as 7J- + 00. 

For 17¢" - 1, 
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u~ - TJ cos -( - TJ)312 - --InC - TJ) + 80 , 
d( )"4 (2 3d' ) 

(3t )213 3 4 
(2.8e) 

where d is given by (2.7e). 

It is surprising that (2.8a)-(2.8e) is virtually never an 
entirely correct description of the asymptotic solution of the 
KdV equation (without solitons). To explain this we shall 
show that the condition (2.6) is not generic for the KdV 
equation. The generic case turns out to be 

ro = - 1 (2.9) 

[whereby the solution of(2.8c) becomes unbounded and 
(2. 7e) is singular atx/(3t) = 0]. In order to demonstrate this, 
we first mention that the inverse scattering transform for 
(1.2), without solitons,' is given by 

K (x,y;t) + B (x + y;t) + L" K (x,z;t)B (z + y;! )dz = 0, 

(2.1Oa) 

B (x;! ) = - p(k )e'(kx + 8k '1) dk, I f·~ . 
21T - x. 

(2.1Ob) 

d 
u(x;t) = 2-K (x,x;!), 

dx 
(2.1Oc) 

where p(k ), the reflection coefficient, is obtained from the 
scattering problem at the initial instant, 

¢>,' + (k 2 + u(x;o»¢ = 0. (2.lla) 

We require u(x;t ) to decay sufficiently rapidly as Ix I~ 00, 

and ¢ to obey the boundary conditions, 

¢~e -, ikx + p(k )eikx, x~ + 00, 

¢~T(k)e -ikx, x ....... - 00, 

(2.11b) 

(2.1lc) 

[For appropriate initial conditions, (1.3) implies that as 
!-oo (2.8a)-(2.8c) holds with r(k) replaced by p(k) and of 
course ro by po p(O).] 

Next we show thatpo = - 1 is generic. First we consid
er functions u(x,! ) with compact support - L <x <L. Define 
the function ,u(x;k) = ¢J¢ on [ - L,L ]. In terms of,u, 
(2.11a) yields 

fJ'+,u'+k'+U=O. (2.12a) 

The boundary conditions (2.11 b) and (2.llc) yield 

,u( - L;k) = - ik, (2.12b) 

_ ike ikL + ikp(k )eikL 

,u(L;k}= .. (2.12c) 
e Ikl. + p{,k )e'kL 

(2.12c) is easiiy inverted to express p(k ) in terms of ,u(L;k ), 

p(k) = ik + fJ(L;k) e' 2ikL. 
ik _ ,u(L;k) (2.12d) 

Since (2.12a) is a first order ordinary differential equation, 
the boundary condition (2. 12b) determinesp(k). In order to 
investigate the behavior of p(k ) for small k we assume a per
turbation expansion for,u of the form, 

,u = ,u'OI + k,u' II + "', 
whereby 
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(2.13a) 

,u(0)' + ,u(0)' + u = 0, 

,u(l)' + 2fJ(0)11(1) = 0, 

Similarly, for the boundary conditions, 

,u(j)( - L) = O(j=l=I), ,u(I)( - L) = - I. 

Thus, for p(k ) we have from (2.12d), 

e2lh l. p(k) = ik + ll'OI(L) + k,u' I \L) + ... . 
ik - ,u"II(L) - kll' II(L) + .. . 

(2.13b) 

(2. 13c) 

(2.13d) 

(2.14) 

When no solitons are present in the initial data,u' O)(x) has no 
poles. There are two cases: (a) if ,u""(L )=1=0, then 
p(k) = - 1 + 0 (k ), in which case 

po = pea) = - 1; (2.15) 

(b) if fl' 0 '(L ) = 0, then 

I - ip' 1 '(L ) 
1- exp( - 2 FL,u""dx) 

Pll= 
I + if I I I'(L ) 

1+ exp( - 2 rL,u'
llldX) ' 

(2.16 ) 

hence, PI) is real and - I <po < I. ,u'" '(L ) is a complicated 
functional of u(x), and vanishes only for very special u(x). 
Consequently, the usual situation is (2.15); we obtain (2.16) 
only in those special cases of (2.13b) for which 
,u""( - L) = ° andp'()'(L) = 0. 

If the potential u has noncom pact support but still de
cays rapidly at infinity, it can be approximated arbitrarily 
closely by one with compact support. Hence, as shown in the 
Appendix, po = - I is the generic case, provided only that 
the potential decays rapidly enough at infinity to satisfy 
(I. 5). 

It is interesting to note that if we identify ,u"J'(x) with a 
solution of MKdV, and require that p""-O as Ixl--+ 00 (the 
exceptional case), then (2.13b) is Miura's transformation 
(i.e., u(x) = - p(II)'_- flU»)'). 

When (2.15) holds the formulas (2.8) are incomplete 
[indeed, (2.8) is singular if r" = po = - I]. In this case 

j .() 1/ 1 ( 2 )-1" 71 ~2-2 - 17 '-+"', as 17--'- 00 (2.17) 

(see also Sec. 3) and this indicates a breakdown of the long
time expansion for u, 

I j'() 1 1. u = --,-. 11 + -~(7/) + --I(r/) + "', 
(3/)-" (31) (3l )'" -

(2.18) 

valid for 1/ =."" 0 (I). In Ref. 3 we discuss this situation in de
tail. A transition layer is needed to be able to pass (and there
fore to have an asymptotic match) from (2.8c), (2.8d) to 
(2.8e), (2.7e) (since both are singular). For completeness we 
give the formulas governing this transition layer. The region 

where this occurs is - 1J = (lilt )(2 '1')1\ ° <p < 2. There 
are two asymptotic formulas needed to describe this regime 
(i.e., two asymptotic regions). We find 
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u- - 21] g'~ t) 
(3t )'13 ~, , (2. 19a) 

where 5" is related to 1] by 

( _ 21])'12 _ 2 In(3t )(1 + ~ In(2 In3t) + ~). 
4 In3t In3t 

(2.19b) 

For5=O(I), 

g(5,t) - - t + !sech'(~ - 50», (2. 19c) 

where 50 = - 2.ln(KM 12), M = A(P~ + (P~)'), and K:::'::.80. 
2 

(2. 19c) is not uniformly valid for large 5. For 1<5 <On3t )', 
g(5,t) is given by 

g-a(Z) + b (Z)cn'(2K(v)e + Oo;v), (2.19d) 

where 

b (1- 2v) 1 
a= --, 

3v 12 

b 1 
-= , 
v (4-2v) 

o = ~ (Z w(z)e'dz, 
£ Jo 

1 5 
- = In3t + -In(2 In3t ), 
£ 4 

Z = In(1 + £5), 

w' = b /(18K 'v), 

dv = _ ~ (1 - v12) «1 _ v/2)E IK + v-I), 
dZ 3 v 

00 = const, 

and where v---+l as Z---+o, cn(u;v) is the Jacobian elliptic co
sine with modulus v, and K,E are the complete elliptic inte
grals of the first and second kind, respectively. 

3. THE PAINLEVE TRANSCENDENT OF THE 
SECOND KIND 

A self-similar solution w ofMKdV satisfies (1.9), the 
second Painleve equation (Pu ). For each constant ro we sin
gle out a unique solution w(z,ro) by the asymptotic boundary 
condition 

w(z,ro) - roAi(z), as Z-+ 00. (3.1) 

With the asymptotic results of Sec. 2, we can obtain informa
tion about the global structure of this function. This infor
mation is readily obtained from formulas (2.7c)-(2.7e). 

We note that (3.1) corresponds to the rightmost portion 
of the simple similarity region (2.7b) ofMKdV, and the left
most portion of the exponential decay region of MKdV 
(2.7a). By asymptotic matching, we see that the asymptotic 
behavior of w(z) for z-+ - 00, viz, 

w(z,r) - do sin(~( - Z)ll2 - ~d ~ In( - z) + eo), 
( _ Z)1/4 3 

(3.2a) 

must have its amplitude, do, obeying 

d~= -~ln(l-?a). (3.2b) 
1T 
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This is the amplitude connection formula of (1.9) with as
ymptotic boundary condition (3.1), for Irol < 1. The connec
tion formula for the phase 00 = Oo(ro) is not yet known. We 
have verified (3.2b) numerically, as has Greene." 

(3.2b) suggests unusual behavior when Irol;;;' 1. Numeri
cal computations (Refs. 4, 6, and ourselves) support this. (As 
discussed earlier, lr(k)1 < 1 in MKdV. Hence for this evolu
tion equation, Irol;;;' 1 does not occur.) When ro = ± 1, w(z) 
is on its critical branch (we refer to the case Irol < 1 as under
critical, and Irol > 1 as overcritical), and it is unbounded as 
Z-+ - 00. In the critical case, the asymptotic behavior of 
w(z) is given by 

w(z) - sgn(ro)( - Z/2)112 _ ( - Z>-512 + 0 « _ Z)-1112 »). 
2712 

(3.3) 

When Irol > 1 (overcritical), w(z) has a pole at a finite 
location, depending on I rol. The dominant terms are given by 

w(z) - sgn(ro)(_I- - !.2..(z - zo) + 0 (z - ZO)2). (3.4) 
z -Zo 6 

In (3.4) Zo = zo(ro). 

The fact that Pu and MKdV are so closely related sug
gests that 1ST methods may be used to obtain solutions of 
Pll . This has been done.' For completeness, we give the lin
earization of (1. 9) subject to (3.1). One must solve 

K (x,y) - roAi(x; y) - (~ r f~ 100 

K(x,z) 

X Ai( z ; S )Ai( S : y )dYdS = 0, 

for K (x,y), then 

w(x) = K (x,x) 

(3.Sa) 

(3.Sb) 

satisfies (1.9) with the asymptotic boundary condition (3.1). 
It should also be noted that with this observation it is easy to 
investigate the behavior of the equation 

W" =zw-2w1 (3.6) 

[formally obtained by taking w--+iw in (1.9)]. In this case, 
(3.Sa) with the signs of the second and third terms changed 
to positive gives the exact linearization, and the formula 
(3.2b) becomes 

d~=~ln(1 +?a). (3.7) 
1T 

Moreover, by (3.Sa) it can be proven that the real solution to 
(1.9) exists for all z when I ro I < 1, and a real solution to (3.6) 
exists for all real z, and for all real ro (Ref. 8). 

Finally, it should be noted that to understand the prop
erties of the similarity solution for the KdV equation (2.8b), 
(2.8c) it is easiest to work with the Painleve function w(z), 
and then use the Miura transformation as it pertains to the 
similarity solutions; i.e., we use u = f(1])I(3t)'1l and 
v = w(1])/(3t )11l in (1.3) to obtain 

f = - (w' + w'). (3.8) 

To our knowledge Whitham4 first observed this fact regard
ing the similarity solutions. 
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APPENDIX 
We have shown that if the potential in (2.11) has com

pact support, p(O) = - 1 is generic. We show here that the 
same result holds even if the potentials only satisfy (1. 5), by 
approximating them by potentials on compact support. 
Most of the proof requires only the weaker condition of 
Faddeev,' 

f" x (I + Ixl) Iuldx < 00, (AI) 

but the continuity ofp at k = 0 apparently requires (1.5) (cf. 
Ref. 10). First, we shall show that p(O) = - I is generic for 
potentials that satisfy (1.5) and vanish for all x < L, for some 
L < 0 ("left-compact"). 

Let U L (x) vanish for all x < L < 0 and satisfy (1.5), and 
therefore also (AI). For any! > E > 0, there is an X (E) such 
that 

(A2) 

Define the family of approximating potentials, each of which 
has compact support, by 

u.(x) = uL(x), X<X(E), 

(A3) 
=0, X>X(E). 

Let i/J (x,k ) satisfy (2.11); equivalently, 

eP (x,k ) = r(k)e ikx + r sink (y - x) UL (Y)eP (y,k )dy. 
k 

(A4) 

Define 

eP/x,k) by 

i/J.(x,k) = r(k)e ikx + r sink ~ - x) u.(y)eP.(y,k )dy. 

(A5) 

It follows that for x < X, 

i/J«x,k) = i/J (x,k ), 

and for x>X 

eP (x,k ) - i/Jf(x,k) = (' sink (y - x) U L (y)i/J (y,k )dy. 
Jt' k 

(A6) 

According to a result of Levinson I I (Lemma 2.0), it fol
lows from (A I) that there exist L", M, dependent only on 
U [, (x), such that for x > La, 

Ii/J (x,k)1 <Mx. (A7) 

Choose E small enough that X (E) > Lo. Then (A6) implies 
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that for all x > X 

MiX EM leP (x,k) - eP.(x,k)l< - IUrYldy<-. 
k x k 

Asx~oo, 

eP (x,k )~e - ikx + p L (k )eikx
, 

ePix,k )~C(k)e - ikx + elk )eikx
, 

where 

(AS) 

(A9) 

(AlO) 

Combining (AS) and (A9), one can show that for any k> 0, 

EM 
IC(k) - 11 <-, 

k 

EM 
IC,(k) -PL(k)1 <-. (All) 

k 

Thus, for each k > 0, Ip .(k ) - p L (k ) I can be made arbitrar
ily small. Choose 

k' 
E(k)=-

4M 

so that X (E(k »-00 as k---->O, but X < ex; for any k > O. Then 
for all k > 0, 

IPf(k)-p{,(k)1 <k. 

But by (1.5), bothp L (k ) andpf (k ) are continuous at k = O. I" 
Hence, because p f (0) = - I is generic for potentials on 
compact support, it follows that p L (0) = - I is generic for 
left-compact potentials. 

Moreover, because Ip(k ) I is invariant under the trans
formation x---->( - x), and p(O) = + 1 is impossible,lo it fol
lows that p R (0) = - 1 is generic for "right-compact" po
tentials [that satisfy (1.5) and vanish for x > R, for some 
R >0]. 

Finally, let u(x) satisfy (1.5), with reflection coefficient 
p(k ). Define a family of approximating right-compact poten
tials u Rf (x) as in (A3), with reflection coefficients p R. (k ). 
Then repeating the previous argument (A4)-(A 11) shows 
that /p(k ) - P Rf (k ) I can be made arbitrarily small for any 
k*O, and in the limit k = O. It follows that p(O) = - 1 is 
generic for potentials satisfying (1.5). 
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We investigate all type D solutions of the Einstein-Maxwell equations (with cosmological constant) such 
that the Debever-Penrose vectors are aligned along the two eigenvectors of the electromagnetic field, in 
the special case when a direct generalization of the Goldberg-Sachs theorem is not possible. A solution is 
found which admits no Killing vectors. We also present an extension of the Golberg-Sachs theorem valid 
for type D metrics. 

1. INTRODUCTION 

This work is a sequel of a previous paper (Plebanski I) 
where we considered electrovac solutions with cosmological 
constant, A, under the following assumptions: (AI) they are 
of type 0, (A,) they have both Oebever-Penrose (OP) vec
tors aligned along the real eigenvectors of the electromagnet
ic field, (Al) these vectors are geodesic and shearfree, and 
(A4) free of complex expansion. In this paper we shall use the 
same formalism and notation as that in Ref. 1 and other 
works'-6 

If only assumptions Al and A, are made, then with the 
double OP vector oriented along the tetrad members el ,e4

, 

the only nonzero component of the conformal curvature is 
C' , ). Furthermore, as long as 

(E'+B')'-(%C'J»'=i=O, (1.1) 

Al is not an independent assumption; the Bianchi identities 
(BI) imply that e l and e4 must be geodesic and shearfree. I E 
and B above are the electromagnetic invariants defined by 

]: = V~J!"L' + V;jILl! =: -1(E + iB)', 

where!!"" is the tensor of the electromagnetic field, andi!"v its 
dual. 

In this work we study the two exceptional cases where, 
still assuming Al and A" we additionally postulate that 
either 

or 

E'+B'= _~CIl)=i=O. 
2 

(1.2) 

(1.3) 

(CIl) must be real in both cases.) Then the BI do not imply 
that e l and e4 are geodesic and shearfree. 

This last fact makes impossible the application of a 
theorem by Hughston et al.,' according to which electrovac 
solutions which satisfy conditions A" A" and AJ must admit 
two Killing vectors. In fact, we shall see in Sec. 2 of this 

·'On leave of absence from University of Warsaw, Warsaw, Poland. 

paper that a solution exists, satisfying conditions AI, A" and 
(1.2), which is totally asymmetric, i.e., it admits no Killing 
vectors. We shal also see, in Sec. 3, that nontrivial solutions 
satisfying A), A2> and (1.3) do not exist. 

2. THE CASE 0 3 ' > 0 
A. Basic equations 

The general description of the consequences of Al and 
A, within the tetrad formalism is given in detail in Sec. 1 of 
Ref. 1. Imposing the additional condition (1.2), we obtain 
from the BI: 

(2.1) 

(2.2) 

since C I l) is real and not equal to 0, it immediately follows 
that 

(2.3) 

The Maxwell equations can be wlltlen a~ 

dln(E + iB)112 + r 11 .e' + r421e' - r1J2e' - r 421e4 = O. 

Taking the real part of this equation, and remembering (2.3), 
we obtain 

1d1n(E' + B') + (F411 + rl(4)e l + (r421 + Fl24)e2 

(2.4) 

Using (1.2) and (2.3), it follows that this last equation implies 

T." + r l ). = 0, 

r 42l = ° = r 112 

(2.5) 

(2.6) 

(bars denote complex conjugation) and therefore C I J) and 
'" E' + B 2 must be constant. Knowing this, we can set 

E + iB = (E2 + B2)1I2e - 2;"', (2.7) 

reducing Maxwell equations to 

id¢ = - T."e) + F 42Je'. 
Thus, the connections F42 and FJI have the form 

r 42 = r.2Je' + r 42.e', 

F 1) = r,"eJ - r421e4. 

(2.8) 

(2.9a) 

(2.9b) 

1004 J. Math. Phys. 20(6), June 1979 0022-2488179/061004-07$01.00 @ 1979 American Institute of Physics 1004 



                                                                                                                                    

Equations (2.8) and (2.9), together with condition 
~ C (l) = E' + if, = const:f:0, and the starting point of our 
2 

considerations. 

Before proceeding, it is important to notice that the fol
lowing gauge transformations are still possible: 

phase gauge: 

e'l = e it/>e l , 

e" = e - i"'e', 

boost gauge: 

e'l = e Yel, 

e" = e - Yeo. 

The connections F tranform as 

F ~23 = eit/> F 421, 

F ~24 = e
2y + it/> F424 , 

F il3 = e - 2y - it/>FJl3 • 

(2.10) 

The optimal choice of gauge will be determined later. 
We now list the structure equations relevant to our 

problem. The first structure equations, dea = eb 
/\ F~, are 

explicitly: 

del = F ,,/\ e' + 2Fmel 
/\ e', 

de' = - Fl2/\ eZ + 2F.23e3/\ e', 

del = a /\ el + /3/\ e4
, 

de4 = y /\ e3 - a /\ e4, 

where 

a: = F.'le' + Fme' + F]4, 

/3: = F.,.e' + F.,.eZ, 

y: = F313e' + r3IJe'. 

(2.lla) 

(2.l1b) 

(2.llc) 

(2.lld) 

The second structure formulas are, in the particlar case 
that we are studying, 

dF., + F4,/\ (F" + Fl.) = - 2pe l 
/\ e', (2.12a) 

dF11 + (FIl + F 14) /\ Fll = - 2pe'/\ e', (2.12b) 

d (F'2 + Fl.) + 2F.,/\ FJI = 2pe' /\ e' - (lOp + U )el
/\ e" 

where we have defined 

I '" p: = - -(E 2 + B' + A ) = const. 
6 

(2.12c) 

(2.13) 

Using (2.9) and (2.11), we can write Eqs. (2.12a) and (2.12b) 
in a somewhat more explicit form: 

[dFm + F42J(a - FIl - Fl.) + F424y - 2pel] /\ el 

+ [dF"4 - F.,.(a + r ll + F l4) + F4v1J] /\ e' = ° 
(2.l4a) 

[dFlIJ + F 313(a + Fl2 + r l .) - F.ZJY] /\ el 

+ [ - dFm - Fm( - a + F I , + Fl.) 

f Flll3 - 2pe'] /\ e' = 0. (2.14b) 

Now, taking the factor of e'/\ el in (2.14a) and combining it 
with the (complex conjugated) factor of e l 

/\ e' in (2.14b) it 
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easily follows that 

(F423)' + F.,J313 = 0. (2.15) 

A similar combination of the factor of e' /\ e3 in (2. 14a) with 
that of e' /\ e4 in (2.14b) gives the relation 

2F423F.23 + F.,J313 + F.,J313 = 4p. (2.16) 

We will now show that the condition Fm=l=O leads to a 
contradiction, and that therefore Fm must vanish in order to 
have a nontrivial solution. 

B. Proof that r 423 = 0 
Assume for the moment that Fm=l=O. Then, according 

to (2.15), there exists a complex function A such that 

F.,. = ~ F m , (2.17a) 

r.,,, = -e- A F 421 • (2.17b) 

However, under a change of phase and boost gauge, A 
changes as 

A' =A -2X. 

Therefore, fixing the boost gauge, we can make A purely 
imaginary, A = iifJ(ifJ = ifJ). The remaining freedom of phase 
gauge can be used to fix F423 as purely imaginary, F421 = if 
if = f). Thus, the conections take the form 

F., = if(e1 + eit/>e4), 

FlI = if(ei"'el + e4
). 

Maxwell Eqs. (2.8) reduce to 

dt/J = j(e' + e'), 

and Condition (2.16) becomes 

ifsin¢ )' = p = canst, 

(2.18a) 

(2.18b) 

(2.19) 

(2.20) 

which implies ¢ = ifJ if). It is a direct consequence of Eq. 
(2.20) that 

(2.21) 

Notice also that Eq. (2.19) implies (e ' + e') /\ d (e l + e') = 0, 
and since, according to (2.lla) and (2.11 b), 

d (e l + e') = F,,/\ (e l 
- e'), 

it follows that F lz /\ e l 
/\ e' = 0; thus 

(2.22) 

(2.22a) 

(2.22b) 

With all the results given above, Eqs. (2.14a) and (2.14b) 
take the simpler form 

[dj - j'sin2ifJe' - fTll] /\ e3 

+ [difei"') - 2j2sin¢e' - jeit/> (FI' + 2FJ.») /\e' = 0, 

(2.23a) 

[dj - j'sin2ifJe' + fTl2] /\ e' 

+ [d ifei"') - 2j'sinifJe' + jeit/> (FIl + 2Fl .») /\ el = 0. 

(2.23b) 

It is now a matter of algebraic manipulation to show 
that these last equations, together with their complex conju-
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gates, yield the following information: 

r l, + r 34 = (_/'1 -~ 1)(el - e'), 
f 2' 

/'1 = /'2 = !f'sin2¢, 

f¢,1 = -p, 

(2,24) 

(2,25) 

(2,26) 

The next step is to use these relations in the remaining struc
ture Eq, (2, 12c), It follows that 

2p = -A, 

However, from the definition (2,13) of p, this implies that 

A = !(E 2 + B ') > 0, 

which contradicts the previous result (2,21), namely that 
,1< 0, Thus, the conclusion is that rm must necessarily van
ish. We study this case in the following subsection. 

c. A solution with r 423 = 0 and r 424*0 

When rm = 0, the condition (2,15) requires 

r424rJIJ = o. 
If this condition is met when both factors vanish separately, 
then r4 , = 0 = r'h which corresponds to the case of the Ber
totti-Robinson solutions. '.9 According to the work of Ref. 1, 
the most general soutions of this type with both e1 and e' 
geodesic, shearless, and free of complex expansion can be 
represented in the form 

ds' = 2e I <81 e' + 2e' <81 e4 

= 2¢ -'dSdf + 2t/,-'dudv, 

where, E + iB being constant, 

¢ = 1 + !(A + £' + B2 Kf, 
t/I = 1 + !(A - E' - B')u[1, 

and the electromagnetic field is given by 

• - 1 if, +/,~ )d I'd ,. 
(i). - 2" IHI JHI X X 

= (E + iB)(ell\e' + e'l\e') = dN 

(2,27) 

(2.2Sa) 

(2,2Sb) 

N: = HE + iB)[¢ -1(t;dS - fdS) + t/I'(udlJ - lJdu)], 
(2.29) 

while the nontrivial component of the conformal curvature 
is given by 

C' ,I = -::"i, 
.' 

A subcase of these B-R solutions with 

£'+B'=:!..C'''= -A 
2 ' 

(2,30) 

(2.31) 

which is possible with A < 0 only, provides the solution of the 
problem studied in this paper when r " = 0 = r " , Notice 
that in this case we have, for the factors in the B-R solution, 

¢= I, t/I= 1 +liulJ, (2,32) 

We will now try to meet the condi tion (3. I) in a non tri
vial manner assuming 

(2.33) 
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and having, then, 

r" = r 424e4
, r '1 = o. (2.34) 

According to (2.12b) this, of course, is possible only if 

p=O---+£'+B'= -A, 

so that Ii must he negative. 

(2.35) 

Under the present assumptions, the first structure equa-
tions are 

de' = -- r" 1\ e', 

dc' '== (r",e' + r",e')1\ e' + rql\e" 

de4= -r'4I\e4, 

and Eqs. (2.12) reduce to: 

d (T",e') --- (r" + rq) 1\ r 424e4 = 0, 

d (r" + rq) = - 2Ae' 1\ e'. 

(2.36a) 

(2.36b) 

(2.36c) 

(2.36d) 

(2.37a) 

(2.37b) 

The Maxwell equations, according to (2,S), are fulfilled 
in this case if 

'V 

E + iB == const. (2.3 S) 

We can now conveniently use the freedom of phase and 
boost gauges. From the imaginary part of(2.37b) we have 
dr,., = o~->r12 ~~ id ¢. dJ = dY. Consequently, by properly 
choosing the phase gauge we can set, without loss of 
generali ty, 

rIC == 0. (2.39) 

Thus Eqs. (2.36a) and (2.36b) imply the existence ofa 
complex coordinate;; such that 

(2.40) 

and the equation for dc' implies that c' is surface orthogonal. 
Therefore, without loss of generality, we can fix the boost 
gauge in such away that 

('4 ~= duo 

Thus, the first structure equations reduce to 

r"l\dt' = 0, 

de = (rl",di;' -+- r,."df) 1\ du + r'J 1\ e' 

(2.41) 

(2.42a) 

(2.42b) 

while the second structure equations, using (2.37) amount to 

d (r",dl') -= 0, 

d[",~~ --2Ael\dv. 

From (2.43a) d ['",1\ dl.' = 0, and it follows that 

r"4= F(I'), 

(2.43a) 

{2.43b) 

(2.44) 

where this complex function of a real variable must be not 
equal to ° under the present assumptions. On the other hand, 
from (2.42a), 

r q _-cc r, 14du, 

and (2.43b) supplies the information that 

(d r,I' -f 2,{e') /\ dv ~~ 0, 

Therefore, denoting 
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it follows that el has the form of 

e l =du +Xdv, (2.48) 

where X is some real function. Entering with this informa
tion into (2.42b) we have 

dX I\dv = [F(v)d; + F(v)d[] I\dv + Uudu I\dv, 
(2.49) 

which is equivalent to: 

d(X - ;P(v) - [F(v) -Au2] I\dv = 0. (2.50) 

Therefore, there must exist a real function G = G (v) such 
that 

X = ;P(v) + [F(v) + Au2 + G (v), (2.51) 

and consequently the integrated tetrad of the considered 
case assumes the form of 

el = d;, e' = if, e4 = dv, 

el = du + (Au 2 + ;P(v) + [F(v) + G (v)]dv, 

with the complex F (v)*o and G (v) being arbitrary. 

The tetrad is accompanied by the connections: 

r 42 = F(v)dv, r 'l = 0, 

r 12 = 0, r l4 = - Uudv, 

(2.52) 

(2.53) 

so that the double D-P vector e' has the nontrivial geodesity 
r 424 = F(v)*O. 

The tetrad given above fulfills the second structure 
equations assuming the Einstein equations with Maxwellian 
sources and A, with the constants fixed according to 

'v' 1 'v' 

E 2+B2+ A =0, :...C'l'=E'+B'= -A. (2.54) 
2 

The 2 form of the electromagnetic field whose real ei
genvectors coincide with the double D-P directions e l and e4 

is given by 

UJ = (E + di)(ell\ e2 + e'l\ e4) 

= (E + df)(d; I\d[ + du I\du), 

and is manifestly closed. 

The metric of this solution, 

ds2 = 2e l ® e2 + 2e' ® e4 

(2.55) 

= 2 (d;d[ + dudv) + 2(AU2 + ;P(v) + [F(v) + G (v)]dv2, 
(2.56) 

has the form of a single Kerr-Schild metric,IO·ll.12 with the 
distinguished null vector aligned along that double D-P vec
tor (e' ) which is geodesic, shearless, and free of the complex 
expansion. 

We would now like to simplify the result described 
above by showing that the function G (v) is irrelevant and can 
be absorbed by a coordinate transformation. For this pur
pose we first execute a transformation of the variable u, 

u =A (v)u' + B(v), (2.57) 

where of course A ,*,0, and, otherwise, A and B are disposable 

1007 J. Math. Phys., Vol. 20, No.6, June 1979 

functions of the variable v. We then obtain for el, 

el = Adu' + (AA lU'l + u'(A + UAB) + ;P + fF 
+ (Ii + AB 2 + G )]dv. (2.58) 

We can now choose B (v) so that 

Ii + AB 2 + G = 0, (2.59) 

and we select A (u) as the integral of 

A + UAB = 0, (2.60) 

so chosen that A*O. Then eJ reduces to 

e1 = A [du' + (AU'2 + ;P' + fF')Adv], (2.61) 

where 

F'(v): = A .2(v)F(v). (2.62) 

We then execute the transformation of the variable v 
defining 

v': = r A (v)dv 

so that 

(2.63) 

e4 = A .Idv', e3 = A [du' + (Au'2 + ;P' + fF')dv']. 
(2:64) 

In the result of this transformation, clearly 

UJ = (E + di)(d; 1\ d[ + du' 1\ dv'), (2.65a) 

ds2 = 2(d;df + du'dv') + 2(Au'2 +;F' + [F')dV'l, (2.65b) 

and, dropping primes, it follows that without losing general
ity we can set in our result 

G(v) = 0. (2.66) 

With the coordinate v gauged in such a way that 
G (v) = 0, it is easy to show that if, additionally, F(v)-+O, 
then our solution reduces precisely to the special case of the 
B-R solution discussed in the beginning of this section. In
deed, the transformation 

u = (l + Aiiv)'l£j 

gives 

el = du + Au1dv = (l + Auv)'2dii, e4 = dv, 

(2.67) 

so that the metric and the electromagnetic field of our solu
tion coincide here precisely with (2.27) and (2.29), with the 
factors ~ and if! given by (2.32) after replacing u in these 
formulas by ii. 

The presence in our sol ution of the function F (v ),*,O has 
an objective geometric meaning: It determines the symmetry 
properties of the solution. In order to see this explicitly with 
F(v),*,O, instead of making G (v) = Oby using (2.57), we can 
always arrange that, by using (2.62), 

(2.68) 

where, if F = 0, then K = 0, and if F=I=O, then K = 1. The 
metric has the nontrivial components, 

g;f= 1 = gUl'; g"" = 2 [AU l + Ke 11>; + Ke'1>[ + G (v) J. 
(2.69) 

When K = 1, the real ~ (v) and G (v) replace as structural 
functions the complex F (v). One can now easily work out the 
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equation for a Killing vector of our metric, 

Y Kgl'v = K Pgl'v,p + K p'~P\' + K P,v gPI' = 0. (2.70) 

Integrating this equation (we omit this process here for bre
vity) one finds that the most general Killing vector must 
have the form of 

(2.71) 

where 130 = const is complex, and a o = const and [j = o(v) 
are real. These objects are, however, subject to the constraint 
conditions: 

- ~ 'fj - oG - 28G + K[f3o - i4> + lfoei4>] = 0, (2.72a) 

K8 = 0, (2.72b) 

K(O~ + ao) = 0. (2.72c) 

If K = ° where, not losing generality but properly ad-
justing the coordinate v, we can set G (v) = ° the only condi
tion which remains is /)' = 0, so that 0 = ~v' + qv + r, and 
the coefficients ofp,q,r,ao, 130 andlfo in (3.48) define six Kill
ing vectors of the special B-R metric. 

If K = 1, then 6 = 0----+0 = 00 = const and the remaining 
constaint equations reduce to 

DoG = 130e - i4> + Poei
</>, oo~ + ao = 0. (2,73) 

Consequently, if only 

(2.74) 

then (2,72) implies 00 = 0, a o = 0, f30 = 0, and, according to 
(2.71), KI' = 0, so that the metric does not admit any Killing 
vectors; it is completely asymmetric. 

We can notice that, when 
cP = pov + CPo, G = (Toe - i(p"" + </>,,) + iioeiv"'" -t </>,,) + 1]0' with all 
symbols with the subscript zero being constants and po*O, 
then the studied metric has a single Killing vector, 

Kl'a,1 = - all - ipo{; + (To)ai:, + iplf + iio)ar- (2.75) 

For cP = CPo and G being linear in v, there exist two Killing 
vectors; this case corresponds, in the proper gauge of coordi
nate v, to G = 0, F = a complex constant, with the two obvi
ous commuting Killing vectors, 

(2.76) 

We shall conclude this section by observing that, when 
one wants to fulfill the conditions r 4 , = ° and rllJ*o, then 
obviously the solution of the problem has again the general 
form of (3.28), but with the members of the tetrad inter
changed according to the scheme: 

i.e., 

e l = df, e' = dl;, e l = dv, 

e4 = du + [AU' + F(v)1; + F(v)[ + G (v)]dv, 

leading to r3lJ = F(v). 
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(2.77) 

3. THE CASE ( 3 ) < 0 

In the second part of this paper, we will investigate the 
case (1.3) taken as the basic assumption, In this case the B.I. 
imply that 

so that both D-P vectors must be geodesic and 

!dC"l = 3C'l'(rl14e l + r 42Je'), 

(3.1) 

(3.2) 

which, with C' l' = C'l '*0, necessitates for consistency, 

(3.3) 

The Maxwell equations in the form (2.4), added to their 
complex conjugate, yield 

!d In(E' + if,) + (r)l4 + r4lJ)e l + (r423 + rm)e' 

- (rll2 + rm)e1 
- (r421 + r 41 ,)e4 = 0. (3.4) 

By feeding here E' + if, = - 2.Cl) and using (3.2), 
2 

one obtains, remembering (3.3), 
- r ll4el 

- r 42Je' - (rll2 + rl21)el - (r421 + r 412 )e4 = 0; 
(3.5) 

in the case considered it necessarily follows that 

rm = 0 = rJ)4' r 421 + r 412 = 0 = r 1l2 + r l2l . (3.6) 
v 

Consequently, C (l) = constandE' + B' = const. Thus, set-
ting (2.7) again, we obtain as the residual Maxwell 
equations, 

- idt/J = rmel + r421e., 
with both r ll2 and r 421 purely imaginary. 

(3.7) 

The connections r 4 , and r ll must have the form 

r" = r 421 el + r 422e', r 'l = r 311el + rme', (3.8) 

so that in principle the geodesic vectors e' and e4 can possess 
the nontrivial shears (rmi=O, rJll*O) and nontrivial twists 
(r421 = - T.21*0, r ll2 = - T,,12=1=O). 

The formulas (3.7) and (3.8), accompanied by 

- 2.C3) = E' + if, = const*O (3.9) 
2 ' 

form the starting point of the second part of this paper. 

We notice at this point that, under the remaining tetrad 
gauge, the objects which enter in (3.7) and (3.8) transform 
according to 

r 421 = eK r 421 , r ~22 = eK 
I 2i4> r 4 )2, 

(3.10) 

The optimal choice for this gauge will be determined later. 

We will now list the structure equations for the case 
considered. One easily sees that the first structure equations 
are 

del = a /\e l - 13 /\e', 

de' = -if /\ e l 
- a /\ e', 

de' = r l4 /\ e1 
- 2r421 e l 

/\ e', 
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where 

a: = rmeJ - F421e4 + r 12 = - ii, 

/3: = ~Ile) + Fme4. 
( 3.12) 

The second Cartan structure formulas, with incorpo
rated Einstein equations (with the Maxwellian energy-mo
mentum tensor and the A term in sources), can now be stated 
as: 
dr42 - (r12 + r)4) A r 42 = - 2p(e) A el), 

dr), + (r12 + r)4) A r), = - 2p(e4 A e2), 

d (rl2 + r 34) + 2r42 Ar), 
= - (lOp + U )el A e2 + 2pe3 Ae4, 

where we have denoted 

(3.l3a) 

(3.13b) 

(3.13c) 

I v-
I/.' = - -(A - E 2 - 0 2

) = const; (3.14) 
f"" 6 

of course, deriving (3.13), we eliminated C') by using (3.9). 
Our problem consists now in the effective integration of the 
Eqs. (3.7), (3.11), and (3.13). The following relations are 
direct consequences of Eqs. (3.13a) and (3. 13b): 

(r421 )2 + rmFm = 0, 

(rmY + r311FJIl = 0, 

2r421r m - r 4,J'JlI - F422~ll + 4p = 0 

(3.l5a) 

(3. 15b) 

(3.15c) 

[the derivation is entirely analogous to that of Eqs. (2.15) 
and (2.16»). Therefore, remembering that r421 and r312 are 
purely imaginary, there exist real scalars p,U,T, and w, such 
that 

r 42 = ip(e' + eiO"e2), 

r 31 = ir(eiwel + e2). 

(3. 16a) 

(3.16b) 

Under a gauge transformation, these scalars transform as 

(3.17) 

U' = U + 2t/>, w' = w - 2¢>. 

As this point it is convenient to consider the different 
branches of our problem. First there is the simplest possibil
ity that p = 0 = 'I, namely, 

r 42 =0=r31 . 

We know, however, that this corresponds to a BR solution in 
the special case when 

E2 + if2 = - ~C(J) =A 
2 • 

The factors in the BR metric (2.27) take the form 

t/>= 1 +t/>= 1 +A~t. t/J= 1, 

and the double DP vectors, eland e4
, are geodesic, shearless, 

and without complex expansion. 

The following possibility is that at least one of the sca
lars p and 'I does not vanish, say p=/=O. Then, using the free
dom of gauge (3.17) we can set 

F42 = IE(e' + e'), 

FJ' = ir(e it"el + e'), 

where E' = 1, 'I mayor may not vanish. 
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(3. 18a) 

(3.18b) 

It is now a matter of algebraic manipulation to show 
that when these relations (3.18) are substituted in the second 
structure Eqs. (3. 13), the following equations result: 

v-
A = - 2p = - !(E' + 0 2

), (3.19) 

A = - Er(1 - cosw), 

dT = rsinwdt/J, 

Tdw = A Edt/J, 

F'2 + Fl4 = (~ iE + rsinw)e" 

together with the Maxwell equations 

- dt/J = Te3 + Ee4. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Using this information and Eqs. (3.11) and (3.12), it follows 
that 

el Ae2 A del = 0, 

d (e'Ae2
) = O. 

(3.25) 

(3.26) 

The first equation implies that e' and e2 must have the 
form 

e1 = Adz + OdZ, 

e2 = Bdz + Adz, 
(3.27) 

where A and 0 are complex functions, and z is a complex 
coordinate. Equation (3.26) implies that the determinant 

..1: =AA - BB 

must be a function of z and z only. Since we have a freedom of 
coordinate transformation z-z' (z,Z), we can set..1 = 1 with
out loss of generality. 

In the next step we notice that, according to (3.11), we 
have 

del = - 2iEdz Adz; 

integrating, we find 

el = du - iE(zdz - zdz), (3.28) 

where u is some function. Finally, from (3.24) we have 

e4 = - Edt/J - ET[du - iE(zdZ - zdz)]. (3.29) 

The condition e' A e' A e3 A e4=/=0 implies that 
dz AdZ A du A dt/J=/=O, and therefore we can use z,Z, u, t/J as 
independent coordinates. Furthermore, it follows that 'I and 
w must have the form 

T = - !EA (1 + t/J2), 

. 2t/J smw=---, 
1+ t/J' 

(3.30) 

(3.31) 

as a result of integrating Eqs. (3.21) and (3.22)(a constant of 
integration has been absorbed by a change of coordinate 
t/J-t/J + const). Summarizing, we have obtained the general 
form of the tetrad through Eqs. (3.27), (3.28), and (3.29). It 
remains to substitute these forms in the structure equations 
(3.11) in order to obtain additional constraints on the func
tions A and O. It turns out that Eqs. (3.11c) and (3.1Id) are 
automatically satisfied, whereas Eqs. (3.1 Ia) and C3.1Ib) 
imply 

dAAdz + dBAd; 
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i i 
- -£A,1fe'Ael + -£A, ( - t/!' + 1 + 2it/!) 

2 2 

xe3 1\e2 
- i€e4 1\(el + e2

), (3.32) 

with the additional constraint..1 = 1. Some algebraic manip
ulations show that, according to (3.32), the functions A and 
B must have the form 

A = (1 - it/!}fe(i/2)€AU - it/!ge ~ (il2)€AU, 

B = it/!!e(i/2)€AU + (1 + it/!)ge ~ (i/2)EAU, 

(3.33a) 

(3.33b) 

where! and g are functions of z; subject to the conditions 

Iz - g .• = f.L(jz - gz), 

ff-gg= 1. 

Now, write 

1= Ffl,z' 

g=Ffl,z' 

(3.34) 

(3.35) 

(3.36a) 

(3.36b) 

which is always possible for functions of two variables. Then 
Eqs. (3.34) and (3.35) imply: 

FFdfl 1\ dfi = dz 1\ dz, 

dfJ 1\ [AF (zdz - zdz) + 2dF] = 0. 

(3.37) 

(3.38) 

At this point, we notice that the tetrad forms (3.27), (3.28), 
and (3.29) are invariant under a coordinate transformation: 

z-+z' = z'(z,Z), u-+u' = U + v(z,Z), 

such that 

zdz - zdz = z~z' - z~z' - dv. 

(Since dz 1\ dz = dz' 1\ dz " the condition..1 = I is pre
served.) Then, choosing the arbitrary function v such that 

v = U -llnF, (3.39) 

Eqs. (3.37) and (3.38) read, in the new system of coordinates, 

FFdfl 1\ diJ = dz' 1\ dz', (3.40) 

dfl I\(z~z' - z~z') = 0. (3.41) 

Equation (3.41) implies that dfJ is proportional to 

z~z' -z~z', 

which would imply dz' 1\ dZ' = ° according to (3.40)-a 
con tradiction! 

Thus it follows that the case C (3) < ° cannot contain 
nontrivial solutions. 

4. CONCLUSIONS 
The results of this paper can be sumarized as follows: 

We have studied all electrovac solutions of the Einstein
Maxwell equations which are of type D, have thier DP vec
tors aligned along the real eigenvectors ofthe electromagnet
ic field, and are subject to the condition 

(E2 + E'Y = (2.C(3»':::;i=O. 
2 
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This condition does not allow an extension of the Goldberg
Sachs theorem. \3 We have found that the nontrivial solutions 
are of a very special type. 

First, t;gere are the special Bertotti-Robinson solutions, 
withE 2 + B' = =FA" where bothe' ande4 are geodesic, shear
free, and without complex expansion. There solutions exist 
only when ,1,,< ° or A, > 0, respectively. 

Additionally, when A, < ° andE' + B ~ = - A, there ex
ists an exceptional solution with C (3) = - (2/3),1" which has 
one DP vector geodesic, shearless and free of complex ex
pansion, while the other DP vector has a nonzero geodesi
city. This exceptional solution is 

ds' = 2d(;if + 2\du + [Au' + (;F(v) + [F(v)]dv]dv, (4.1) 

~(jilV + i;LV)dxill\dxv 
= (E + iE)(d(; I\d; + dul\dv), (4.2) 

and in general does not possess any Killing vector. It may 
admit one Killing vector when F(v) is a particular function, 
two Killing vectors when F = const:::;i=O, or six Killing vec
tors when F = ° (reducing to a B-R solution). 

The moral of these results is that a generalization of the 
Goldberg-Sachs'3 theorem for type D metrics is possible. 

Theorem: If a type D electrovac solution of the Ein
stein-Maxwell equations has its two Debever-Penrose vec
tors parallel to the two eigenvectors of the electromagnetic 
field, then these vectors must be geodesic and shearfree if 
A > 0. If A < 0, the statement still applies, except when 

E2 + B' = 2.C(3) = - A. 
2 
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Take a smooth manifold M and a Lie algebra action (G action) (} on M as the geometrical arena of a 
physical system moving on M with momenta given by O. We propose to quantize the system with a 
Mackey-like method via the associated vector bundle ~p of a principal bundle ~ = (P,1T.M,H) with 
model dependent structure group H and with G-action <I> on P lifted from (} on M. This (quantization) 
bundle ~p gives the Hilbert space H = L 2(~p,W) of the system as the linear space of sections in ~p being 
square integrable with respect to a volume form w on M; the usual position operators are obtained; <I> 

leads to a vector field representation D(<I>p'O) of G in H and hence to momentum operators. So H carries 
the quantum kinematics. In this quantization the physically important connection between geometrical 
properties of the system, e.g., quasicompleteness of 0 and G maximality of <l>p' and global properties of 
its quantized kinematics, e.g., skew-adjointness of the momenta and integrability of D(<I>p'O) can easily 
be studied. The relation to Nelson's construction of a skew-adjoint nonintegrable Lie algebra 
representaion and to Palais' local G actions is discussed. Finally the results are applied to actions induced 
by coverings as examples of nonmaximal <l>p on Ep lifted from maximal (} on M which lead to direct 
consequences for the corresponding quantum kinematics. 

1. INTRODUCTION 

Consider the geometrical arena on which a classical sys
tem is described. Suppose this to be a smooth manifold M or 
a base of a principal bundle which can be equipped with a 
local symmetry via a g-action connected with physical mo
menta. Then the global geometrical structure induces cer
tain properties for the system depending on the type of the
ory which is constructed on the arena. Results of this type 
are known. We refer, e.g., to classical Maxwell fields on 
manifolds, 1.2 to gauge theories on principal bundlesJ

-
5 and to 

spin structures on nonsimply-connected manifolds and their 
use in many-body physics. 6 

To quantize a (particlelike) system we use principal fi
bre bundles 5 = (P,1T,M,H) with projection 1T: P---+M, struc
ture group H, and a 9 action (¢,B) on 5, where B is a Lie 
algebra homomorphism from a finite-dimensional Lie alge
bra 9 into the Lie algebra ~(M) of smooth vector fields on M 
and ¢ denotes a lift of B to P. Then any unitary finite-dimen
sional representation p: H---+Aut V with associated vector 
bundle Sp = (Ep' 1Tp,M, vy and 9 action (¢>p ,() induces a 
Mackey-type quantization via a vector field representation 
D of 9 on a Hilbert space dY' spanned by smooth sections in 
Sp. Because the quantized kinematics is completely given by 
¢p onsp ' we callsp quantization bundle. ¢p leads to momen
tum operators and to any Borel set on M corresponds a posi
tion projector. 

The global group theoretical properties of the 9 action 
(¢p'() on the quantization bundle and the representation D 
of 9 are directly linked: Quasicomp1eteness (of () and maxi-

a)Oedicated to Giinther Ludwig on the occasion of his 60th birthday. 
blPermanent address: Institut flir Theoretische Physik, Technische Univer

sitiit Clausthal, Clausthal, Federal Republic of Germany. 

mality (of ¢p) correspond to skew-adjointness and integrabi
lity of D. So the local 9 actions on Ep and M give, via their 
physically significant singularityS structure, information on 
the quantum mechanics on the bundle, and vice versa. 

The material is organized as follows: A short descrip
tion of Lie algebra actions on quantization bundles and of 
the corresponding quantization is given in Sec. 2; Lemma 1 
relates the quasicompleteness of the action to the skew-ad
jointness of the vector field representation. Global results are 
presented in Sec. 3; using a property of skew-adjoint repre
sentations (Lemma 2) we prove that a vector field represen
tation D is G integrable if and only if ¢ p is G maximal (Theo
rem 1). Relations to Nelson's construction of a skew adjoint 
nonintegrable representation9 and to Palais' local G actions lO 

are given. The results are applied to actions induced by co
verings in Sec. 4. Two types of nonintegrability are distin
guished: those which are induced from nonmaximal () on M 
and those which are induced from nonmaximal ¢ p on Ep, 
whereas the projected symmetry () is maximal. The proofs of 
Lemma 1 and Theorem 1 are given in the Appendix. 

2. QUANTIZATION BUNDLES WITH g-ACTIONS 

1. LetF(X) bethe flow ofa smooth vectorfie1dXE~(M), 

F(X):(m,t)ED (X)CM XlR--M3F(X)(m,t )=rp -;(m) 

with (open I I) domainD(X,t) = (ml(m,t)ED(X)] for tElR. 
Consider a principal fibre bundle t = (P,1T,M,H) with com
pact structure group H. Then a 9 action (¢,() on 5 consists of 
g actions ¢>: g--~(P), ():g~~(M), such that for XEg 

(i) D (¢> (x» = (1TX idlRtlD «() (x»; 

(ii) Jr(F(¢ (x»(P,t) = F«() (X»(1T(P),t) 

for (p,t)ED (¢ (x»; 

(iii) ¢> (x) is H invariant. 
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2. Let p:H~Aut Vbe a representation of H in a finite
dimensional complex vector space V. Then the quantization 
bundle Sp = (Ep, 1T p,M, V) is the (p-) vector bundle associated 
with 5, Ep being the orbit space of the H action on P X V 
given by (P,v)h = (Ph,p-l(h )v); [P,v] denotes the orbits and 1Tp 
[P,v] = 1T(p) holds. 

Any 9 action (¢,e) on 5 gives a 9 action (¢p,e) on 5p via 

F(¢p(x»([p,v 1p,t) = [F(¢ (x»(P,t ),v lp. 
Here the H in variance of ¢ (x) was used. 

3. For a quantization consider the linear space Seco(5p) 
of compactly supported smooth sections u in Sp. Equip V 
with an inner product (-")v and take p to be unitary. This 
induces an unitary structure on Sp via 

([p,vd p,[p,v2]p}m = (V h V2>V, 

Vt>V2E V, 1T(p) = m. For a pre-Hilbert structure on Seco(5p) 
choose a volume (i) on M (M is assumed an orientable Rie
mannian or pseudo-Riemannian manifold) and define 

(uhu,) = { (u!(m ),u,(m)} m' L 
UhU2ESeco(5p)' The corresponding Hilbert space is denoted 
by L 2{5p,(i}). 

4. A 9 action (¢p,e) on Sp induces a representation
called vector field representation-of 9 on Seco{5p) via a Lie 
algebra homomorphism D (¢p,e): g~End Seco(5p) through 

d 
(D (¢p,e )(x)u)(m) = d/<¢p(x»(u(F(e (x»(m,t », - t). 

To have this representation skew-adjoint, i.e., D (¢ p,e )(x) es
sentially skew-adjoint for XEg on Seco(5p), one needs some 
restrictions on e. XEll3(M) is quasicomplete (is complete) if 
the set 

E(X,t) = M - D(X,t) 

is of measure zero (is empty) for tER. So e is quasicomplete 
or complete if e (x) has this property for XEg. Furthermore, (i) 
is said to be e invariant if Lo(xfi' = 0, XEg. 

Lemma 1: Let (¢ p ,e) be a 9 action on 5 p such that e is 
quasicomplete. Take a e-invariant (i). Then the induced vec
tor field representation D (¢p,e) is skew-adjoint on 
Seco(5p )CL 2(5p,(i}). 

For the proof see the Appendix. 

S.D (cfJp,e ) can be constructed also from (cfJ,e )onsusing 
the space :if o(P,p) of smooth and compactly supported equi
variant functionsf:P~ V,J(ph ) = p-!(h )f(P), since the repre
sentation Dp (cfJ,e): g~End '1/ o(P,p) given by 

(D/cfJ,e)(x)f) p = :/(F(¢ (x»(P,t» 

is unitarily equivalent to D (¢ p ,e) via the isomorphism 
t/Jp :'1/o(P,p)--Seco(5p)' (t/Jp(f»(m) = [P!(P)]p forpE1T-1(m). 

6. In the special case where (¢,e) is the differential of a G 
action on 5 which is free and transitive on P, i.e., if 5 is 
isomorphic to (G,1T,G IH,H), the quantization gives an in
duced representation in the sense of Mackey.12.1J 
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3. LOOP CRITERIA 

1. A skew-adjoint representationD:g~.£If( iJ ) is called G 
integrable (G being a connected Lie group with Lie algebra 
g), ifthere exists a unitary representation U: G-U(JIi') with 
differential Du = D, i.e., if the diagram 

G ---1L. U( JIi') 
expt t Exp 

9 --.-.!2-.£If ( tJ ) 

is commutative. Here .£If (tJ ) is the subset of essentially skew
adjoint operators in the Lie algebraS (tJ) of skew-symmetric 
operators on a common dense invariant domain tJ C F. As a 
simple geometric tool to decide on integrability we use loops 
in G and in U(JIi'). Take the setA (G) of aU loops in G starting 
at e and consider 

A (G) = I (Xz,· .. ,xk)lkEN, x,Eg, expxl'" expxk = eJ, 

w!lich can be regarded as a subset of A (G) via the mapping 
j:A (G)--A (G), 

V(xh· .. ,xd)(t) = expxl· .. expxn _ 1 exp(kt - n + l)xn 

for t8:l n Ik, Lin = [n - 1,n], n = l, ... ,k. Denote by 
C (U(JIi') and A (U(JIi') the set of curves and loops, respec
tively, in ll3(JIi')starting at 1. Then there exists a natural map 

A 

8(D,G):A (G )~C (U(JIi') with 

D(D,G)(x1,,,,,Xk)(t) = ExpD(x1) .. ·ExpD(xn _ \) 

X Exp(kt - n + 1)D(xn) 

for t8:l nlk, Lin = [n - 1,n], n = I, ... ,k. This map controls 
the integrability of D. Any gEG (G is connected) can be writ
ten as g = expxl· .. expxk for suitable X,Eg; hence the defining 
diagram gives 

Lemma 2. A skew-adjoint representation D of gin F is 
G integrable if any only if Im8(D,G) CA (U(JIi'). 

2. To apply this loop criterion to vector field representa
tions, we introduce the sets C(P,p) and A (P,p) of curves and 
loops in P starting at p. Consider cfJ:g~ll3(P), take the set 

A (¢,G,p) = {(X1, ... ,xk)EA\G)Iq; f(x')'''q; f(X,)(P) exists l. 
and construct, as above, 8(¢,G,p) : A (¢,G,p)-C (P,p) with 

8('" G n)(x x )(t) = m ~(x,,) m ~(x" ') ... m ~(x')(P) 
'/'"y 1>'''' k 'r kt - n + 1 'r 1 'r 1 

for t8:lJk, Lin = [n - I,n], n = 1, ... ,k. Again, this 8 map 
completely controls the integrability of skew-adjoint vector 
field representations. 

Theorem 1: A skew-adjoint vector field representation 
D (¢ p,e) induced from a 9 action (¢ p,e) is G integrable if and 
only if 

Im8(¢p,G,q)CA (Ep,q) (1) 

forqEEp • 

For the proof see the Appendix. Integrability criteria 
for symmetric or arbitrary skew-adjoint D of 9 can be found 
in Refs. 14 and IS. 

3. This result relates the integrability of D (¢ p,e) to a 
global property of the g action. Condition (I) can be identi-
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fied with the infinitesimal version ofPalais' maximal local G 
action. 10 Hence we call tP p on Ep G maximal if condition (1) is 
fulfilled and the results in Ref. 10 imply that 0 is G maximal 
if and only if it is the differential of a "restriction" of a global 
G action '1on a manifold iii which contains M as an open 
submanifold. Furthermore, any complete 0 is if maximal; if 
is the unicover of G. 

4. The construction of a skew-adjoint non-HZ-integrable 
representation by Nelson9 takes for 0: HZ_ll3(M) a non-HZ
maximal action, which is generated (up to one point) from a 
covering (see Sec. 4) of the natural HZ-action on the torus 
minus one point; in this case any lift of 0 to an action on the 
total space of a bundle over M is non-HZ-maximal too. In 
Refs. 16 and 17 a nonmaximal 0 given by a double covering 
of HZ - (0,0) is used. 

4. AN APPLICATION: COVERINGS 

1. G maximality of tP implies G maximality of 0; howev
er, the converse is not true. To construct an example, take as 
geometrical arena a physically distinguished, connected but 
not simply connected manifoldM[e.g., HZ - (0,0),H3-H] and 
a regular covering p : M N -M characterized by a normal 
subgroup N of the nontrivial fundamental group 1Tl(M,mo)' 
Such a covering is a simple case of a nontrivial principal fibre 
bundle, given here as 

SM,N = (M N,p,M,1Th (M,mo)!N); 

the structure group 1Tl(M,mo)INis discrete and the cover
ings are classified by normal subgroups NC 1Tl(M,mo). 

2. Let 0 : g_ll3 (M ) be G maximal. Since p is a local dif
feomorphism, 0 induces a 9 action 

ON :g_ll3(MN) 

on M N such that (0 N,O) is a 9 action on S M,N. Consider 

£(O,G,m) = v(m)o8(0,G,m) 

with v(m) : C (M,m )-fl (M,m) being the natural surjection 
onto the set of homotopy classes of curves in C (M,m). Since a 
covering has unique path lifting, the following conditions are 
equivalent: 

(i) 0 N is G maximal; 

(ii) Im€(O,G,p(m'»Cp* 1Tl(MN,m') for m'EMN. 

For transitive G maximal 0 this criterion can be simpli
fied: The covering lift 0 N of 0 is G maximal iff there exists a 
mbEM N such that 

Im£(O,G,p(ma» Cp.1Tl(M N,ma). 
For maEp-l(mo) we have p.1T1(M N,ma) = N. 

3. For the construction of an associated vector bundle 
we use a unitary faithful finite-dimensional representation 
p : 1Tl(M,mo)IN-AutV, By Lemma 1 the corresponding 
vector field representation D (0 :,0) of 9 on Seco(S :.N) is 
skew-adjoint if 0 is quasicomplete and U) is 0 invariant. For 
the integrability Theorem 1 yields: 

Lemma 3. A skew-adjoint vector field representation 
D (0 :,0) induced from a transitive and G maximal 9 action 0 
on M via a unitrary and faithfulp is G integrable if and only if 
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Im€( 0, G,mo) C N. 

4. As an example take M = HZ - (0,0), U) = dXl/\ dxz, 
9 = HZ (two-dimensional Abelian Lie algebra) and define 
0: g-ll3(M) by 

a a o (a,b ) = a - + b -. ax ay 
o is quasicomplete and transitive, U) is 0 invariant. Further
more, 0 is G maximal for G = HZ. Because 

1T1(HZ - (0,0),*) = Im€(O,Hz,*)~Z, 

Lemma 3 implies that D (0 :,0) is HZ-integrable iff Z C N, 
i.e., iffN = Z. Hence for N = 2ZCZ [which corresponds toa 
double covering of HZ - (0,0)], and 

p : U2Z = Z2-AutC 

given by p(O) = 1,p(1) = e i11', the skew-adjoint 
representation 

D(O~z,(J): H2_.#(SecoS'M,2Z) 

is non-G-integrable for any G with 9 ~ HZ, 

5. CLOSING REMARKS 

1, A system with a manifold M as configuration space 
and a 9 action 0 on M connected with physical momenta can 
be quantized through a quantization bundle sp 
= (Ep ,1Tp ,M, V), This is an associated vector bundle of a 
principle fibre bundle S = (P,1T,M,H) with structure group 
Hand 9 action (tP,O), where tP is a lift of 0, The physical 
interpretation of H and its representation p is model depen
dent. In special cases (as for quantum mechanics on homo
geneous spaces 1S

) the Lie algebra of H may be chosen as a 
subalgebra of g, 

The quantization method leads to compactly supported 
sections in SP as states and, with a volume form U) on M, to 
the Hilbert space L z(Sp,U); the Borel sets on M correspond to 
projection operators and the 9 action leads to a vector field 
representationD (tPP'O )ofg, ThegeneratorsofD (tPP'O )canbe 
interpreted as observables (momentum operators) if they are 
essentially skew-adjoint, This is the case if 0 on M is quasi
complete and if the form U) is e invariant, 

As the 9 action on E p does not need to be G maximal, 
alsoD (cP

P
' 0 )on Seco(Sp)CL 2(Sp'U) is not necessarily the dif

ferential of a unitary representation of a Lie group G with Lie 
algebra g, i.e" D (tPp,e) may be non-G-integrable. However, 
its integrability depends on the geometry of(tPp,e) onsp only. 
The key is the loop criterion (see Lemmas 2, and 3) or, as an 
equivalent condition the G maximality of (tPP'O ), So the inte
grability for vector field representations is reduced to a pure 
geometrical problem. Skew-adjoint representations of 9 not 
being vector field representations will not appear as a reuslt 
of this geometrical quantization procedure. 

2. For the M given, some physical information is needed 
to choose a 9 action e. If 0 is taken to be G maximal, it can be 
considered as a "restriction" of a complete 9 action on some 
manifold M~M (see Sec. 3.3) and it isjustified to call points 
in M - M = M' "singularities" of 0; they cannot be reached 
by the system moving on M. The skew-adjointness of 
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D (ifJ p,(J) is directly connected with M' and is assured if the 
integral curves ending in a singularity build a set of measure 
zero; under some restrictions (c.f. the examples given above) 
this is equivalent to 

dimM - dimM '>2. 

This condition is related to the construction of nonin tegrable 
representations via coverings (Sec. 4), because only for 

dimM - dimM' = 2. 

the homomorphism 

i* :1T,(M - M',m)-+1T,(M,m) 

is not injective in general, '9 which gives the possibility to use 
the non-simply-connectedness of M - M' (Lemma 3). 
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APPENDIX 

1. Proof of Lemma 1: Put (XEg) 

r(8(x),t) = [aESeco(5p)lsuppaCD(8(x),t)j. 

Define U t (ifJp ,8 )(x): r (8 (x), - t )-+r (8 (x),t) by 
[aEF (8 (x), - t)], 

(Ut (ifJp,8 )(x)a)(m) 

= {F(ifJ/X»(a(F(8(X»(m,t», - t) if mED (8 (x),t), 

Om' otherwise, 

which is bijective and, moreover, isometric since 

(i) M - D (8 (x),t ) is of measure zero; 

(ii) Lt!(x) W = 0; 

(iii) for mED (8 (x),t) the association 

qE1T; l(m)-+F(ifJ,,(x»(q,t)E1Tp- 1(F(8(x»(m,t» is 
unitary. 

r(8(x),t) is dense in Seco(s), so Ul (ifJp,8)(x) extends to a 
unitary operator on L '(5p'w) and 

tER-UlifJp,8 )(X)EU(JY) 

is a strongly continuous one-parameter unitary group. By 
Stone's theorem, there is a (unique) skew-adjoint operator 
A (x) on tJ(A (x»CL '(5p'w), tJ(A (x»:JSeco(s), such that 

A (x)ISeco(5p) = D (ifJp,e )(x). 

Thus D (ifJp,8 )(x) is skew-symmetric on Seco(5p)' l.t is even 
essentially skew-adjoint on Seco(5p) C L '(5p'w), whIch can be 
shown directly, using the method indicated in Ref. 9. By 
definition, SecoCS-p) is a common invariant domain for all 
D (ifJp,8 )(x), xEg. 

2. Proof of Theorem I: Consider the sets (x lEg) 

D (e;x" ... ,xk) = {mEM Itp ~(x,) ••• tp f(X')(m) exists} 
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and 
r(8;x" ... ,Xk) = {aESeco(5p)lsuppaCD(8;x,,. .. ,xk)}' 

Since D (e (x),t) is open in M, the same holds for 
D (e;x" ... ,Xk)' By the quasicompleteness of e. 

E (e;x" ... ,xk): = M - D (e;X" ... ,xk) 

is a set of measure zero. Sor(e;x" ... ,xk ) is dense in Seco(5p)' 
Because of Lemma 2 we have to prove that 

(i) Imb(D(ifJp,e),G)CA (U(L 'CS-p'w))) 

and 

(ii) Im8(ifJp ,G,q)CA (Ep,q) for qEEp 

are equivalent. Now condition (i) is equivalent to 

(*) ExpD (ifJp ,8 )(x,)-··ExpD (ifJp ,8 )(xk)a = a 

for(x" ... ,xk )s1 (G), aif(e;x" ... ,xk).Stone·stheoremgives 
(compare the discussion in the proof of Lemma 1) 

(ExpD (ifJp,8 )(x)a)(m) = (U,(ifJp.8 )(x)a)(m) 

= F(ifJ,,(x»)(a(F(8(x»(m,I», - 1) 

for XEg, aEr (8;x), mED (e;x). Hence (*) is equivalent to 

8(ifJ",G.a(8(8.G.1T/q»(X" .... x k )(1»)( - x k ••••• - x,)(1) 

= a(1Tp(q» 

for 
A 

qED(ifJp;x" ...• x k ), aif(8;x" ...• x k), (x" ...• xk)EA (G). 

Because D (ifJp;x" ... ,xk ) is open in Ep' (*) is equivalent to 

b(ifJp,G,q)(x, .... ,xk)(I) = q 

for (x, .... ,xk )s1 (G),qED (cP" ;x" ... ,Xk)' But this is equivalent 
to condition (ii). 
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SU(4) Clebsch-Gordan coefficients for the formation of 
baryonium and exotic baryons8
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We give the SU(4) Clebsch-Gordan coefficients required for the formation of exotic 
hadronic states of the form (QQQQ) and (QQQQQ). 

I. INTRODUCTION 
With the recent experimental evidence for narrow re

sonances in baryon (B )-antibaryon (B) scattering, interest 
has been renewed in the "exotic" multiquark hadrons offour 
and five quarks. I

,2 The most studied of these states is the four 
quark state popularly known as Baryonium.3

-
9 The struc

tures suggested for such hadrons are states composed of 
combinations of diquarks. ,o.ll Two quarks with relatively 
small angular momentum form a diquark (D) which com
bines with other diquarks or quarks. For Baryonium the 
structure is that of a diquark-antidiquark pair, while for the 
five quark state (B;), diquark-antiquark-diquark. The di
quarks can be of two types depending on whether they lie in 
the:3 or 6 representations of the SU(3) color group.12 The 
series of Baryonium states constructed from the first type of 
diquark have small decay widths in mesonic channels but 
normal hadronic decays into BB channels. Similarly the cor
responding B; series of states show a reluctance for decaying 
into mesons but couple strongly to BBB (or B-Baryonium) 
channels. Figure 1 illustrates a string picture realization of a 
quark-gluon theory for such states constructed from the di
quarks in the:3 representation.4.;.7 The second series of states 
constructed from the diquarks in the color 6 representation 
are reluctant to decay into either mesonic or BB channels. 
Whenever possible however, these states will cascade via 
pion emission into a resonance of the same type (color 6). 

In this paper we present the Clebsch-Gordan coeffi
cients necessary for the decompositon ofthe products D X jj 
(Baryonium) and (D X if) X D, (Bs). A knowledge of such de
compositions is required for a detailed treatment of mass 
formulas and the question of identifying particle states with 
particular representations and "mixtures" between various 
representations in the above products, 13 The form in which 
the coefficients have been given is with respect to a decompo
sition in SU(3). Extensive tables already exist for the decom
position of the products of the 15 and the various 20 repre
sentations ofSU(4),141S and for a number of the SU(3) 
coefficients required in our calculations we refer the reader 
to those contained in the paper of Haacke, Moffat, and Sa
varia. 14 Following other work in such calculations we use the 
techniques developed by Biedenharn and Baird,'6 and 
Louck. 17 In the next section we present the formalism and 
notation, and in Sec. III our phase conventions. 

a)Supported in part by the Australian Research Grants Committee. 
h) Work supported by an Australian Postgraduate Research Award, 

II. FORMALISM AND NOTATION 

Taking the quark flavors as forming the first fundamen
tal representation ofSU(4), then the diquarks occur in the 6 
and 10 representations. The antidiquarks occur in the conju
gate representations. The 6 in SU(4) is self-conjugate. The 
following products give the representations in which the 
Baryonium states lie: 

6X6=1+15+20", 

6X 10 = 15 + 45, 

lOX6=15+45, 

lOX 10 = 1 + 15 + 84. 

(2.1) 

(2.2) 
(2.3) 

(2.4) 

The diquark-antiquark products necessary for the for
mation of the Bs states are given by: 

6X4 = 4 + 20/, 

lOX4 = 4 + 36. 

Hence for B, we have: 

4X6 = 4 + 20/, 

4 X 10 = 20/ + 20, 

20/ X 6 = 4 + 20/ + 36 + 60, 

20/x 10 = 4 + 20/ + 36 + 140", 

36X6 = 20/ + 20 + 36 + 140", 

36X 10 = 20/ + 20 + 60 + 120 + 140". 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Table I gives the SU(3) decompositions for these SU(4) re
presentations. The basis scheme of Gelfand and Zetlin 16-IS 
allows an economical way of expressing the states within a 
representation and in such a scheme the computation in
volved in obtaining the coefficients is greatly simplified. The 
SU(4) states in this basis are represented by a triangular ar
ray known as the "Gelfand pattern," 

DxD 

(0) (b) 

FIG. l. (a) The string pictures of Baryonium, and (b) B,. 
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m'4 m24 m 34 m 44 

m'3 m 23 m33 

mil 

The set of integers (m I4 ,m'4,m34) describe the Young's tab
leau associated with the representation. The integer m i4 is 
the number of boxes in the ith row in the tableau. For SU(4), 
m 44 is zero. The remaining integers enumerate the states in a 
given representation. They are subject to the constraint 

(2.13) 

In terms of the quantum numbers, the states within the re
presentations will be specified by 

I (R,Z ),r, Y'!'!z)' (2.14) 

where R labels the SU(4) representation, r the SU(3) sub
group ofSU(4), and Y,l andlz the hypercharge, isospin, and 
the third component of isospin, respectively. Z is related to 
the charm quantum number via 

C=aZ + bN. (2.15) 

Nis the baryon number. The constants a andb depend on the 
quark model used. For the fractionally charged GIM mod
el, 19 a = - 1 and b = ~. The values of R, r, and 21 + 1 are 
related to the integers mij by the Weyl dimensionality formu
la for n = 4, 3, and 2, respectively, 

D(n) = IT (m i.n - mj,n + j - i). 
i <j 1!2! .. ·(n - I)! 

(2.16) 

The three conserved quantum numbers Z, Y, and I z are giv
en by Q (n) for n = 4,3, and 2, respectively, where 

n-I (n-I) n 

Q(n) = I mi,n_1 - I m i,,,' (2.17) 
i~ 1 n i~ 1 

The Clebsch-Gordan coefficients are defined by the trans
formation law, 

x C ~:~y,~:I,,1 (R hZ,),r" Y',!',!lz) I (R"Z2),r" Y',!',!2z)' 
(2.18) 

with the following constraints; 

Z=Z,+Z" Y= Y,+ Y" 

I = III - 1,1 ... 11 + I" 
where 

( 
R, R, I R ] 

r"Z,; r"Z, r,Z 
is the SU(3) singlet factor, 

[ r, r, I r ] is the SU(2) singlet factor, 
I"YI ; I"Y, I,Y 

(2.19) 

C ~:~'i,~:l" is the SU(2) Clebsch-Gordan coefficient. 

The singlet factors are computed by considering the matrix 
elements of the infinitestimal generator Eij ofSU(4). These 
satisfy the communtation relations 

[EiJ,Ek.l] = Dj,~i.1 - Di,,,EkJ· (2.20) 
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The generators, Eij (i,j = 1, ... ,4) define the raising operators 
for the six subgroups: 

EI2 = I" E'4 = K" 

Eu = V" E'4 = L" (2.21) 

E21 = U" E34 = M" 

K, L, M being the operators for three SU(2) subgroups of 
SU(4), while I, V, and U are the familiar I-spin, U-spin, and 
V-spin subgroups ofSU(3). 

For the matrix elements of the operators in the Gel
fand-ZetIin basis we have used the expression given by 
Louck in Ref. 17 [Eq. (2.62)]. Tables II together with the 
phase factors in Tables III (defined below) contain the SU(3) 
singlet factors rf!quired for the formation of the diquark 
states and the decompositions in Eqs. (2.1 )-(2.12). Tables IV 
contain the SU(2) singlet factors associated with these de
compositions. The remaining SU(2) singlet factors which 
are required may be found in Ref. 14. 

III. PHASE CONVENTIONS 

Within a given multiplet in SU(4) or SU(3) the relative 
phases are determined by the signs of the operators Ei,i + I' In 
the convention we have followed, these operators have posi
tive matrix elements for i = 1,2, and 3. A further condition is 
required to determine the relative phase between different 
representations in a decomposition of a product. For this the 
highest Clebsch-Gordan singlet factor has been chosen to be 
positive. For a given R the highest SU(3) singlet factor is the 
one with the highest Z, then r in which r l is a maximum in 
r, X r,. If this is insufficient, then the ordering is on ZI' then 
r,. Following Haacke et al." the highest of two SU(3) multi
plets is the one with the highest Y value. For two multiplets 
with the same highest Y value, then the highest is the one 
with the highest I value at this Y. Similarly the highest SU(2) 
singlet factor for a given r is the factor with the highest Yin 
which I, is a maximum in I, Xl,. If this is insufficient, then 
the ordering is on Y" and I,. 

The phase factors, E" E3 given in Table V contain the 
symmetry properties of the SU(2) singlet factors, where 

= E,( _ 1)1 I, (3.1) 

r, I r J 
1"Y,I,Y 

(3.2) 

The factors 71,,713 associated with the SU(3) singlet factors 
are given in Table III, where 

(3.3) 

R, I R ] 
r" - z, r, - Z . 

(3.4) 
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TABLE r. SU(3) decompositions (r) ofSU(4). The m,.4' i = 1 .... ,3 associated with the SU(4) representations are also given. 

SU(4) Rep. r 

4[1,0,OJ 3 

6[1,I.0J 3 
3 

10[2.0,0] 6 
3 

15[2.1,1] 3 
1+8 
3 

20[3,0,0] 10 
6 
3 

20'[2,1,0) 8 
3+6 
3 

20"[2,2,0] 6 
8 
6 

36[3.1,1] 6 

3 + 15 
1 + 8 
3 

TABLE II A. SU(3) singlet factors: 4 X 4 = 6 + 10. 

1017 

rh Zl;r2,Z2 

1, -l;3,! 
3,p, - ~ 

r= 6, z= 1 

r= 3, Z= -! 
6 10 

-IIV"Z IIV"Z 
1IY2 IIV'2 
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Z 

! 

1 
1 

-- " 
1 
-~ 

, 

0 
-I 

~ 
-1 
-, 
* -- -
4 

~ 

I 
0 
-I 

., 
! 
-~ 

4 

SU(4) Rep. r Z 

45[3.1.0) 15 
8 + 10 0 
3+6 -1 
3 -2 

60[3.2.0] 15 -
4 

{; + 15 ! 
8 + 10 -~ 
6 

4 

84[4,2,2] 6 2 
3 + 15 
1 + 8 + 27 0 
3 + Is -1 
(; -2 

120[5,1,IJ IS' 
7 -
4 

10+ 35 
6 + 24 _1 

3 + 15 
~ 

4 

1+8 " 
4 

3 " ---
4 

7 
140"[4,2,IJ 15 -

8+ 10+27 
3+6+1s -1 

4 

+ 24 
3 + (; + 15 

8 

r= 3, Z=! 

r= I, Z= -~ 
2 

10 
l,-V,-~ 
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TABLE II B. SU(3) singlet factors: 4X 10 = 20' + 20. 

r= 10, Z= ~ 

20 

r 17ZI;rh Z2 

r= 3, z= -! 
r\,Z\;r"Z, 20' I, - ~;3, - ~ 

3,P,-! 3 1.1 1 
'4' ,-:; 

TABLE II C. SU(3) singlet factors: 6X4 = 4 + 20'. 

r= 8, Z= i 
rhZ\;r"Z, 20' 

3,P,l 

r= 3, Z= -! 
'ilZj;rhZJ 4 20' 

3,-P,! y2i3 lIY'3 

3,p, -" -I/Y'3 Y2/3 4 

TABLE II D. SU(3) singlet factors: 6 X 6 = I + 15 + 20" . 

r= 6, Z= I 

,\,Z\;r"Z, 20" 

r= 1, Z=O 

r h ZL;r2Z 2 1 15 

3, -1;3,1 -1/Y2 -I/Y2 

r= 8, Z= ~ 

20' 

r= 3, Z= -.:: 
4 

20' 

-I/Y'3 

y2i3 

20 

Y2/3 

I/Y3 

r=l, Z=~ 

3,-!;I,-i 

r= 6, Z= --! 
r h Zj;rZ,Z2 20' 20 

I, - ~;6,! -Y2/3 I/Y'3 

3,p, -~ lIY3 Y2!3 

r= I, Z= -:'. 
4 

20 

r= 6, Z= -! 
rhZ\;r"Z, 20' 

r= 3,Z= - ~ 
4 

20' 

r = 3, Z = I r = 8, Z = 0 

",Zj;rZ,ZZ 15 20' 

3, - !;3,! lIY'2 I/Y'2 

3,!;3, -! -1IY2 I/Y2 

r= 6, Z=-I r= 3, Z=-I 

20" 15 

+ l/Y; -lIY; 
3,-P,-1 -I 3, -1;3,-1 

3,P,-1 
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TABLE II E. SU(3) singlet factors: 6 X 10 = IS + 45. 

r=15, Z=I r= 3, Z= I r= 10, Z - 0 

45 IS 45 

3, - !6,! 

r= 8, Z=O 

rt,Zt;r:>.,Z: 15 45 
r=l, Z=O r= 6, Z=-I 

45 IS 

3, - !;6,! Y3/2 I 
1: 3, - !;3, -! 

3,P,-! - 1/2 Y3/2 

r= 3, Z=-I 

r"Z,;r"Z, IS 45 r= 3. Z = - 2 

3, - ~P,-1 1IY2' 1IY2 
r,Z,;r"Z, 45 

- I 

3,!;1, -2 -1IY2' I/Y2' 

TABLE II F. SU(3) singlet factors: lOX 4 = 4 + 36. 

r= 6, Z= ~ 
r=IS. Z=! 

36 36 r j ,Z\;r2,Z2 4 36 

6.p,~ 3,-!;q -l/Y'S 2/Y'S 

6,p,- ! 2!Y'S l/Y'S 

r= I, Z=-l 

r= 8, Z= - i rj,Zj;r:L,Z2 4 36 r= 3, 

r"Z,;r"Z, 36 1, - ~;l,i - Y2/5 v3/5 36 

3, - !;3, -! 
3, - ~;3, -! Y3is Y2/5 

1 _'::.j - 1 
, 2" 4 
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T ABLE II G. SU(3) singlet factors: 10 X 10 = 1 + IS + 84. 

f= 6, Z= 2 

84 
f= 15, Z= I 

r h Z I ;r2,Z2 IS 84 

3 1.1' 
• - 2' '2 -1/\/;- v2I3 

6,~;3,! v'2i3 1/v'"3 

f=8, z=o 
r=27, z=o rl,ZI;rhZZ IS 84 

84 
3, -1;3'1 -1/\16 v'5;6 

6,!;6, - ~ v'5;6 l/v'"6 

r=l, z=o 
f h Z J;r2,Z2 I IS 84 

I -~·I ~ I/v'lo - I/v'z 2Iv'1o , 2"2 

r= 15, Z=-I 

r"Z,;r"Z, 84 

3, - !;3,l - v' 3/10 l/v'"6 2v' 2115 

6,!;6, -! v'315 1/v'"3 1/vl5 

r= 3, Z=-I 

rhZ1;rZ,Z] 15 84 r= 6, Z = - 2 

1 '.3 1 - l/v'"3 v' 213 ,- z' '2 
r"Z,;r"Z, 84 

3, - !;6, -! v' 213 IIv'} 
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TABLE II H. SU(3) singlet factors: 20' X 6 = 4 + 20' + 36 + 60. 

r= 15, Z=~ r= 6, Z=~ 
4 z=:" 

4 

60 36 20" 

r= 15, Z=! , 
rt,Zt;rhZz 36 60 ,,,ZI;r2,ZZ 20' 60 

6, - !;3,~ I/v'2 1IYz 3, - !;3'1 112 Y312 

8,P,-! -1IYz 1IYz 8,1;3, -! Y312 -1 

r= 3, Z=! 

f"Z,;rz,Zz 4 20' 36 

3, - !;3,! -1IY15 -1IY3 - Y3/5 

6, - !;3,! -Y2/5 I/\I'z -1IYw 

8,P,-! 2v2!15 1IY6" -V3/W 

= , = -r 8 Z J 

fl,ZI;rhZ1 20' 36 60 

5 - Y312Y2 1 Y312Yz 3, - .;3,! 2 

r= 10, Z=-~ 

6,-p, -1 3, -P,-! -1 - Y3/2Yz ~ 

6,-P,-! J - Y3/2YZ -! 4 

r=1 Z=-i 

'I,Z,;r2,Z2 4 36 r= 6, r= 3, 

3, - ~;3,! - v'3I5 - Y2/5 60 36 

3, - p, -! Y2/5 - Y 3/5 

5 
3, - .;3, -! -1 
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T ABLE II 1. SU(3) singlet factors: 20' X 10 = 4 + 20' + 36 + 140". 

r= 6, z=~ 
4 

r= 8, z=:'. 
4 r= IS, Tll Z l ;rZ,Zl 36 140" 

140" 6 1.1 3 -l/V2 1/v2 ,- 4) ''2 

8,i;3,~ 1/v'"2 l/v'"2 

rhZl~r2,Z2 20' 140" 

-, 
3, - 1;1" - l/v''3 v' 213 

r= 24, Z=! 

8,~;3,! v' 2/3 1/v'"3 

r=15, Z=! 

'I,ZI;r2,Z2 36 140" 'I,ZI;r2,Z2 20' 140" 

6, - !j,~ -112 v'312 3, - !;3,! -1v''6 v'5i6 

8,~;6, - ~ v'312 I 
2 q;6,-~ v' 5/6 l/v'"6 

4 r=27, Z=-;} 

'hZ \;'2,Z2 4 20' 36 140" 

3 -~·I.:'. 
, 4" 2 v' 2/15 - l/v'"3 - lIv'S l/v'"3 6, - 1;6,-1 

3, - !;3,~ I lv'S 0 - v' 3/10 - l/v'"2 
r = 10, Z = - i 

6, - !j,~ - v' 2/15 l/v' 3 - 312v'S II2v' 3 

8,~;6, - ~ 2v' 2115 1/v''3 II2v'S l/2v'3" 

r= 8, Z = - ~ 

fJjZj;r2,Z2 20' 36 140" r= I, z= -:l 

5 -
-~ - II2v'"2 v'SI2v'"2 3, - "4;3,! 

3, - 1;6, - ~ + II2v''2 ;l v'S/4 4 

r\tZj;rZ,Z2 4 36 

3, ~ ~;3t! i/v' 5 - 2Iv' 5 

6, - 1;6, - ~ v' 512v' 2 - v' 5/4 I 

" 
6, - 1;6, -! - 2Iv'S - l/v'S 

r= IS, r= 3, 

140" 

5 -
3, - 4;6, -! l6 I I 
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TABLE II I. SU(3) singlet factors: 36 X 6 = 20 + 20' + 36 + 140". 

r= IS, z=~ 
4 r= 3, r= 27, 

140" 36 140" 

~.- I 
6,.,3'2 

r= 8, z= a 
r= 10, z= a 'I,Z.;rZ'Zz 20' 36 140" 

3,i;3,! -1 Vs/4V; S/4V; 

6 5 '3 1 - VS12V3V312V2 - VS12\1'6 '4' 1-'2 

15,!j,l 5/4V3 3V5/4V6 -1I4V6 

r l ,ZI;r2,Z2 20 140" 

6,';;3, - ~ 1/V3 V2/3 

IS,*;3,~ V2!3 -1IV3 

r=l, Z=i r= 24, Z= -! 

r= 6, Z= - i 

r= IS, Z= -! '\,Z\;rI,ZZ 20' 20 140" 

3,*;3, ~ i I V5/3V2 5 - -
b 6 

rhZ\;rhZZ 36 140" 

8, - ij,! VS!3V2 2 - VS/3V2 
.1 

8, - ~;3,! ! V312 

15,p, - ~ 
5 - VS!3V; I - -
b 6 

IS,p, - ! V312 -! 

r= 3, Z= -! 
rhZI;rZ.ZZ 20' 36 140" 

I, - ~;3,! I I/V3 YS/3 
.1 

r= 15, Z= -~ 
4 

140" 
3,P,-! -1IY3 ! - Y512Y3 2 8, -l;3, -! 

8, - ~;3,! V5!3 Vs12Y3 I 

6 

r= 6, Z- ~ 
4 

r= 3, Z= -~ 
4 

f],Z];rZ,ZZ 36 140" f h Z 1;rZ,Z2 20' 20 140" 

3, - ~;3'1 1/V2 1IY2 I,-P,-! Y2!3Y3 VS!3V3 2Ys/3Y3 

8, - ~;3, -! I/Y; -1IV; 
3, - -;;3,4 - V5/3 -V2/3 V2!3 

8, -P,-! YlO/3V3 -4/3V3 1/3V3 

r= 8, Z= -.? 
4 r= I, 

140" 20 

-I 
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TABLE II K. 36x 10 = 20 + 20' + 60 + 120 + 140". 

r= 15', r= 15, r= 6, 

120 140" 60 

r= 35, Z -J -4 r= 27, Z=i r = 10, Z = i 
120 140" 

'I,ZI;r2,Z2 20 120 140" 

3,!:6,~ -N21 V 15/2V7 - V5/2V3 

6,~;3, - ~ V 5/21 V3!7 I/V3 

15,*:6'1 VSi7 -1/2V'7 _1 
2 

r= 8, Z=:i 

'I,ZI;r2,Z2 20' 60 140" r= 24, Z= -! 

3,!;6,~ -1/4V(; - V1s/4V2: 5/4V3 'I,ZI;r2,Z2 120 140" 

6 ~'3 1 V5/2V(; V3/2V2 V5/2V3 '4' . -:2 

15,!;6,~ 5/4V2: - V5/4V2 I -4 

8, - ~;6,~ I/V'2 -I/V'2 

15,p,-~ I/V2: 1/V2: 

r= 15, Z= - * 
r l ,ZI;r2,Z2 60 140" 

8, - *;6,~ -IV2: I/V2: 

15,p,-~ I/V2 I/V'2 

r= 6, Z = -! 
r h Z J;r2,Z2 20' 20 60 120 140" 

1, - i;6,~ 113V6 -2V'213V21 Vs13V2 513V 14 - 513V(; 

3,t3, - ~ -1/2V2 I/V14 -V5/2V6 5/V 42 0 

6,;;1, -- ~ V513V2 2Vs13V14 I/V6 Vs/V42 V 513\12 

8, -l;6,~ - 5/6V3 I013V21 V5/6 -2/3V'7 -1/3V3 

15,p,- i 5/6V'2 513V14 -V5/2V(; -I/V 42 -V'2/3 
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TABLE 11K. 
r= 3, z= -a r= IS, z= -~ 

4 

r.,Zl;rh Z 2 
20' 140" rl,Z.;rz,Zz 60 120 140" 

3,p,-~ I/V6 \I 5/6 - 7 I/V3 I/V6 -1/\12 3, - 4;6,l 

8, - a;6,1 V5;6 -1/\16 8, -P,-1 -1/\13 21\16 0 

15,!;1, -~ 1/\13 11\16 1/\12 

r= 3, z= -~ 
4 

'I,ZI;rhZ2 20' 20 120 140" 

I,-p,-~ - 213\13 1!3\121 \110121 - Vlo/3\13 r=6, z= -~ 
4 

140" 
3 1.1 3 

1 4/3\17 \I 5/14 \I 5 !3Y2 -'4' ,- '2 .l 

8,-P,- ! 
- 7 
3, - .;6,! - \lS!3 2\1S/3\17 -1/\114 1!3Y2 

8, -l;3, -! \lS!3\13 4\1s/3\121 - \12121 -2\12/3V3 

r= 8, z= _2 
4 

r= I, 

rh Z\;r2tZ 1 120 140" r.,Zl;rh Z 2 20 120 

- 7 
3, - .;3, -! 11\12 -1/\12 .1 

I, - 3;1,-, \l2!7 \l5!7 

8 - ~'I -.:? , " 2 
1/\12 1/\12 3, - ;;3, - ~ \15/7 - \12/7 

r= 3, z= _.!.:'. 
4 

120 

TABLE III. Phase factors associated with the SU(3) singlet factors. 

R, R, R TJ, TJ, R, R, R TJ, TJ, 

4 4 6 -I 20' 6 4 -I 
10 I 20' -I 

4 10 20' -I I 36 -I -I 
20 I I 60 I 

6 6 IS -I -I 20' 10 4 I -I 
20" 20' -I -I 

6 4 4 -I 36 -I 
20' I 140" I 

6 10 IS -I 36 6 20' -I -I 
45 I I 20 -1 

10 4 4 -I -I 36 -1 1 
36 1 140" I 1 

10 10 1 1 36 10 20' 1 -1 
15 -I -I 20 -I -I 
84 1 1 60 1 1 

120 1 1 
140" -I 1 
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TABLE IV A. SU(2) singlet factors: 15 X 3 = 6 + 15 + 24. 

1026 

1[, Y[;/" Y, 

0, -+;O,-~ 

1 _~.l~ 
2' ~'2' J 

1= 2, y= ~ 

1= 0, y-' 
.\ 

24 

15 

I-~ 
- 2' 

y=~ , 

I"Y,;Ih Y2 

o _ ':'.l.!. 
, .1'2'-, 

~,+;O, - ~ 

1 _':'.l.!. 
, 1'2' \ 

f[, y[;!" y, 

! 'I I 
,- ~'2'~ 

1, -~,O,-+ 

1=0, y= -:. , 
6 

-I/YS 

2/Ys 
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24 

y=~ , 
IS 

1= I, y=':' 
\ 

6 IS 24 

I/Yis 

I/Y'3 2/Yis 

y= I , 
1[, y[;!"y, IS 24 

1":'·1.!. 
':~' 2.'l, 

-1/Y3 Y2/3 

~~·O -!. 
2' 3' 3 

Ym I/Y'3 

1-1 - 2' y= -.!. 
\ 

6 15 24 

I/YIO -I/Y2 Y2/5 

- Y 3/10 I/Y6 2Y 2/15 

Y3is I/Y'3 I/Yis 

1= \, 
-
IS 24 

-V2/3 Y 1/3 

I/Y'3 Y2/3 

24 
y= -2. 

3 

24 
2/Y5 

I/Ys 

1 -~·O -.:. 
2' .~' t :} 
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T ABLE IV B. SU(2) singlet factors: 15 x:3 = 8 + 10 + 27. 

I-C!.. Y= I - 2' 

1= I, Y= 2 I"Y';/2'Y' 10 27 
I" Y,;/" Y, 27 

1,~;~~ - * -IN'2 I/VZ 

c!...!.·o~ 1/VZ I/V'2 
2' .\' '.~ 

I,':;O,~ 
3 J 

I=!, Y= I 

I"Y,;["Y, 8 27 1= 2, Y=O 

!,*;O,f IIVS 2/VS 
I"Y';/"Y2 27 

1':·1 -.!. 
'J'2' J 

2/VS - IIVS 

1=1, Y=O 

I"Y';/"Y2 8 10 27 

1.!..1_ .!. 
2'3'2 J 

- 113V 5 2 

.1 
2V 2/15 

2 2 
1, -3";0'1" 2/V 15 IIV3 V 2/5 

.:: .2..1 1 4vz/3VS - VZl3 - I/V15 --
2' .1'2' .1 

1=0, Y= 0 

I"Y,;I"Y, 8 27 

o - ~·O ~ V 2/5 V 3/5 
, J" J 

I" Y';/2' Y, 27 

1 1 v375 -VVs ! _·1 
2' 3'2' 1 

I=~:. Y=-I 

I h YI;I2,Y2 8 10 27 

o _ ~.l_.!. 
, .,'2 J -IIV15 - IIV"3 v375 

1 _ ~·O~ 
2' .'~" J 

2V 2/15 I/V6 V 3/10 

1, - ~;~, - * V 2/5 - I/Vz -IIVIO 

1=1, Y=-2 1=0 Y=-2 
I"Y,;/"Y, 27 

1"Y';/2'Y' 10 

-1 
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TABLE IV C. SU(2) singlet factors: 15 X 6 = 8 + 10 + 10 + 27 + 35. 

1=2, Y=2 1=1, Y=2 

il" Y,;/" Y, 35 I"Y,;I"Y, 27 I"Y,;/"Y, 10 
1,~;t,~ 

;\ ;\ 

I=!.. Y= I 
2' 

I" Y,;I" Y, 35 

I" Y,;/" Y, 10 27 35 

H;I,~ 1 -1IV3 VS13 
J 

I=~ Y=I 
2' 

4! I 
1'"3; '--;- -1IV3 ! VS/2V3 

!...!.·I':' VS"13 VS/2V3 I 
2' 3' '-, '6 

I" Y, ;/" Y, 8 10 27 

!,*;1,~ 113V5 2 4/V30 ., 

1 ~.! -.!. 
'3" -' -2IV15 vV3 V 215 

!...!.·1':' 
2']' 'J 4V213VS \12/3 IN15 

1=2, Y=O 

I"Y,;/"Y, 27 35 

1 -':"1':' , .,' '-, -1IV2 1IV2 

J I ! I 2"'3"; ,- J 1/\12 1/\12 

1= 1, Y=O 

I"Y,;/"Y, 8 10 10 27 35 

0-':"1':' - V2/3Vs 1 \12/3 - V 215 V2/3 , J" J J 

I I 

!'-3;~' - J VS13V3 - V2!3V3 -213V3 0 4/3V3 

1 -':"1':' -2V2!3VS 2 - v'2/3 vVW 1I3V2 , 3" J 3' 

1,~;O,-~ -4/3VS - V213 I 1IVs 1 

3' 
-
J 

3 1 ! I 
2'"3; '-3" 4v'2/3V15 213V3 2\12/3V3 v3;lO 113v6 

1=0, Y=O I"Y,;/"Y, 10 27 35 
, 5 2 vV"3 -vV2 l/v6 !, -"3;1'3 

I,-~;!,-~ -1Iv"3 0 2/V'6 

!"'!'·O -~ l/V3 1/\12 l/V'6 
2' 3" 3 

I"Y,;I"Y, 8 27 

!,~;!, - ~ -l/Vs 2IVs 

1, -~;1,~ 2Ns INs 
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TABLE IVe. 

I=!, Y=-I 

I"Y,;!"Y, 8 

0, -~;!, - + I/v'5 

! -~·I!. 
. ' J" 3 

-2Y 2/15 

!..'.·O - ~ 
'3" J 

- Y2/15 

1 - !..! _..'. , ~" :.\ 
Y2/15 

I"Y,;!"Y, 

!, -f;l-~ 

1 _!"O -~ 
, J" 3 

I"Y,;!"Y, 

o _!.·o - ~ 
, J" J 

! 5 1 '-3;~' - J 

i -~·o - ~ 
l' 3" 3 

TABLE V. Phase factors associated with the SU(2) singlet factors. 

r, r, r t', t', 

15 3 6 -I -I 
15 -1 
24 1 1 

15 3 8 -1 -1 
10 -1 1 
27 1 1 

15 6 8 1 -1 
10 -1 -1 
10 1 1 
27 -1 1 
35 1 1 
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0 - Y 3/10 I/Y2 

I/Y3 -I/Y20 I12Y3 

-I/Y3 I/YS' I/Y3 

I/Y3 3/Y20 I12Y3 

1=1, Y=-2 

27 35 

-I/Y2' I/Y2' 

I/Y2' I/Y2' 

1= 0, Y= - 2 

10 35 

-I/Y3 Y2/3 

Y2/3 I/Y3 

1= 1, Y= - 3 

35 
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Invariant imbedding equations in general geometries: 
Numerical solution in spherical geometry 

s. K. Shenoya) and A. J. Mockel 

University of Florida, Department of Nuclear Engineering, Gainesville, Florida 32611 
(Received 28 March 1977) 

A method for deriving the invariant imbedding equations in general geometries by the transfer matrix 
method is developed, Time-independent monoenergetic neutron transport in a nonmultiplying medium is 
considered, Specifically, invariant imbedding equations are derived for the plane, spherical, and 
cylindrical geometries, The reflection and transmission functions are evaluated numerically using the 
discrete ordinates method, for the case of a spherical shell with a perfectly absorbing core. A source of 
error in the results obtained is pointed out. 

I. INTRODUCTION 

The method of invariant imbedding, a method based on 
the invariance principles introduced by Ambarzumian l and 
Chandrasekhar,2 is today a general tool of mathematical 
physics. The method has been applied to monoenergetic neu
tron transport and a wide range of other processes by Bell
man et al. j-\ Polyenergetic neutron transport calculations in 
a slab have been performed by Mockel. 6

" Reactor physics 
calculations using the method have been performed by Shi
mizu and Aoki.' 

The nonlinear, initial value equations obtained by the 
invariant imbedding method have many advantages for digi
tal computer applications in comparison with the conven
tional Boltzmann equations, which are linear (and hence 
simpler for analytical purposes) boundary value equations. 

Relatively little work has been done concerning the rig
orous derivation and numerical solution of invariant imbed
ding equation in curved geometries. Baily9 derived the equa
tions for the reflection functions in a rigorous fashion in 
plane and spherical geometries, from the corresponding 
Boltzmann formulations. In this work we shall use the trans
fer-matrix method outlined by Aronson and Yarmush lO to 
derive the equations for both the reflection and transmission 
functions in an arbitrary general geometry. Specifically, 
plane, spherical, and cylindrical cases will be considered. 
Steady state, monoenergetic neutron transport in a homo
geneous medium is considered, but nonhomogeneous cases 
can be considered without much difficulty. It is assumed 
that only neutron absorption and isotropic scattering reac
tions take place in the medium. 

II. DEFINITIONS 
Consider bodies [Fig. l(a), (b), and (c)] in which the 

surface is divided into two nonoverlapping complimentary 
faces, 1 and 2. 

A particle is said to be reflected from the body if it 
emerges from the same face at which it enters. If the particle 
emerges from the other face, it is said to be transmitted. 

a)Present address: Building 130, Department of Nuclear Energy, Brookha
ven National Laboratory, Upton, N.Y, 11973. 

Two general types of integral operators which operate 
on incident neutron currents to provide the emergent cur
rents can be defined; R., the reflection operator and T., the 
transmission operator. Operators which provide currents 
emergent at face 2 are denoted by positive superscripts and 
those which provide currents emergent at face 1 are denoted 
by negative superscripts. 

Let II and 12 denote the incident neutron currents at face 
1 and 2 respectively. Let I; and I ~ denote the emergent cur
rents. Assuming a linear system, we can write in operator 
notation, 

I ~(ul) = T.+ II + R .+ 12, 

I ;(ul) = T.- 12 + R .- II' 

where 

(1) 

(2) 

T.+ II = 2rr f T.+ (x,f.1I;f.1o)II(uo) df.1o, (3) 

R .+ 12 = 2rr f R .+ (X,f.1I;f.1o)I2(uo) df.1o, etc. (4) 

The transmission function T.+ (X,f.1I;f.10)' which is the 
kernel of the operator T.+ , is defined as the probability den-

2 

(a) (b) 

(e) 

FIG. I. (a) hollow shell, (b) infinite slab, (c) single surfaced body. 
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sity for a neutron impinging on face 1 in the direction,uo to be 
transmitted (i.e., emerge at face 2) in the direction,u I' Here x 
is a measure of the size of the medium, e.g., the thickness in 
the case of a slab, or the outer radius in the case of a spherical 
or cylindrical shell. ,uo and ,u I are the absolute values of the 
cosines of the angles between the neutron directions and the 
normals to the surfaces of the medium. For the sake of con
venience T.~ (X,,uI;,uO) may sometimes be written as T.~ (x) 
or T .~ (J.i I ;,uo)· Similarly, R .~ (x,,u I ;,uo) can be defined as the 
probability density for a neutron impinging on face 1 to be 
reflected (i.e., reemerge at face 1) in the direction,u I' In a 
similar fashion R .+ (X,,uI;,uO) and T.~ X,,uI;,uO) can be de
fined. Collectively, the above functions are known as the 
response functions. Note that for a homogeneous slab 
R.+ = R .- and T.+ = T .- . For a medium of zero thick
ness (in any geometry), R.+ = R .~ = 0 and 

T.+ = T.- = I, where I is the unit matrix. 

III. THE TRANSFER MATRIX 

Let us consider a family of concentric similar shells 
[e.g., Fig. 1 (a)] whose inner and outer faces are given respec
tively by 

Pin = rd(e,f/J ), Pout = rd(e,f/J ), 
where r can be regarded as the radius of the surface and 
denotes which member of the family of concentric surfaces is 
under consideration. P, e, and f/J are spherical coordinates 
with some point in the center as origin. 

Equations 1 and 2 can be solved to give 

(5) 

where 

[

T.+ - R .+ UR .

H(r2,rl ) = 

- UR.~ 

(6) 

Here U = (T .~ ) ~ I. The H matrix or the transfer matrix is a 
2 X 2 matrix of operators which operates on the column ma
trix of currents on one face of the body to give the column 
matrix of currents on the other face. 

Consider a composite shell whose surfaces have radii r" 
r2, and r,. The composition law of H matrices can be written 
as 

(7) 

The above equation holds good whether or not r2 is in 
between r, and r l • Generalizing for a shell with n concentric 
surfaces 

H (rn,r l ) = H (rn,rn ~ I)H (rn ~ I,rn ~ 2)· .. H (r2,rl ), (8) 

where r n,r n ~ C .. r2,r I are the radii of concentric similar sur
faces. Equation (8) enables us to express the transfer matrix 
(and hence the reflection and transmission operators) of a 
given shell in terms of those of concentric similar shells im
bedded in it. 

From Eq. (6) it can be seen that for a shell of zero thick-
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ness H (r,r) = I, where I is the unit matrix. Now, consider a 
shell of thickness E, where E is infinitesmally small. We can 
write 

H(r + €,r) - I = E(Gr + Cr)I, (9) 

where Gr and Cr are independent of E. ECr is the change in 
the H matrix from the unit matrix I due to the collision 
effects alone, and EGr is that due to the geometric effects 
alone. To first order in E, there is no interaction between the 
collision and geometric effects. Hence, to first order in E, an 
expression for Cr can be obtained by studying neutron trans
port in a slab. An expression for Gr in a given geometry can 
be obtained by considering neutron transport in a transpar
ent medium (i.e., no collisions) of that geometry. 

Making use of the composition law of H matrices, Eq. 
(9) can be written as 

H (r + €,a)H (a,r) - H (r,a)H (a,r) = €MH (r,a)H (a,r), 
(10) 

where M = (Gr + Cr) and a is any standard radius. In the 
limit of E-O, we get the differential equation, 

dH (r,a) = MH (r,a). 
dr 

(11) 

This is the matrix form of the invariant imbedding 
equations. Next we shall find explicit expressions for Cr and 
Gr. 

IV. THE FORM OF Cr 

An expression for Cr can be obtained by considering 
neutron transport in a homogeneous slab. For a slab we can 
write H (r,a) = H (x), where x is the thickness of the slab. 
Since Gr = 0 for the slab case, from Eq. (11) we get 

dH (x) = CrH (x). (12) 
dx 

Since H (0) = I, Eq. (12) has the solution 

H(x) = exp(Crx) 
=1 + Crx, 

to first order in x. 

(13) 

Another expression for H (x) can be obtained in the fol
lowing way. For a homogeneous slab T'+ (x) 
= T.~ (x) = T.(x) and R .+ (x) = R .- (x) = R.x. Also, 

T.(O) = I and R.(O) = O. To first order in x we can write 

T.(x) = I - ax, (14) 

R.(x) = f3x, (15) 

where a and f3 are operators related to the differential cross 
sections. Substituting (14) and (15) in (6),H can be written as 

H(x) =1 - [; =!]x. (16) 

Comparing (13) and (16), 

Cr = _ [a - f3]. 
f3 -a 

(17) 

Expressions for a and f3 in terms of the neutron collision 
cross sections can be obtained from the transport equation. 
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D 

FIG. 2. Transmission and reflection by a transparent medium. 

The steady state transport equation for monoenergetic neu
tron currents in a homogeneous slab, in which only neutron 
scattering and absorption reactions take place, is 

aI(S,/1) aI(S,/1) + ya f-1 I I (S,/1') d ' 
as /1 2. I /1' /1 , 

(18) 

where 

S = depth in slab, 

a = total macroscopic cross section, 

/1 = cosine of the angle between direction of neutron 
motion and the normal to the slab, 

y = average albedo for single neutron collisions. 

Differentiating Eq. (1) and making use of Eqs. (14) and 
(15) we get 

aI; 

ax 
(19) 

More explicitly, since I is to be identified with II for /1 > 0 and 
with I, for /1 < 0, Eq. (19) can be written as 

aI(S,/1) II - 21r KJjll,/1')/ (S,/1') d/1' 
as () 

(20) 

for /1 > O. Ka and Kf3 are respectively the kernels of a and/3. 

Comparing Eq. (20) with Eq. (18), we get 

(21) 

I 

and 

(22) 

V. THE FORM OF Gr 

We will follow the method indicated in Ref. 10 to find 
the form of Gr. In the absence of collision, i.e., for a transpar
ent medium, H (r + E,r) is a function ofEironly for any E. We 
can write 

Gr= Glr, (23) 

where G is independent of r. 

Consider a neutron path AB (Fig. 2) in a transparent 
medium. The operator for this transmission process is T.+ . 
N ow consider a neutron entering at B and leaving at A. The 
operator for this process is T .- . But for a transparent medi
um the neutron has just retraced the path of the first neutron. 
Hence we must have T.· T.+ = I or T.+ = (T .. ·)- I = U. 
Hence we can write 

UR.' = T .+ R.- and R.+ U = R .+ T;+ . 

It is apparent that R.· = 0 for a transparent medium of the 
geometry shown in Fig. 2. Now, let us examine R .+ T;+ . 
R .+ is the operator for a neutron impinging on face 2 to 
reemerge at face 2, like path CD. Since, if we reverse pathAB, 
the neutron emerges from face 1 and not face 2, we can con
clude that for a transparent medium R ~j- T;+- = O. Applying 
the above relations in Eq. (6), we get 

HrrCro,r
l
) = [T.;, 

- 0 
(24) 

Cr = 0 for a transparent medium. Using (23) in (11) we get 

dH (r,a) = G H (r,a). (25) 
dr r 

Since H (a,a) = /, we get using (24) and (25), 

G=a[~ ~], (26) 

where 

1] = lim (!!...) T.:: (a + E). 
< .0 dE 

(27) 

Hence, 

Gr = !.!.. = ~ [1] 0]. 
r r 0 1] 

(28) 

Gr = 0, for the infinite slab case since 1] = 0 in this case. 

VI. OPERATOR FORM OF INVARIANT IMBEDDING EQUATIONS 

1032 

Substituting for Cr and Gr in Eq. (11) we get 

[ 

a1] -a+-
dH(r,a) = r 

dr 
-/3 

/3 

a+ !!!l.... 
r 
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]

H(r,a) 
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Differentiating Eq. (6) 

ar ar ar ar 
aH(r,a) = 

[

aT ~+- aR .+ aT.- aR ,
-- - -- UR.- + R .+ U-- UR.~ - R .+ U--

ar aT.- aR.-
U-- UR.- - U--

ar ar 

Above we have used the relation au lar = - U(aT.- lar)u. 

aR + aT-
-'- U-R .+u-·- U 

ar ar 

aT.
-U--U 

ar 

Equating the matrices in Eqs. (29) and (30) and after some rearrangement we get the four equations. 

aR .+ + /3R -+- R + R + R + a a R +- /3 -- =R. • - • a-a. - • -7]+ -7] • + , 
ar r r 

aT -
--'- = T .- /3R.+ - T, a - T.- a !L , 

ar r 
aT.+-

- R +/3T-+ ----;;;:- -. , 

aR ~ 

-'- = T ,+ /3T.- . 
ar 

- aT.f- + !!!L T ,+- , 
r 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

The above four equations are the operator form of the invariant imbedding equations in a general geometry. The expres
sions for the operators a and/3 have already been derived. An integral representation for 7] has to be derived for the particular 
geometry under consideration and is independent of the neutron scattering properties of the medium. 

The response functions are a type of Green's functions of the Boltzmann equation. Hence, the reciprocity relations which 
are applicable to Green's functions are also applicable to the response functions. A discussion of the reciprocity relations can be 
found Ref. 11. 

VII. INVARIANT IMBEDDING EQUATIONS IN SPECIFIC GEOMETRIES 
A. Infinite slab 

Consider an infintie slab of thickness x [Fig. 1 (b)]. The transmitted neu tron currents consist partly of neu trons which 
stream through the medium without any collisions and partly of those which have suffered collisions in the medium. Thus, we 
write 

(35) 

(36) 

The first and the second term in Egs. (35) and (36) are the collided and uncollided parts respectively. Since the reflected 
currents in the slab case do not have uncollided parts, we can write R .+ (x,fll ;flo) = R +- (x,fll ;flo) and 

R. (x,fll;flo) = R (X,fll;flo)' 

Since 7] = 0, for the slab case, we have from Eg. (31) 

aR + (X" ." ) 
, ',.-I,rO =R.l-/3R/ -R.l-a-aR,+ +/3 

1033 

ax 

= 21T L R ,+ (u1,S)(21T L Kf3(u)!fl')R.+ (u"flo) dfl') dS - 21T L R ,-t (u"S)K,,(S,flo) dS 

- 21T L Ka(uI,S)R ,I (S',flo) dS +/3. 

Substituting for Ka and K{3 from Eqs. (21) and (22), and with some rearrangement of terms 
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aR + ra (t a) + ra i1 R + -a- (x,f.l 1 ",/-to) = -4- - - + - R (X,f.ll;f.lO) + - - (A.,f.lo) dA. 
x 1I"f.lo 1 f.lo 2 0 A. 

Similarly, substituting for T.- (X,f.ll",/-tO)' a and (3 in Eq. (32) we get 

aT-(X,/11;/10)= ra [ t T-(f.11,S)dS+ _1_ e-(uxlf1')][211" tR + (A.;f.lo)dA.+ ~]- !!...T-(f.11;/10). 
ax 2 Jo 211" Jo A. f.lo f.lo 

In a similar fashion, from (33) and (34) respectively, we obtain 

aT + ra [11 T + (S;f.lo) 1 e - (Txl,," ] [11 ] a -a- (X,f.ll;f.lO) = - dS + - 1+211" R - (f.11;S) dS - - T + (f.11'f.lO) 
x 2 0 S 211" f.lo 0 f.ll 

and 

~(X'f.ll;f.lO)= ra [ (1 T+ (S;f.lo)dS+ _1_e-
axlf1

"][211" (1 T--(f.11,S)ds+e- UXlfl ']. 
ax 2 Jo S 211" f.lo Jo 

Since there can be no collisions in a slab of zero thickness, the initial conditions are 

R +(0) = T-(O) = T+(O) = R -(0) = O. 

The reciprocity relations are 

f.loR +(f.1. ",/-to) = f.l.R +(f.1o;f.l.), 

f.loT+(f.1. ;f.lo) = f.l. T -(f.1o;f.l.), 

f.loR -(f.1.;f.lo) = f.l.R -(f.1o;f.l.). 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

It can be easily shown that the above reciprocity relations are satisfied in Eqs. (38), (39), (40), and (41). From (44) it is seen 
that T+(f.l.;f.lo) can be evaluated directly from T-(f.l.;f.lo) instead of having to solve Eq. (40). 

B. Spherical shell with a perfectly absorbing 
core 

Separating the response functions into a collided and an uncollided part as before, 

T .+ (x,f.l.",/-to) = T+(x,f.l.",/-to) + 2~ e - u{[x' - a'(l - f1~)'" - af1°]}8 Go - (1 - :: (1 _ f.lD) liZ). 

and 

(46) 

(47) 

(48) 

(49) 

where x is the outer radius of the shell and a is the inner radius. The quantities within brackets in the exponentials of (46), (47), 
and (48) are the distances inside the shell which the uncollided neutrons stream through. 

From Eq. (27), the integral representation of 1] can be written as 

1] = lim(~)211" t T ,-:- (a + e,f.ll;A.) dA.. 
HO de Jo 

(50) 

For a transparent medium, the number of neutrons incident on the inner surface of the shell must equal the number 
emerging at the outer surface. 

(51) 

Hence, we can write 
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T/;Vtl",/lo)= (a:

2

E?' 2~ .8[,u1-(1- (a:2E)/1-,u~)yl2]. 
Then 

Tf = lim (~) . [ a
2 

t 8(p I - (1 -
£-00 dE (a + Ef Jo 

a (1-116) dl1 . 2 )112)] 
(a + E)2 

Using this representation, the terms containing Tf in Eq. (31) can be derived as 

~ TfR.+ = - (1 - P~) -!- R + VtI;,uO) + (I - ~i)R + VtI;PO)' 
x XP I up I XP I 

a + 2 + (1 - P6) aR + 
-R. Tf= - -R VtI;PO)+ -- -a-Vtl;po)' 
x x xPo 'flo 

Deriving the other remaining terms and rearranging, we get from Eq. (31), 

aR + VtI;,uO) 1 -,u6 JR + (".) 1 -,uT JR + (". ) _ 1 + ,uT R + (". ) + (t + !!...)R + (". ) 
a 

+ a 1.f<'1,,uO + J I.f<'I,PO 2 I.f<'l>,uo 1.f<'1,,uO 
x xPo 'flo x,u I 'fL, x,u 1 I Po 

yO'[ II 1 I {I ifx
2
(I-P6)<a

2
}] 

- - -R + (/L'1/ )dl1 + --
- 2 0 11 ,,-0 21TPo I + e - 2CTXII, if x 2(1 - ,u6»a2 

[ II R + (s;po) I {I 
X ds+--

2 I + - 2ax"" o s 1T110 e 

if x
2
(l - 116) < a2

}] 

if x 2(1 -116»a2 
' 

[ I I {I ifx
2
(l-pD<a

2
}] 

X 21T R I- 's ds (,ul,) + I -Zaxp"f 2(1 ") 2 ' o +e IX -Wi>a 

and 

JR -(,u1",/l0) = YO'[ t TI-(I1",/lo)dl1 + _1_a2 e- U ([X
2

-a
2

(1-II,iJ],n- a""J] 
ax 2 Jo 11 21T X [x 2 - a2(1 -116)] 112 

When x = a, i.e., for a shell of zero thickness, 

R +Vt,;,uo) = T-Vt,;,uo) = T+(,u,;,uo) = R -(,u,",/lo) = 0, 
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(54) 

(55) 

(56) 

(57) 

(58) 

(59) 
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the reciprocity relations are 

and 

#OR +(;il',fLO) = #IR +(;iO',fLl), 

x2#oT+(;il',fLO) = a2#IT-(;io',fLl), 

The above reciprocity relations are found to be satisfied in Eqs. (56)-(59), providing us with a further check for the 
correctness of our equations. 

For the remaining cases we shall confine ourselves to the R +(;il',fLO) function. 

C. Hollow spherical shells and solid spheres 
This is very similar to the last case. We write 

R .+ (;i1',fLO) = R + (;i1',fLO) + _l_{e -2UXJ.L'D(;io - #1) 

21T -2a!xJ.L,-[a'-x'(I-J.Lf)j'/'I£{,. ) 
e U 1/"0 - #1 

if x
2
(l - #D > a

2
]. 

if x 2(l - #D<a2 

if x
2
(1 - #D<a

2
]). 

if x 2(l - # D > a2 

The initial condition is R +(a'#I; #0) = o. 
If a = 0 in the above equation, we have the equation for solid spheres. 

VIII. INFINITE CYLINDRICAL SHELL WITH A PERFECTLY ABSORBING CORE 

(60) 

(61) 

(62) 

(63) 

(64) 

In this case the direction of the neutron current is defined by two angular variables, e and cp, as shown in Fig. 3. cp is the 
angle between the direction of the axis Z of the cylinder and the neutron current direction fl. e is the angle between the planes 
formed by fl and Z vectors and Z and r vectors. The r vector also denotes the normal to the surface. # is the cosine of the angle 
between fl and r. It is easily seen that 

# = if; sincp, (65) 

where if; = cose. We have to express a, (3, and 1] in terms of if; and cp instead of in terms of #. 

Proceeding as before, the transport equation for a homogeneous slab is 

aI(x,if;,cp) + uI(x,if;,cp) = yu f+1 dif;' (21T I(x,if;',cp') dcp'. 
ax if; sincp 41T - I Jo tI/ sincp , 

Comparing this with 

aI(x,if;,cp) = _ (I d¢' (rr K
u
(if;I,CPhif;',cp')I(if;',cp')dcp' + fO dif;'f211 K(3(if;hCPhif;',cp')I(if;',cp')dcp', 

ax Jo Jo - I 1T 

we get 

and 

1036 

K(3(if;t.CPhif;o,CPo) = _......:Yc-u __ 
41Tif;0 sincpo 

Separating the collided and uncollided parts of the reflection function, 
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e - (2ux"" cscr/J,){)( t/lo - t/l1){)(tPO - tPJ) 

R.+ (x".p,,¢,;.p .. ¢.) ~ R + (x.¢,,(>,;.p .. ¢.) + L if x
2
(1 - ,fa) > a

2
}, 

if x2(1 - ,fa)<.a2 
(70) 

where 2xt/l1 CSc¢JI is the distance traveled by a streaming neutron which impinges and reemerges at the outer surface of the 
cylinder, 

1J = lim!!..-[ a
2 

Iff dtP' t l>(PI _ (1 _ (_a )2(1 - A. 2»)1/2)]l>(tPI - tP') dA.. 
HO d€ (a + €)2 Jo Jo a + € 

(71) 

Substituting for Ku, Kp, and 1J in (31), we get 

JR + (1 - ,fa) JR + (1 - t/li> JR + 
a;- (t/lhtPl;t/lO,tPO) + t/lax Jt/lo (t/lhtPl;t/lO,tPO) + t/llx Jt/ll (t/lhtPJ;t/lO,tPo) 

(
1 + tft) + ,J csc¢Jo cSc¢JI)R + (.1. A. .1. A.) 

- xtft R (t/lhtPl;t/lo,tPO) + V\ -;p;- + -;;;:- 'f'h'f'I;'f'O,'f'O 

= yO' [ Iff dtP' t cs~' R + (1/I',tP ';l/Io,tPo)dI/l' + 1. (1 
41r Jo Jo 1/1 1/10 smtPo _ 2ux·l • CS~ ... l+e 'YO ,,","0 

if x
2
(1 - tft)<.a

2 
} 

if x2(1 - I/I~) > a2 

if x
2
(1 - tft)<a

2 
}]. 

ifx2(l - tft) > a2 

(72) 

The initial condition is R +(a,t/lhtPl;t/lo,tPO) = 0, where a is the inner radius of the shell. The reciprocity relation is 

t/lo sintPoR +(t/lhtPl;t/lO,tPO) = t/ll sintP1R +(t/lo,tPO;t/lhtPl)' (73) 

Comparison of results: The invariant imbedding equations obtained here by the transfer matrix method must be compared 
with results obtained by others. Equations (38), (56), and (64) agree with Eqs. (4.20), (5.15) and (6.10) derived by Bailey.9 
Equation (72) differs from that given in Ref. 4 by the presence of the term - [(1 + tft)lxtft]R +(t/lI,tPl;t/lO,tPO), which was 
overlooked in the original derivation. 

IX. NUMERICAL SOLUTION FOR THE CASE OF 
A SPHERICAL SHELL WITH A PERFECTLY 
ABSORBING CORE 

In this section a procedure for solving Eqs. (56) and (57) 
and a method for checking the accuracy of the results will be 
presented. po andpi are divided intoNFnumber of intervals 

FIG. 3. Cylindrical coordinates. 
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lover the range 0-1 and the response functions are evaluated 
only in these discrete directions. We denote these directions 
by Ip ,2p , ... , NFp, such that 1 > Ip > 2p > ... > NFp > O. For the 

sake of simplicity we denote F(NpI,Mpo) = FNM where 
F(p,I,Po) is anyone of the four response functions. Integrals 
in (56) and (57) are evaluated using the Gaussian 
quadrature, 

(74) 

The partial derivatives with respect to the direction co
sines are evaluated using differential quadratures,12 

[JF(Npl,PO)] = ~ KfFNJ' (75) 
Jpo 1', = "I' j = I 

and 

(76) 

The discrete direction cosines and corresponding Gaus
sian weight factors Wi can be found in any standard book of 
mathematical functions. A method of evaluating the coeffi
cientsKjforj = 1,2,···,NFand i = 1,2, .. ·,NFcan be found in 
Ref. 12. 

After the above substitutions and some rearrangement 
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of terms, Eq. (56) may be written as 

(77) 

forM= I,2, ... ,NFandN= I,2,· .. ,NF. 

Here, 

EP¢JW(J) = {I 
1 + exp( - 2axJ/1) 

if x2(1 _ J/1 2)<,a2 
} 

if x2(l - J/1 2) > a2 • 

Equation (57) may be discretized in a similar fashion. 
As a result of discretization we have on our hands first order 
ordinary differential equations, which we solve employing 
Gill's formulation of the fourth order Runge-Kutta method. 
The reciprocity relation M/1R iiM = N/1R tiN may be used to 
reduce the computing time. We start with a shell of zero 
thickness, i.e., x = a. The initial condition is R '~M = T NM 
= o for N = 1,2, .. -NFandM = I,2,· .. ,NF. We then proceed 

outwards by increasing x in small steps. For better accuracy 
these steps are kept very small at the beginning stages of 
computation. 

0.3 

o 0.2 

c 
o 

u 
c 
~ 
~ 

c 
o 

~ 0.1 

Inner rad1us a = 50 ern 

=_----.c:70::....:::::em~Angle of 

Ref! ect~on 
IJ 

~/'" 
70 em 

20 40 60 BO 90 

Angle of Incldence (deg) 

FIG. 4. The reflection function R '(X,f.1,; flo) vs angle of incidence for various 
angles of reflection for spherical shells. Thickness of shells = 5 cm, (J = I 
em-i. 
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05 13
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50 ern 

70 rf11 

50
0 
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88.5° 
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FIG. 5. The transmission function T-(X,fL,;fLo) vs angle of incidence for 
various angles of reflection for spherical shells. Thickness of shells = 5 em 
(J = I em-'. 

Ifwe take y = 1, i.e., there are only neutron scattering 
reactions in the medium, then in the steady state the number 
of neutrons emerging from the medium must be equal to the 
number of neutrons entering the medium. Assuming uni
form unit current incident on the outer surface of the shell, 
i.e., 27TSb 1(;.10) d/1o = 1, the above relation can be expressed 
as 

a
2 iii' + I T.- (;.1,,/10) d/1o d/1t = 

x 0 0 27T 
(78) 

We denote the calculated value of the left side of Eq. 
(78) for a given Xby INT(l). An estimate of the percentage 
errors in the numerical values obtained is given by 

ERINT(l) = 100(lNT(l) - (l!27T» . 
(l/27T) 

(79) 

Equations (78) and (79) are useful to check the accura
cy of the numerical results obtained and keep track of the 
propagation of error with increasing thickness of the shell. 

X. DISCUSSION OF NUMERICAL RESULTS 

The reflection and transmission functions were calcu
lated using a IBM -3 70 com puter system. The values of a and 
y were assumed to be unity. Figures 4 and 5 show the reflec
tion and transmission functions respectively. Two cases are 
shown; one with a = SO cm and the other with a = 70 cm. 
The thickness of the shell was 5 cm in each case. The number 
of discrete directions NFwas seven in both the cases. 

The distribution of R +(;.1t; /10) function shown in Fig. 4 
can be compared with the r(;.1t; /10) function published by 
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12 a ~ 50 em 

10 
NF - 7 

~ 13 

'" ~ 6 a ~ 50 el1\ NF ~ 9 • ~ 70 em 

NF ~ 7 
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Thickness of shell (em) 

FIG. 6. Propagation of integrated error ERINT with the thickness of the 
shell. 

Bellman et al. (Ref. 5, Fig. 2). The two functions are related 
as follows: 

r{J..t1; fl.o) = 1T{f.1.0/fl.1)R +(f.1.1; fl.o), 

= 1TR +(f.1.0;fl.1)' 
After interchanging the angles of incidence and reflection in 
Fig. 4 and multiplication by 1T, the R +(f.1.1; fl.o) function is seen 
to have a similar distribution and magnitude as the r{J..t1; fl.o) 
function. A direct comparison of the numerical values will 
not be made since the thickness of the shells in the two cases 
are different. 

In Ref. 5, the reflected current was not separated into 
the collided and uncollided parts. Hence, r{f.1.1; fl.o) is in fact 
the total reflection function, where as R +(f.1.1; fl.o) consists of 
only the collided part. In the present cases, the uncollided 
part of the reflected currents form a small portion of the total 
reflected currents. Hence, the overall shapes of r{f.1.1; fl.o) and 
R +(f.1.1; fl.o) are similar. 

The collided and uncollided parts of the emergent cur
rents, in general, do not have the same angular distributions. 
Hence, it is felt that in order to obtain the correct numerical 
values of their distributions, the response functions should 
be separated into the collided and the uncollided parts. The 
total value of the response functions may be obtained by 
adding the collided and the uncollided parts. 

Fig. 6 shows the propagation of the percentage error 
ERINT(X) with increasing thickness of the shell. A positive 
value of ERINT(X) indicates that there are more neutrons 
emerging from the body than the number incident on the 
body. A negative value would indicate the opposite. The 
curves in Fig. 6 typify some peculiar characteristics of error 
propagation. 

It is seen from Fig. 6 that in all the three cases shown 
there is a sharp initial dip in the ERINT(X) function fol
lowed by a continuous rise with increasing thickness of the 
shell. It was also seen that for a given inner radius a, (e.g., 
a = 50 cm) and for a given thickness of the shell, the error 
was greater for the case with NF = 9 than for NF = 7. This 
result is surprising, since usually in integrating with Gaus-
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sian quadratures we expect a higher accuracy with finer an
gular mesh, i.e., larger value of NF. The error was found to 
be still larger with NF = 13 (not shown in Fig. 6), and the 
result became rapidly unstable with NF = 25. 

For a given order of Gaussian quadrature, i.e., for a 
given value of NF, the error increased with decreasing inner 
radius, a of the shell. It is seen from Fig. 6 that for NF = 7, 
the error is larger for this case with a = 50 cm than with 
a = 70 cm. At very small inner radii (e.g., a = 10 cm the 
solution was found to become unstable. 

A careful step by step investigation of the results leads 
to the following explanation of the above patterns of error 
propagation. The explanation is more qualitative and heuris
tic than rigorous. 

After the start of the computation process till the thick
ness of the shell reaches such a value as to satisfy the 
condition, 

(80) 

the exponential terms exp( - 2axjfl.) in Eq. (77) are ignored. 
This is equivalent to ignoring the uncollided part of the 
R .+ (X,fl.1; fl.o) function. But, the uncollided current may be a 
significant part of the total reflected current for shells of 
small thicknesses. This explains the sharp dip in the 
ERINT(X) function at the beginning. The thickness at 
which the curves turn upwards (in Fig. 6) corresponds to the 
value of X which satisfies Eq. (80). After this point it appear 
that the uncollided reflected current is overestimated in our 
formulation. This would introduce a positive error in the 
computed values of the reflection and transmission func
tions, which error accumulates steadily with increasing 
thickness of the shell. 

This propagating error seems to stem from our effort to 
handle by discrete ordinate method the uncollided portion of 
the reflected current, which is proportional to exp( - 2aXfl.) 
and is a rapidly varying function of both X and fl.. That the 
uncollided reflected current is indeed responsible for the 
propagating positive error is supported by the observation 
that in the cases where the solution becomes unstable, the 
instability first appears with the value of R +( toIfp" Nfj.Jo). This 
is because the uncollided current is first taken into account in 
the direction NFfl.. This reasoning can also explain why a 
larger error (value of ERINT) was observed with NF = 9 
than with NF = 7 in Fig. 6, since for Gaussian directions 
[Nfp,] NF~ 9 < [N/'p,] NF ~ 7 the exponential exp( - 2ax Nfp,) 
is much greater for the case with NF = 9 than with NF = 7. 
Hence, for two cases with the same inner radius and thick
ness of the shell, much higher importance is given to the 
uncollided portion of the reflected current in the case with 
NF = 9 than with NF = 7. As the value of NFis increased, 
the error too increases and the solution begins to become 
unstable. In a similar fashion we can explain why for a given 
NFand thickness of the shell, the error is smaller for a larger 
inner radius. It is easy to see that as the inner radius of the 
shell becomes larger, the uncollided reflected current be
comes less and less important. For the slab case (a = 00), the 
un collided portion of the reflected current is zero. 
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In conclusion it can be said that in curved geometries 
the uncollided part of the reflection function presents a diffi
culty in solving the invariant imbedding equations by the 
discrete ordinate method, since it introduces an error which 
progressively increases as the thickness ofthe shell is 
increased. 
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SU(2,1) generation of electrovacs from Minkowski spacea
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For every nonnull Killing vector K of any given e1ectrovac. there exists a group of transformations,w K of the 
gravitational and electromagnetic potentials of Ernst. This is the group which is a nonlinear representation of 
SU(2, I) and was developed by Kinnersley on the basis of work by Ehlers. Harrison. and Geroch. For every K of 
Minkowski space (MS). we compute the set dYK(MS) of all electrovacs derived from MS by noniterative 
application of dY K; the results include appropriate null tetrads. the connection forms, the conform tensors, and 
(in the discussion) the group of all motions of very member of every JY' K(MS). Each conform tensoris type Npp 

(plane gravitational wave) or type D. and the principal null vector(s) are also eigenvectors of the Maxwell field. 
Except for those K which represent infinitesimal rotations about a timelike 2-surface of MS followed by null 
translations in that 2-surface. each K has a corresponding MS Killing vector L such that the G, generated by K 
and L has nonnull surfaces of transitivity and is invertible. The discussion covers properties of the principal null 
rays and the Maxwell fields, Killing tensors of the results (one of the Npp families admits an irreducible Killing 
tensor of Segre characteristic [(11)(11)]). and the precise conditions under which a Killing vector of an electro
vac is also an MS Killing vector. Also. some deductions are made concerning the Petrov class and principal null 
ray properties of the second generation electrovacs which would result from further applications of SU(2. I). 
Those points of MS which are possible singularities of electrovacs in. W K(MS) are classified. The conditions 
under which an electrovac in JY' K(MS) has all of R '(except for curvature singularities) as its domain are found; 
in particular. such an extension to R • exists whenever the one-parameter group generated by K has no fixed 
points or whenever one restricts,W'K to the Ehlers or Harrison transformations. 

1. INTRODUCTION 

This paper is about a specific application of known 
transformation groups which can be used to construct a fam
ily of electrovacs1 from any given electrovac V4 with at least 
one nonnull Killing vector. There exists exactly one of these 
groups JY K for each choice of tile nonnull Killing vector K; 
we let 

JYK(V4 ) 

denote the family2 of electrovacs constructed from V4 by the 
application of JY K' 

Some details about the group JY K are given in later 
sections, but a brief summary of its historical origins will be 
sufficient identification for the present. The key subsets of 
JY K were originally discovered by Ehlers) and by Harrison,4 
and the union of these sets with various gauge transforma
tions, duality rotations, and uniform conformal mappings 
ultimately provided a full set of generators for JY K' The the
ory of that restriction of JY K which is a nonlinear representa
tion ofSU(l, 1) and which transforms vacuums into vacu
ums was developed by Geroch. 5 The extension to electrovacs 
is a nonlinear representation ofSU(2,1), and its theory was 
developed by Kinnersley.6 Pertinent calculational tech
niques including the use of differential forms to facilitate 
applications of JY K and including corresponding transfor
mations of connection forms, the Maxwell field, and the con
form tensor have been described by the authors in a preced
ing paper,' which is designated as (I) in the sequel. 

The objective of this paper is the application of JY K to 

')Work supported in part by the National Science Foundation under Grant 
No. PHY 75-08750. 

Minkowski space (MS) for every K in MS. To be certain that 
our objective is clear, we caution the reader that only non
iterated applications of the group are intended; e.g., we are 
not going to compute JY A (V~) where V ~ is any member of 
dY'K (MS), and A is any nonnull KV (Killing vector) of V~. 
Nor do we believe that there is a point to any finite succes
sion of detailed calculations of this kind as long as there is no 
evidence that a resulting electrovac will be asymptotically 
flatS or have some redeeming physical or formal feature. Our 
purpose has nothing to do with providing a first step to a 
blind program of such iterations. 

Apart from their didactic value as illustrations of the 
techniques developed in (I), our results proved to exhibit 
those interesting features which we anticipated and were 
seeking and which made the calculations worthwhile. 

For example, even before we made any detailed calcula
tions, we had used the transformation formulas' of (I) to 
study the principal null ray properties of the electrovacs re
sulting from applications of the groups ,W' K' Everyelectrovac 
in JY K(MS) was proven to have a type Npp gravitational field 
(type N conform tensor with parallel propagating null rays) 
if the MS Killing bivector. 

UJ/ : = V(j; f3 

has only zero eigenvalues, and to have a type D gravitational 
field otherwise. Now that we are armed with a detailed 
knowledge of dY' K(MS), we can similarly predict what would 
happen to principal null ray properties if we were to apply a 
second transformation V ~--.JY A (V~) where A is any non
null KV of any given electrovac V ~ in ,/y K(MS). Some inter
esting results, based on a simple partial analysis, are given in 
Sec. 7. 
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Other points of interest concern the type D electrovacs 
in the sets Jf'" K(MS). With the exception of one Jf'" K(MS), all 
of them turn out to be in the Hamilton-Jacobi (H-J) separa
ble class of Carter9 and to have either nonzero expansion for 
both principal null congruences or zero expansion for both 
principal null congruences. A notable example of those which 
have no diverging principal null rays is Melvin's magnetic 
universe, which was discovered by Bonnerlo and analyzed by 
Melvinll and ThomeY It was, in fact, shown in a previous 
paper by Ernstl) that this electrovac is a member of Jf'" K(MS) 
where K is any generator of a rotation about a timelike 2-
surface in MS; that Melvin's magnetic universe is type D was 
proven by Wild. 14 The family which contains Melvin's mag
netic universe is discussed in Sec. 71. 

The exceptions which are not amongst Carter's type D 
electrovacs each have exactly one nondivergingprincipal null 
congruence and are in a broad class of nondiverging type D 
electrovacs which has been obtained by Kinnersleyls and 
Plebanski. 16 They are like the type D electrovacs of Carter9 in 
that each admits a Killing tensor whose Segre characteristic 
is [(11),(11)], each admits two (no more than that in our case, 
it so happens) independent commuting Killing vectors 
which commute with the Killing tensor, and each admits 
separability of the H-J equation after multiplication by an 
integrating factor. They differ from the Carter class in that 
their two-parameter Abelian isometry groups have null sur
faces of transitivity and are not invertible. Further details 
about this family are given in Sec. 7H. 

We have also found every KV of every member of Jf'" K 
(MS), and we have thus been able to determine exactly which 
Killing vectors of MS survive as Killing vectors after each 
transformation. Moreover, amongst two of the type N fam
ilies and two of the type D families, we found electrovacs 
which have (regardless of the choice ofgauge)2 two or three 
Killing vectors which are not Killing vectors for MS. Each 
type N electrovac in the aforesaid families l7 has a Gs (five
parameter group of motions), and one ofthem l7 has a G6 ; 

they are discussed in Sec. 7C. The members of the two type D 
families each have a G4 and are discussed in Secs. 7E and 71. 

There is another type N family (Sec. 7B) whose group of 
motions is an Abelian G2 with a timelike 2-surface of transi
tivity. Each member of this family was found to have an irre
ducible Killing tensor K a/3 whose Segre characteristic is 
[(1)(1)(2)]. As a consequence, the H-J equation for geodesic 
orbits is completely separable after multiplication by an inte
grating factor. Complete H-J separability is, in fact, com
mon to all of the electrovacs in all of the Jf'" K(MS). 

In spite of the obviousness of our objective, previous 
calculations of Jf'" K(MS) have been reported as far as we 
know only for those K which generate either a rotation about 
a timelike 2-surface13 or a rotation about a null 2-surface.7 It 
is our hope that the more complete coverage of this paper 
will be helpful in the ultimate objective of developing nontri
vial extensions of Jf'" K which can be used to construct new 
physically interesting solutions of the Einstein-Maxwell 
equations. The feasibility of such objectives has been conclu
sively demonstrated by the recent striking work of Kinners
ley and Chitre on axially symmetric stationary spacetimes. 18 
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In Sec. 2, we shall classify the pertinent MS Killing 
vectors from the viewpoint of the conjugacy class structure 
of the extended Poincare group (which includes the inver
sions).19 The conjugacy class structure is important in this 
paper, because 

Jf'" K(MS) = Jf'" A(MS) 

if the one parameter groups generated by K and A are conju
gate and if isometric electrovacs with corresponding charged 
particle orbits are regarded as identical. This fact greatly 
simplifies our task, since we need use no more than one re
presentative KV from each conjugacy class. 

We continue Sec. 2 by selecting an appropriate curvilin
ear coordinate system in R 4 for each representative K. This 
will actually consist of one or more similar charts with re
spective domains Mh ... ,Mn chosen so that solutions for cer
tain crucial K-related I-form potentials7 Mrs will exist over 
these domains. The group Jf'" K willfirst be applied only to the 
restrictions V4 , of Minkowski space to M" and not generally 
to MS as a whole. However, we shall see in Sec. 7K that, with 
appropriate choices of the gauges for the potentials M rs, the 
domain of applicability can be extended to MS whenever K 
has no zeros or wherever one of the transformation parameters 
(bo ) has unit modulus. 

Corresponding to each given K and to each R 4 submani
fold M" an appropriate null tetrad k, m, t, t* which com
mutes with K is constructed in Sec. 3. Instructive unified 
expressions (i.e., ones whose forms do not depend on the 
particular K) for the potentials Mrs in Minkowski space are 
derived in Sec. 4. The equations which use these potentials to 
transform the MS null tetrads k, m, t, t * into corresponding 
null tetrads k " m', t " t '* of the electrovacs in Jf'" K(MS) are 
also given. 

In Sec. 5, the final results are listed for the various K, 
and formulas for translating to the notations of Carter9 are 
given in some cases where they apply. Some general proper
ties of the results are summarized. The transformed connec
tions forms, Killing bivectors, conform tensors, and Max
well fields are listed in Sec. 6. 

The results are analyzed and discussed in Sec. 7 A-7K. 
Section 7 A reports on some common features of the result
ing metrics. A key property of the Poincare group accounts 
for most of these features. This property appears to have 
escaped notice until now and is elaborated upon in a theorem 
in Sec. 7A. 

Properties of the results which are specific to each re
presentative K are reported in Secs. 7B-71. Most of the to
pics which will be discussed in these sections have already 
been mentioned. 

In Sec. 71, those point sets in MS which are candidates 
for singularities of the V ~ in Jf'" K(MS) are classified accord
ing to their dimension and signature in the original space
time MS. The dependence of singularity existence on param
eter values is considered without getting into a detailed 
analysis of specific cases. 

In the final Sec. 7K, we express the results in terms of 
charts which are Cartesian relative to the original space time 
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TABLE I. Canonical expressions for a, ro in those Minkowski space Killing vectors K = a + q"w/eb for which ro = !wabea A eb is not zero. The canonical 
expressions are obtained by appropriate choices of the origin of Cartesian coordinates qa, of the corresponding orthonormal tetrad of vectors ea ' and of a real 
constant factor ofK. The x a (a = 1,2,3,4) are suitable curvilinear coordinates defined in the text. if" if, occur in WE: = - 2(w - i*w) = dif,dx' + dif,dx' 
where W: = !dq a A dqbwab, and if 4 is that complex potential if of Emst such that RI if = - K·K. f:. = ± I is the sign of (q' - q")(q' + q"). 

Geometric 
Character Parameter 
ofK values a ro 

(N,N) em ekAe, 
(S,N) a=1 ae1 ek Ae, 
(D,N) a=D 
(D,P) D<a<1T/2 0 e,Ae.cosa 

+e1Ae,sina 
(S,S) a>D ael e,Ae. 
(D,S) a=D 
(T,T) a>D ae. e1Ae, 
(S,T) a>D ae, e1Ae, 
(N,T) a=! aek e1Ae, 
(D,T) a=D 

MS. These charts are used to discuss when and how it is 
possible to "join" the several electrovacs V 4i (i = 1, ... ,n) 
which are defined over different submanifolds of R 4 and 
which are generated by applying a single element of JY K to 
V4h ... , V4n • As has already been noted the "joining" is possible 
whenever the one parameter group generated by K has no 
fixed points or (jor any K) whenever one o/the trans/ormation 
parameters (bo ) has unit modulus. The joining is accom
plished by using an atlas with Cartesian charts and by select
ing appropriate gauges. 

2. THE CHARTS 

Let qa (a = 1,2,3,4) denote any Cartesian coordinate 
system for Minkowski space, ea denote the corresponding 
orthonormal tetrad (+ + + -) of vectors, and ek,em,e/,e; 
denote the null tetrad 

(1) 

The set of all Killing vectors in MS is the set of all vector 
fields 

K = a + qU(j)abeb 

such that a is any uniform vector field, and 

ro = ~(j) abeu 1\ eb 

(2) 

(3) 

is any uniform bivector field. We shall exclude the pure 
translations K = a from further consideration, because they 
are either null or yield the known trivial result20 

·3V'a(MS) = ! MS j. 

For any given K such that ro*O, we can select the Car
tesian coordinate system and the normalization and sign of 
K so that it has a canonical/orm defined by the expressions 
for a, ro in one of the rows of Table I. It is clear that any 
Killing vectors K and A have the same canonical form 
(meaning the same values for the parameter in the 2 nd col-
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xa if, if, = if 

x,y,p,u D - 2i(x + iy) 

p,u,t,TJ -iif: - (u - ia)' - 2a' 

r,s,<I>,x - e - ia'(f:.s'sina e - 'n.( f:.s'cosa 

+ ir'cosa) - ir'sina) 
y,s,x,X 2iy f:.s' - a' + 2iay 

z,r,T,<p - 2iz a' - r' - 2iaz 
T,r,z,<p 2iT - a' - r' + 2iaT 
u,r,p,<p - 2iu - r' - 2iau 

umn of Table I, as well as the same canonical expressions for 
a and ro) if and only if there exists an isometry f/!:MS-MS 
such that f/!. K = f3 A where f3 is a nonzero real constant. So, 
K and A have the same canonical form if and only if the one
parameter groups which they generate are conjugate subsets 
of the extended Poincare group.!9 

The first column of Table I contains labels which identi
fy the type of infinitesimal rigid motion induced by K. The 
labels (N,N), (S,N), (O,N) designate rotations about a null 2-
plane I followed respectively by null, spacelike, and zero 
translations which map I-I. The label (O,P) designates a 
rotation about a point (a screw transformation, as it is 
called). (S,S) and (O,S) are rotations about a spacelike 2-
plane I followed respectively by spacelike and zero transla
tions which mapI-I. Finally, (T, T),(S, T),(N, T),(O, T) are 
rotations about a timelike 2-plane I followed respectively by 
timelike, spacelike, null, and zero translations which map 
I_I. The (S,N) and (O,N) items are placed in the same row 
of Table I, because we find it convenient to use the same 
curvilinear coordinate system x a (a = 1,2,3,4) for both 
cases. Like remarks hold for (S,S ),(O,S) and for (N, T),(O, T), 
but we could equally well regard (O,S) as the limit o/(O,P) as 
a-D, and we can regard (0, T) as the limit o/(O,P) as a-l1T, 
oro/(T,T) or (S,T) asa-D. 

To help us define the various curvilinear coordinate sys
tems2! which are listed in column 5 of Table I, let 

I I 
qk: = V2(qJ - q4), qm: = V2(qJ + q4), 

q/: = ~(q! + iq2). 
V2 

The coordinates for (N,N) are defined by 

q! =x, 

1 
qm=p-y(7-~, 

q2 =y + 2.cr. 
2 

For (S,N) and (O,N), 
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(Sb) 

Observe that thep as defined by Eq. (Sb) is not the same as 
thep defined by Eq. (Sa). For (O,P), we have 

X: = xcosa + tPsina, (/>: = - xsina + tPcosa, 

where X, 1,6 as well as r, s are defined by 

_ I x 
qm - ---=£~e , 

V2 

(Sc) 

(Sd) 

Above, r> ° and s > 0. Equations (5c) and (5d) actually de
fine four distinct charts over disjoint open subsets of MS 
corresponding to the different (Ck'Cm), The parameter 
Co = ± 1 which appears in parts of the last two columns of 
Table I is defined by 

(Se) 

For (S,S) and (O,S)s,X are defined by Eqs. (5d), andx,y are 
defined by 

(Sf) 

Finally, for(T,T), (S,T), (N,T), (O,T), randtP are defined by 
Eqs. (5d), and Z, T, a, and p are defined by 

ql = Z + a1tP, q4 = T + a4tP, 

a1 = 0, a4 = a> 0, for (T,T), 

a1 = a > 0, a4 = ° for (S,T), 

a1 = a4 = 2- 1/
, for (N,T), 

a1 = a4 = ° for (O,T), 

1 I 
a = -=(z - T), p = -=(z + T). 

V2 V2 
a andp are defined as above only for (N,T) and (O,T). 

(5g) 

The above equations do not constitute complete defini
tions of our charts since the domains are not yet specified. 
The fact is that the equations corresponding to each choice 
of K are to be regarded as defining a family of charts (which 
may have only one member) with respective domains 
M1 •... ,Mn which are simply connected open submanifolds of 
R 4 (the manifold ofMS). MI + ... + Mn isequaltoR 'except 
for that set of measure zero on which the Jacobian of the 
equations 

qO = qO(XI,X2,X',X4) 

vanishes. 

For example, when K is type (N,N) there is only one 
chart MI whose domain is R,. For (S,N), there are three 
charts M"M2,M1 separated by the null hyperplanes 
qk = ± 1. When K is type (O,N), however, there are two 
charts M"M, separated by the null hyperplaneqk = 0. In the 
case o/(O,P), at least eight charts M" ... ,Ms are needed. The 
first four correspond to given (1,6,,1,62) and to the four distinct 
pairs of signs (Ck'Cm); Ml + M2 + MJ + M4 is a wedge sub
space of R 4 from which the null hyperplane q k = 0, the null 
hyperplane q m = 0, and the timelike 2-surface ql = q2 = ° 
1044 J. Math. Phys., Vol. 20, No.6, June 1979 

are excluded. Exactly the same statements hold for Ms, ... ,Ms 
except that a different range of 1,6 is chosen so as to provide 
full angular coverage of R '. These examples should suffice. 

For a given K, consider the electrovacs 

V4j : = (Mj,gj'O) 

whose metrics gj are the restrictions of the Minkowski met
ric to M;, and whose Maxwell 2-form equals 0. By a con
struction which is spelled out in Secs. 4 and 5, these MS 
subspaces V4; will be transformed by any given element of 
cW" K into n electrovacs 

V~; = (M ;,q;,Ff). 

M; equals M; minus those points at which the transformed 
metric g; and the transformed Maxwe1l2-form F; have their 
singularities. 

For given K, cW" K( V4;) will denote the set of all V~; gen
erated by the elements of K, and cW" K(MS) will denote the 
union over i of these setscW" K(V4J Until Sec. 7K, we shall use 
V ~ = (M',g,' ,F ') as a generic symbol to denote any of the 
electrovacs V ~;, ... , V ~n' and we shall work simultaneously 
with all of the n charts. 

We have still not explained how we arrived at our pati
cular choices of curvilinear coordinates. There were system
atic guidelines. First, we chose a coordinate tetrad Xa which 
included as many MS Killing vectors as possible. In all cases, 
it will be noted that XJ and X, are MS Killing vectors, and 

X,: = K. (6) 

In every case except (O,P ), X 1 is also an MS Killing vector. X, 
is not a K V for any of the cases. 

The above criterion does not, of course, lead to a unique 
choice of the coordinate tetrad. Another criterion is best ex
plained after we construct, for each K, a new null tetrad k, m, 
t, t* which has the desirable property 

Y Kk = Y Km = Y Kt = 0. (7) 

3. THE NULL TETRADS22 

Let ek,em,e"e; be a uniform null tetrad such that a and 
CJ) are given by Table I. Then, for (N,N), (S,N ),(O,N), it was 
found that the simplest transformation to a new null tetrad 
which satisfies Eq. (7) is given by the null rotation 

k = ek , t = e, - Aek' 

m = em + A *e, + Ae; - AA *ek' 

A: = (ilV2)a for (N,N), 

A: = (g + irJ )lV2 for (S,N) and (O,N). 

In all other cases, 

k = ek exp(CIX)' m = em exp( - CIX), 

t = e, exp( - ic,tP ) 

(8a) 

(8b) 

where CI = C, = 1 for (O,P), Cl = I and C2 = 0 for (S,S) and 
(O,s), and Cl = 0 and C2 = 1 for the four hT) cases. 

The components ofK relative to these new null tetrads 
are required for frequent later use. The following expansions 
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ofK in terms ofk, m, t, t* are derived from Eqs. (2), (5), (S), 
and the expressions for a and ro in Table I. 

For (N,N), 

K= -yk+m. (9a) 

For (S,N) and (O,N), 

Y2K = ( - iu + a)t + (iu + a)t*. (9b) 

For (O,P), 

Y2K = s(tmk - tkm)cosa - ir(t - t*)sina. (9c) 

For (S,S) and (O,s), 

Y2K = s(tmk - tkm) + aCt + t*). (9d) 

For (T,T), (S,T), (N,T), (O,T), 

Y2K = (a3 + a4)k + (a3 - a4)m - ir(t - t*). (ge) 

a3,a4 are defined by Eqs. (Sg). 

Next, we obtained the expressions for the covectors 
(images in the dual space) of k, m, t in terms of dq a, and 
various natural groupings of these terms helped us to choose 
almost all of the xa. We follow our usual convention22 of 
generally employing boldface letters to denote tangent vec
tors and the corresponding light face letters to denote their 
covectors. Thus, from Eqs. (1) and (4), 

(to) 

From Eqs. (8a), (8b), (10) and some of Eqs. (Sa)-(5g), we 
obtained neat expressions for k, m, t after grouping terms. 
For (N,N), 

k = du, m = dp - ydu,Y2t = dx + My. (Ila) 

For (S,N) and (O,N), 

k = du, m = dp, 

Y2t = uds + ad?] + i(ud?] + adS). (lIb) 

For (O,P). 

Y2k = tk(ds - sdX), Y2m = tm(ds + sdX), 

Y2t = dr + ird¢. (llc) 

For (S,S) and (D,S), k and m are as in Eqs. (llc), and 

Y2t = dx + idy + adX' (lId) 

For (T,T). (S,T), (N,T), and (O,T), tis as in Eqs. (lIc), and 

Y2k = dz - dT + (a3 - a4)d¢, 

Y2m = dz + dT + (a 3 + a4)d¢, 
(lIe) 

where a3
, a4 are defined for each case by Eqs. (5g). The above 

Eqs. (1 la)-(l Ie) helped us to decide on most choices of x ° in 
Table I. For example, consider (O,N); it is easy to see why we 
settled ony, x, p, u from Eqs. (lIa). Equations (11) will be 
used to compute our final results in Sec. 5. 

The most forceful guide for our final selection of x a is 
their role in the complex scalar fields g' 3 and g' 4 which are 
given in Table I. This role is acted out in the first three phases 
of the calculation of JY K(MS). Each of these phases is an 

1045 J. Math. Phys., Vol. 20, No.6, June 1979 

application to a special case of the techniques developed in 
(1),1 

4. THE POTENTIALS 
The first phase is the calculation of the 2-forms 

WE: = - 4Pw, w: = l' /\K. (12) 

P is a projection operator which extracts a self-dual part of 
any 2-form on which it operates. To help us be more specific, 
we introduce the following basis22 for self-dual 2-forms: 

(13) 

(We follow our usual convention of omitting the wedge sym
bol in exterior products offorms.) Then, for spin weight 
A = I,D, - 1, 

*BA=iBA, PBA=BA, PB~=O. (14) 

From the expressions forro in Table 1 and from Eqs. (1), (Sa), 
(8b), and (12)-(14), we compute WEin terms of the basisB A' 

Then, we use Eqs. (lIa) - (lIe) to compute WE in terms of 
the basis dxo dx!3. For all cases, we obtain23 

WE = dg'3dx3 + dg'4dx4, (15) 

1&' 3, 1&'4 depend at most on x" x 2
• Equation (15) defines 1&' 3, 

g' 4 up to arbitrary constants which are discussed below. 

The second phase is the calculation of the complex sca
lar potential g' E = g' which is defined by the equation 

dg' = KrW E, (l6a) 

RI1&' =f: = - K·K. (l6b) 

The step product (n operation is bilinear with respect to 
both factors and is defined for any I-forms u, v, w by 

wf(uv) = u(w·v) - v(w·u). (17) 

Since 

a 
K·d=-ax4

' 

Eqs. (15)-( 17) yield 

1&' = i5' 4 (IS) 

after selecting the real part of the arbitrary constant in 1&' 4 so 
as to satisfy Eq. (16b). As regards the arbitrary constant in 
1&' 3 and the imaginary part ofthe arbitrary constant in 1&'., we 
select them to achieve a certain simplicity of form. 23 

The third phase is the calculation of the one-form po-
tentials Mrs which are defined by the equations7

: 

Mrs = (Msr)*, r,s have letter values O,E, 

dMoo=O, K.Moo=l, 

dMoE = WE, K.MOE = 1&', 

dM EE = 1&'* WE + 1&'W E', K.M EE = 1&'*~. 

(19) 

From the expressions for 1&' 3, 1&'4 in Table I and from Eqs. 
(15), (16), (18), it is readily verified that solutions ofEqs. (19) 
are given by24 

MOO = dx4, MOE = i5' 3dx3 + 1&' 4dx\ 
(20) 
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for every K. These solutions may be subject to gauge 
transformations24 

Mrs----+Mrs + dF rs
, K.dF rs = 0, 

which leads to electrovacs locally isometric to those which 
we shall obtain. 

We are now ready to consider how the potentials If r, 

Mrs are used to construct the various transformations in
duced by any element of the group $' K' 

Let e a be any given null tetrad and K be the co vector of 
K in the MS subspace V4 [a generic symbol for any 
V4i = (Mi,gi'O)] .. Let V~ = (M',g',F') denote any $'K(V4) 

member with manifold M', metric g', and Maxwell 2-form 
F'. Basic to all of our final calculations are the following 
equations? which supply us with a null tetrad e; and the 
Killing covector K' in the transformed electrovac V~: 

e ~ = IA lea - IA 1-1K~, K' - K = flA 1-2.:1, (21) 

where 

A=bo+bEIf, 

bdh+bob~= -':'lbM I2, 
2 

.:1: = b ;b)1rs _ MOO. 

(22a) 

(22b) 

(23) 

Equations (22a) and (23) are specializations of equations? in 
(I) to the case where the "old" electrovac is a vacuum. b 0 ,bE 
are complex parameters of the transformation and are inde
pendent except for the statement that not both can be zero 
and except for the inequality implied by Eq. (22b); the pa
rameter Ib MI is a factor in F', which we consider in Sec. 6. 
Corn ponen ts K a and K ~ of the respective I-forms K and K ' 
are defined by the equations 

(24) 

Ka and K ~ are related by 

K' = IA l-lK a a' (25) 

which holds for any initial electrouac ifwe use the general 
expression for A as given in (I). 

For the present problem, A is given by Eq. (22a), and we 
are primarily interested in components relative to the tetrads 

ek:=k, ()m:=m, (),:=t, ()n:=t*, 

(26a) 

()£=:k', ();"=:m', ();=:t', ()~=:t'*. 

Note our use of scripts a = k, m, t, n for null tetrad compo
nents. Since k·m = t·t * = 1, 

Kk=Km, Km=Kk , K'=Kn' Kn=K,. 

Thus 

K = Kmk + Kkm + Knt + KI *. (26b) 

Since K is real, Kn = (K,)*. 

5. RESULTS 
We now apply Eqs. (21)-(23) to the calculation of k', 

m', t' in terms of dx a. In this calculation, Ka (a = k,m,t,n) 
can be obtained by inspection ofEqs. (9) and (26). Then, Eqs. 
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(11), (20), and the expressions for If 3, If 4 in Table I are used. 
The results are given below for (N,N), (S,N), and (O,N) Kill
ing vectors in Minkowski space. As we shall see, V ~ has a 
type N gravitational field in these cases. 

(N,N) results: 

k' = IA 1-'dO", m' = IA Idp - IA 1-'ydO", 

V2t' = IA I(dx + idy), 

where 

A = bo - 2ibE(x + iy). 

(S,N),(O,N) results: 

k' = IA I dO", m' = IA Idp, 

(27a) 

(27b) 

(28a) 

V2t' = IA 1(0" + ia)ds + ilA 1-1(0" - ia)(d7J - JdO, 

where 

A = bo + bEe - 0"2 - a2 + 2iaO"), 

(28b) 

J = i[b ;PE(~ + a 2 + 2iaO") - bob ~(~ + a2 
- 2iaO")] 

+ Ib E I 24a0"(0"2 + a2
). 

In all remaining cases, we use the notation A (J) for cer
tain real fields which depend at most on the single coordinate 
xi (j = I or 2). k ',m' ,t' are generally numerical multiples of 
the I-forms 

[j.6): = 2- l12 [ IA Idx i + 61A l-ly(J)[j(3 -J)dx3 + aV)dx4 ] J, 
(29a) 

where 

. I 2 " + I +' IA I' = 1 '" _ 1 '", 1 = or, U = _ or _ I, /l. /l. 

and y(jI,f(J),a(J) are defined as follows. 

(O,P): 

y(j) = xi, a' I' = sina, a'2' = cosa, 

f"' = [A '" -Ibosinal']csca, 

/''' = [A <2, -lbosinaI 2]seca. 

All cases except (O,P): 

f"'=a-'A"', f(2)=A"'. 

(29b) 

(30a) 

(30b) 

A (j) depends on a in Eqs. (30a) and on a in Eqs. (30b) in such 
manner thatf(JI is defined as a-+O, a-+~1T, or a~O, respec
tively. k ',m',t ',x a,A " ',A '2' are given below. As we shall see, 
V ~ has a type D gravitational field in all of these cases. 

(O,P) results: 

k'=cd2.-IJ, m'=cm [2·lj, t'=[l.il. (31a) 

where 

Xl = r, x 2 = s, Xl = 4>, X4 = X, 

,,1,'1' = Ibo 12 - Ibo - i~rsinaI2, 
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..t (,) = Ibo + ~s'cosal', DE: = bE exp( - ia). 

(S,S),(O,S) results: 

k'=Ed2.-1J, m'=Em {2.1J, t'=i{1.-iJ, 
(31b) 

where 

Xl = y, x' = s, x 3 = x, x' = X, 

A (I) = Ibo I' - Ibo + 2ib~yl', 
,1(') = Ibo + bE(EoS' - a'W· 

(T,T) results: 

k' = ! 1. - 1 J, m' = ! 1.1 J, t' = {2.iJ, 

where 

Xl = z, x' = r, x 3 = T, x' = t/J, 

All) = Ibol' -Ibo - 2ibEazl', 

A (2l = Ibo + bE(a' - r')I'. 

(S, T) results: 

k' = - { 1. - 1 J, m' = ! 1.1 J, t' = ! 2.iJ, 

where 

Xl = T, x' = r, x 3 = z, x' = t/J, 

..til) = Ibo l'-lbo +2ibEaTI', 

A'" = Ibo - bl-a' + r')I'· 

(N,T),(O,T) results: 

k' = IA Idx l, t' = !2.iJ, 

m' = IA 1- 1(,1 (2ldx 3 + adx'), 

where 

Xl = 17, x' = r, x 3 = p, x' = t/J, 

All) = Ibo I' - Ibo - 2ibE a17I', 

..t (2l = Ibo - bif'I'. 

(31c) 

(31d) 

(3Ie) 

Equations (27) - (31), above, collectively constitute self
contained results for all (k ',m',t '), except that the values of 
the parameters, a, a are given in Table I. We can see from 
Table I that (OS) results can be obtained by letting a-o in 
Eqs. (31 a), as well as a-o in Eqs. (31 b). Likewise, a-41T in 
Eqs. (3Ia), and a_O in Eqs. (3Ic), (31d), and (3Ie) yield 
(O,T) results. The electrovacs which are constructed from 
the two (O,S) limits are isometric, and the same holds for the 
different (O,T) limits. 

The line elements which are constructed from our type 
D results are easily compared with the line element derived 
by Hauser and Malhiot'5 for spacetimes which have Killing 
tensors of Segre characteristic [(11)(11)]. ..t (I) and..t ") are 
their notations for the eigenvalues of the Killing tensors (ex
cept that in the (··,T) cases, we must interchange our scripts 
1~2 and 3--4 to get agreement with their usages]; their p' is 
our IA I'· 

It may be useful to see exactly how some of our type D 
electrovac results fit into the extensive family of solutions 
derived by Carter.9 We restrict our comparison to the cases 
for which dA (I) and d..t (,) are not zero, and for which the 
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surfaces of transitivity of X3, X. are timelike. For these cases, 
Carter's coordinates /-l,..t, 'T, 17 and his metricalfields.jJL' .j). 

are given in terms of our coordinates and parameters as 
follows. 

(O,P) with Eo = 1, comparison with Carter: 

.jl' = [y + (21bE 1-1)112/-l ]sina = (rsina)', 

.j). = [ - p + (2IbE I-I)1I2..t ]cosa = (scosa)', 

'T = (21bE ItIl2[X - IbE 1'(f3 'tana - Y'cota)<J>], 

17 = - (2IbEI)II2(sinacosatl<J>, 

where 

P + iy: = bo b E le ia
, p,y = real. 

In the following, p,y are defined as above with a = 0. 

(S,S) with Eo = 1, comparison with Carter: 

.jfl = 1, - Y + (2albE I-IV'/-l = 2ay, 

.j). = 1 - a-'[11 + (2albE 1-1)112]..t = (s/a)', 

T = (2a1bE Itll2(ax + IbE I'y'x), 

17 = - (2alb E I)ll2x . 

(T,T), comparison with Carter: 

.j). = I, Y + (2alb E 1-1)112..t = 2az, 

.j I' = 1 + a-' [P + (20 I bE 1-1)112 ]/-l, 

T = (2albE Itll2(at/J + IbEI'y'T), 

17 = (2alb E IlII'T. 

6. CONNECTION FORMS, KILLING BIVECTORS, 
CONFORM TENSORS, AND MAXWELL FIELDS 

We next compute the connection I-forms v~, the Kill
ing bivector components w~, the Maxwe1l2-form compo
nents F~, and the Weyl conform tensor components' 

C'_A_B: = CAB, 

in V~. The scripts A and - A - B (A,B = 1,0, - 1) are spin 
weights; as regards their raising and lowering, WI = w-<, 
W_I = wI, Wo = - 2wo. The components are relative to the 
self-dual basis" 

B ~: = ~B ~bO ~O;, (a,b = k,m,t,n), (32) 

where 0 ~ is defined by Eq. (26a), and B ~b are the same nu
merical coefficients as those used in Eq. (13). Our connec
tion forms are defined by" 

V,·_IBab, dO' 'Ob, 
A' -"2 A Vab' a = Vab . (33) 

RI vin,Imv;n,v;I'V;k are the expansion, twist, shear, and geo
desy of the null congruence of k'; for m', the same roles are 

played by R1 v'_ 11,lm v'_ II' v'_ In'V'- 1m' The following re
sults are obtained by using the transformation formulas of 
(I) together with Eqs. (8), (9), and the expressions for (J) in 
Table I. 

(N,N) results: 

vi = 0, v6 = - dInA, 
(34a) 
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wi = w6 = 0, 

w'~ 1= - i2~lI2IA 1~2(1 - 2b
E
JA ~l). 

Fi = F~ = 0, F'_ 1= - i2~1I2b tA ~'. 
c '_ A~ B = 0 except 

(34b) 

(34c) 

C'_ 2 = - 6b E A ~IIA I ~'(1 - 2b EJA ~l). (34d) 

(S,N), (O,N) results: 

Same as (N,N) Eqs. (34a)-(34d) except 

v'_ I = IA l-l[(U> - a'yl(iat' + at '*) 

- 2bE A ~l(a + ia)t ']. 

(O,P), hS), ( ... ,T) results 

v; = 2heiA I-IA -1(K~' - Kkt '), 

(35) 

vb = IA I~l{ - 2- lil [tlS~I(tkk' - tmm') + t,rl(t' - t '*)] 

w; = w' _ I = 0, 

wb = IA. I~'(l - 2b fJA. -l)exp( - ia). (36b) 

F; = F' 1=0, Fb = b ~A. -'exp( - ia). (36c) 

C '_ A _ B = 0 except 

C b = 2bE IA. I-'A. ~1(I - 2bEJA ~l)exp( - 2ia). (36d) 

In Eqs. (36a)-(36d), 

1i'e: = beexp( - ia), 

O<a<11T, tl=cz=I, for (O,P), 

a = 0, tl = I, t, = 0 for hS), (36e) 

a = !1T, t, = 0, t, = 1 for ( .. ,T). 

Concerning various symbols in the above Eqs. (34)
(36), we recall thatJ = Rl i5' and that i5' is given by Table I. 
Also, A. = bo + bE i5' and is given in Eqs. (30) and (31). Ka 
can be obtained by inspection of Eqs. (9) [see Eq. (26b)]. 

As regards the parameter bw which occurs in Eqs. 
(34c) and (36c), it modulus is uniquely determined by bo 
and bE according to Eq. (22b). Its phase is independent of bo 
and bE and is responsible for the duality orientation of F'. 

It is always true that the substitution 

b,~bpp(ic), (r = O.E,M), 

where c is any real number, does not alter g'. This can be 
verified for our particular problem by inspecting Eqs. (21)
(23). It follows that we can choose bo or bE (but not both) to 
be real and nonnegative without loss of generality; i.e., the 
set ,;y' K(MS) is not diminished by that constraint. 

We now briefly comment on the algebraic classification 
of the various gravitational and electromagnetic fields. 
These comments are based on Eqs. (34a), (35), (36c), and 
(36d). We see that all of the (--,N) results have Npp gravita
tional and Maxwell fields with a common set of null rays. As 
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regards the rest, the (O,P ),( .. ,S), and h T) results have typeD 
gravitational fields, whose principal null vectors are also ei
genvectors ofthe Maxwell field. Further details will be given 
in the discussion of individual cases. 

7 . ANALYSIS AND DISCUSSION 

A. Some common features of the metrics 

The metric g' can be computed from Eqs. (27)-(31), and 

g' = k' ® m' + m' ® k' + t' ® t '* + t '* ® t '. 

The components relative to our charts satisfy the following 
conditions for all type N cases and for the type D cases (O,P), 
(S,S), (O,s), (T,T), (S,T): 

g;t(f = 0, if a = 1,2 and f3 = 3,4. (37) 

For (N, T), however, 

(38) 

g~,g~4 - (g.;4Y = 0, g41 = a. 

As regards (O,T), it's a hybrid. The form of its metric de
pends on the choice of the coordinate pair (X l,X3

). On the one 
hand, (0, T) may be obtained as the limits of (O,P) as a---l>!1T, 
or of (T, T) or (S, T) as a-O. On the one hand, we may let 
a-~O in the (N, T) expressions (as we have preferred to do in 
our own work). 

The results expressed by Eq. (37) could have been pre
dicted from the first two conclusions of the following theo
rem. which can be verified by inspecting Table I and Eqs. 
(I 1). 

Theorem: For any given nonnull Killing vector K in 
MS, there exists another Killing vector L (which may be 
null) such that the following statements hold: 

(1) K 1\ L*O, [K,L] = 0. 

(2) If K 1\ L is not null, there exists a coordinate basis 
X" for which X, = L, X4 = K, and the components of the 
MS metric g satisfy equations of the form (37). 

(3) IfK 1\ L is null, there exists a coordinate basis Xu for 
which X, = L,X. = K, and the components for the MS met
ric g satisfy equations of the form (38). 

There is another theorem which is well known from the 
study' of axially symmetric stationary vacuums and which 
also holds for those axially symmetric stationary electrovacs 
which have been considered, for example, by Kinnersley and 
Chitre. IR The theorem claims, in effect, that if the above 
statements (1) and (2) hold for the Killing vectors K and L 
and for the metric g of the axially symmetric stationary elec
trovac V" then there exists a gauge for Mrs such that 

(A) L is a K V of every V ~ in jY/ K( V.), 

(B) Equations (37) hold (relative to the coordinate basis 
X,,) for every V ~ in ,)7'7K( V.). 

Of course, both of the above statements are true for 
those of our results which correspond to nonnull K 1\ L (i.e., 
nonnull surfaces of transitivity). 
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The point is that, if Eqs. (37) are replaced by Eqs. (38), 
they are also true for those of our results which correspond to 
null K /\ L. Statement (A) can be proven directly from Eq. 
(15) or can be verified by inspecting Eqs. (3Ie), and (B) has 
already been discussed. The truth of these statements when 
V. = MS raises the question of whether they hold more gener
ally and whether methods similar to those employed for ax
ially symmetric stationary electrovacs can be applied to an 
appropriately restricted (but nontrivial) class of electrovacs 
which admit two-parameter Abelian isometry groups with 
null surfaces of transitivity. 

Other interesting properties of our metrics derive from 
a basic theorem'6 concerning any electrovac Va = (M,g,F) 

with a nonnull Killing vector K, and any member V 4 

= (M',g',F') OLJY'K(V')' 

Theorem: If A and B are any tangent vector fields in M, 
then at all points in the intersection of M' with the domains 
of A and ofB, 

(K 1\ A) r (K /\ B) = (K 1\ A) r'(K /\ B). (39) 

The step product employed above is defined for any tangent 
vectors A, B, C, D, by 
(A 1\ B) r(C 1\ D) = (A I C)(B, D) - (A I D)(B I C), 

A I C: = g(A,C). 

If g is replaced by g', then I ' replaces I . 

We are presently interested in the application of the 
above theorem to the components of g and g' relative to a 
coordinate basis Xa such that X4 = K. We have then that all 
components of 

..1"e: = g"r844 - ga4 ge4 = g~r8~4 - g~~84 (40) 

are invariant under JV K' In particular, consider those of our 
metrics which satisfy ..1)3'1'=0, whereupon Eqs. (37) and (25) 
yield 

g~4 = 1,1 1-'g44, 
gij = 1,1 I'gu' i = 1,2, j = 1,2. 

(41a) 

(41b) 

The above equations give us a better feeling for the relations 

between our metrics g;'/3 and the original MS metric ga/3' 
Clearly, the same result must hold for any axially symmetric 
stationary spacetime and is, in fact, already well known. 

Next, consider those of our metrics which satisfy 
..133 = 0. Equation (4Ia) is still true. From Eqs. (38), we ob
tain the sample relations 

(g;4)' = (g14)2, g;2 = 1,1 I'g,,· 
Note that the first of the above equations is consistent with 
the value g;4 = a given in Eqs. (38). 

The JY K-invariant ..1)) is positive, negative, or zero ac
cording as the 2-surface of transitivity generated by K and L 
is spacelike, timelike, or null. In the sequel, we use the 
notation27 

E: = - SgnL133 = I, - 1, or 0. (42) 

The value of E can be different in different chart domains M 
corresponding to the same K. I 

As is clear from Eqs. (34d) and (36d), if b E = 0, then V ~ 

1049 J. Math. Phys., Vol. 20, No.6, June 1979 

is a Minkowski space whch can differ at most from the origi
nal one by a uniform conformal mapping combined with a 
gauge transformation. In the following Secs. B-1 which are 
concerned with properties of the specific results corresponding 
to different Killing vector types, we shall assume b ~o unless 
we explicitly say otherwise. 

B. When K is (N,NJ 

Equations (34) directly imply that V~ has a type Npp 
gravitationaljield. Moreover, the Maxwellfield is zero or is 
also type N, and its null rays are the same as the principal null 
rays of the conform tensor. 

Equations (27) supply k ',m',t' in terms of the differen
tials of the coordinatesx,y,p,a. Now, though this null tetrad 
and chart are suited to our particular problem, they are not 
the ones used in any conventional formulation of the general 
type Npp electrovac solution. A fairly conventional form of 
the general solution'S is given by a null tetrad k (2), m"', t' 2J, 

t ",* and coordinates z, z*, p, a (complex z) such that 

k (" = da, t (" = dz, 

m'" = dp + (H + H* - !If/If/*)da, 

H = H (z,a), If! = If! (z,a). 

The corresponding connection forms, Weyl conform tensor 
components, and Maxwell field components are 

V\2) = v~) = 0, v(:> I = - Hz + !If!zlf/ *, 

C)2)=O if i=l=-2, C(2)2=Hzz -!lf/zz lf!*, 

F (2) = F(2) - ° F(2) __ llTl 
1 0 -, - 1 ~ 2Y'z' 

where, e.g., Hz: = JH / Jz. For the special case of the (N,N) 
result given by Eqs. (27),p and a are the same coordinates as 
in Eqs. (37), and 

z = 2-'/2[bo (x + iy) - ibE(x + iy)2], 

H = - (4b ~A t', If! = - 2bM H. 

Thus, Hand If/ are independent of a in our (N,N) case. 

We next consider the Killing vectors of V~. We give no 
derivations and simply state that the group of all motions of 
V ~ is a G, whose generators are 

Xp = ek = 1,1 Ik', X{T = K, 

which are also Killing vectors in MS. Here, E = 1. 

Consider the set 

/0/' Ad7"7 K(MS): = the union of the sets JY A (V ~) 

for all V ~ in ,;v' K(MS) 

(allowing bE = 0), 
where 

A = c,Xp + c,Xa , c,=I=O, 

c"c, = real constants. 

(43) 

I t can easily be shown from the (N,N) expressions for a, ro in 
Table I and from Eqs. (1) and (43) that Ais type (N,N) for all 
c, and all c,=I=O. (To prove this, use a translation ofthe origin 
along the 2-axis.) Therefore, 

.$" A(MS) = .$" K(MS). 
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Moreover, from the group concept, 

cW' AcW' A = cW' A (MS). 

We conclude that 

cW' AcW' K(MS) = cW' K(MS). 

So, the (N,N) results represents a "dead end" in the sense 
that no new electrovacs are generated by a second applica
tion of any of the groups cW' A; one must first return to a 
Minkowski space. 

V ~ turns out to have an irreducible Killing tensor29 

whose Segre characteristic is [(1)(1)(2)]. The Hamiltonian 
for geogesic orbits is given by 

H: = ft'/1p aP/1 = (A '2 I - A ' I ')-'(H, + H 2) + 2PlP4' 

HI: = PifJl> H 2: = P1/J2 + 2YPJ/h, 

A'I':= IboI2_lbo-2ibt...xI\ A<2l:= Ibo +2ibE yI2, 

Xl: = X, x': =y, Xl: =p, X4: = a. 

The Killing tensor K a/1 is given by 

K: = Kaf3PaP{3 = (A '21 - 4" 'yl(A (lIH, + 4 (DH,). 

Thus, we have four independent constants of geodesic mo
tion, viz., p),P4,H,K. The fields A 'I I and A '2 I are non degener
ate eigenvalues of ~ corresponding to eigenvectors t' - t'* 
and t' + t' *, respectively; observe that A " I - A 'D = IA 12. 
The third eigenvalue is 0; it has index 2 and corresponds to 
the eigenvector k and the generalized eigenvector m. 

c. When K is (S,N) or (O,N) 

All statements made in the first paragraph of Sec. 7B 
concerning the type Npp characters of the gravitational and 
Maxwellfields also apply here. 

As regards the problem of transforming the forms of 
Eqs. (28) into the conventional forms ofEqs. (37), the trans
formation leads to unwieldy expressions, and there are no 
ignorable coordinates in the resulting line element. We see 
no advantage in using the conventional forms for the (S,N), 
(O,N) results. 

The Killing vector structure turns out to be rich. V ~ has 
five independent Killing vectors: 

X'D: = Xp = ek , X<2I: = Xs-' X')I: = X'1 = K, 

X<4 I: = S XI' - }; I (a)Xs- - };,(a)X'1' 

X' 5 I: = 1jXp - };2(a)Xs- - h2(a)X", 

wherejia) are defined by (dots denote derivatives with re
spect to a) 

f;, = (a' - a2t2(a' + a2), 

i'2 = (a' - a2y2(a2 + a2)J - 2aaiA 1
2
], 

f;2 = (a' - a2)-2(a2 + a2)(P + IA 14) - 4aaJ IA n 
The corresponding Killing bivector components, relative to 
the same basis B ~ which was used in Eqs. (35) and defined by 
Eq. (32), all satisfy 

(44) 

X' I I, X' 1 I, X') I are our old friends XI, Xl' X4 , but X' 4 I and X" I 
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are not generally Killing vectors in MS. Specifically (recall 
that we are assuming b dO), x' 4 I is an MSK V if and only if 
a = 0 and bob i 1 is real, and X", is not an MSKV for any 
parameter values (with b£'i=O). 

The Killing vectors are not invariant under a gauge 
transformation Mrs_Mrs + dFrs. They undergo a corre
sponding transformation X(I)_Y(I). We have investigated 
this transformation in detail and find that there is a gauge for 
which Y(41 is an MSKV, but Y'21 is not an MSKV in that 
gauge. As regards Y(5I, it is not an MSKV for any gauge. 

With only one exception, the above G, group of motions 
is all V ~ has. The exception occurs when 

bo =O,a=O, 

whereupon V~ is a vacuum metric which admits a G6• The 
sixth KVis 

X'61 = ~( - aX(7 + 5pXp + 3SXs- -1jX,,), 

with a corresponding bivector whose components satisfy 

(45) 

There is one parameter bE which is left when we set 
bo = a = O. However, it can be absorbed by a coordinate 
transformation, and then there are none. 

The vacuum subcase of the (S,N), (O,N) results in a par
ticular example of a known class of Npp gravitational fields 
which admit a G,. The special case bo = a = 0 may be in one 
of the families oftype Npp vacuums which are given explicit
ly and are known to have a G6• Derivations and some details 
concerning these G, and G6 admitting solutions can be found 
in Petrov's book. 17 

Next, we make some observations about the set 

cW' AJY' K(MS), 

where 

at least one c i:;i=O for i> 1. 

Let V:: denote any member of the above set. The following 
statements hold: 

(1) Suppose ci = 0 for all i> 3, and Icd::foicli if a = 1. 
Then, A is (O,N) ifK is (O,N), and A is (S,N) ifK is (S,N). 
Moreover, 

"W' AcW' K(MS) = JY' K(MS). 

(2) Suppose C6 = 0, and V ~ or V:: is a vacuum. Then V:: 
is either a Minkowski space or has a type Npp gravitational 
field. 

(3) Suppose C6 = 0, and V ~ is a vacuum. Then the Max
well field of V:; is zero or is type Npp with null rays which 
coincide with those of the gravitational field. 

(4) Recall that X'61 is a KV of V~ if and only ifbo 
= a = O. If bo = a = 0 and C6:;i=0, then V:; is type II and has 

a principal null vector kIf which is generally (i.e., except per
haps for special parameter values) diverging and twisting. F " 
is not N and has k" as an eigenvector. 
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The proof of statement (I) is similar to the proof of the 
analogous statement in Sec. 7B. The other statements are 
proven with the aid of the transformation formulas in (I)' 
and Eqs. (35), (44), and (45). 

D. When K is (0, P) 

From Eqs. (36) and (9c), V~ has a type D gravitational 
field, both principal null congruences have twist as well as 
expansion, and k' and m' are eigenvectors of the Maxwell 
field as well as principal null vectors of the conform tensor. 
The Maxwell field is nonsingular almost everywhere, i.e., its 
eigenvalues are not zero except on a set of measure zero. 

The group of all motions is G, generated by X3 and X •. 
As inspection of Eqs. (llc) will corroborate, the trichotomic 
variable E which was defined by Eq. (42) and which identifies 
the signature of the 2-surfaces of transitivity is equal, for 
(O,P), to 

E = Eo: = EkEm. 

Let V.(Ek,Em,l/Jhrp,) denote the restriction ofMS to that sim
ply connected open subset of R 4 in which q k and q m [see Eqs. 
(4) and (5d)] have respective signs Ek and Em' and in which 
rpl < rp < l/J,. Then, ,37" K(MS) is the union of at least eight elec
trovac families 

dY K[ V4(Ek ,Em,l/Jhl/J,)]. 

The two electrovacs corresponding to the same value of a, 
b 0' b E,b M,l/JI ,rp" and E are clearly isometric. The problem of 
"joining" the electrovacs corresponding to the same values 
of a, bo,bE, and bM is covered in Sec. 7K. 

We have made only a limited analysis of what happens 
if we use the KV 

to generate new electrovacs V:; by applying dY A to V~. A 
key role in that analysis is played by the fact that the Killing 
bivector v corresponding to X. has components 

vi = EV'~ 1*0, vb*O, 

relative to the same basis B ~ which was used for Eqs. (36). 
Upon restricting ourselves to the case where V ~ is a vacuum, 
we have been able to prove that V:; is never type N or type 
III. Also, V:; is type I whenever I bEl is chosen "sufficiently 
small" but positive, and V ~ is a vacuum; this suggests that 
V:; will generally be type I except perhaps for special param
eter values. 

E. When K is (5,5) or (0,5) 

The pertinent equations for this case are (30b), (31 b), 
and (36). 

With some exceptions, the statements made in the first 
paragraph of the preceding Sec. 70 are also valid here. The 
exceptions occur when a = ° and bah Ii 1 is real, in which 
case both principal null congruences have zero twist, but do 
have nonzero expansion; if, in addition, b'!b Ii 2 is real or 
imaginary, then the Maxwell field is singular, but is not null. 

For any given values of the parameters a, bo,bE,bM, 
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there are exactly four electrovacs defined over disjoint sub
manifolds of R 4 in which 

E = Eo: = EkEm = ± 1. 

The situation is similar to that described in the second para
graph of the preceding Sec. 70, but the complications aris
ing from the use of the coordinate rp in Sec. 70 can be deleted 
when discussing (S,S) and when discussing (O,S) regarded as 
a limiting case of (S,S). 

The group of all motions of any (S,S) V 4 is the G, gener
ated by X) and X 4, and exactly the same remarks apply here 
as those made in the final paragraph of the preceding Sec. 7D 
concerning the generation of further electrovacs V:;. 

In contrast, the group of all motions of any (O,S) V 4 is a 
G. generated by 

X'I':=XX' X"': = Xx, X')'=Xy +2bxXx' 

X''': = xX" - yXx + b (x' - y')Xx' (46) 

b: = i(b j'ybE - bah i)· 
x' 3 , and X") are MS Killing vectors if and only if b = 0. If we 
select a different gauge, then X"', X' 3', X' 4' are transformed 
and generally become different vector fields, but the number 
of them which are also MS Killing vectors is not thereby 
increased (though it can decrease). The discussion on this 
point is similar to that given in Sec. 7C. 

The bivectors corresponding to the Killing vector X (I) 
satisfy the equalities 

wl l ), = W(I) I' = 0, 

wI2
)' = EW(~) I' = bE E".sA -I, 

wI3)' = - EW(~) l' = iW\2)', 

wI4
), = - EW(~ l' = irwI2 )'. 

W~)' *0 for all i. 

In view of the above, we expect type I (except perhaps for 
special parameter values) if one computes JY'A(V 4)' where 

A = L ciX(i), c,40 for at least one i> 1. 

F. When K is (T, T) 

The pertinent equations are (30b), (31c), and (36). The 
first paragraph of Sec. 70 on the principal null rays and on 
the Maxwell field of (O,P) are valid here. The group of all 
motions is a G" and the statements concerning JY'A(V4) in 
the last paragraph of Sec. 7D also apply. 

For any given values of the parameters a, bo , bE,bM, 
there are at least two electrovacs in dY K(MS) defined on 
overlapping submanifolds of R • in which 

l/JI < rp < l/J" r> 0. 

The situation is similar to that described in the second para
graph of Sec. 70 except that, here, 

E=I 

throughout each domain. 
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G. When K is (5, T) 

The (T, T) text can be adopted almost verbatim. The 
only significant difference is that c = - 1 for (S, T). 

H. When K is (N, T) 

We have already discussed some unusual features of 
these type D electrovacs in Sec. 7 A. There is only a G2 with 
null surfaces (c = 0) of transitivity. The chart domains are as 
described for (T,T). 

As regards the principal null rays, k' has diverging rays 
which are also twisting, but m/ is nondiverging. The Maxwell 
field has the same null rays and is nonsingular. 

The bivectors w/ and v' corresponding to the Killing 
vectors Xl and X. have components which satisfy: 

w; = w' 1 = 0, wb=i=O, 

v; = 0, v'_ J = V2bEA -l r , vb=i=O. 

Ifwe let 

then it follows that the members of JY' A (V ~) are algebraical
ly special. In jact, they are type II except perhaps for special 
parameter values. 

I. When K is (0, T) 

This JY' K(MS) is the family which contains Melvin's 
magnetic universe lCH4 (bo = 1 and bE = !B 2, whereB is the 
magnetic field magnitude). Both principal null congruences 
are nondiverging. k' and m' are both eigenvectors of the 
Maxwell field, which is singular if and only if bob Eland 
ib tb i:- 2 are real. 

The (O,T) case is exceptional in the variety of ways V ~ 
can be labeled c = 1, - 1, or ° depending on which MS Kill
ing vector is paired with K to give us Xl and X •. [Recall the 
definition of c in Eq. (42).] c = 1 for that (0,T)V4 which is 
obtained by taking the limit of a (T,T) V 4 as a---+O, and 
c = - 1 for that (0, T) V 4 which is the limit of an (S, T) V 4 as 
a---+O. In the case of the limit of a (O,P) V 4 as a---+41T, we 
obtain a family of four eJectrovacs defined over different do
mains of R " and c = c kC m in the respective domains. Finally, 
c = ° if we obtain our (O,T) V 4 as the limit of an (N,T) V 4 as 
a---+O. The various (O,T) electrovacs which are thus derived 
are mutually isometric in a local sense. The different c and 
the different forms obtained for the metrics are merely due to 
the different choices of Xl' We will stick with 

Xl = Xp = ek 

the the immediate sequel. 

The group of all motions is a G4 with generators 

X"': = X"" X'2': = XP ' 

X'l': = Xu - 2bpX"" X' 4': = pXp - aX", 

where b is defined in Eqs. (46). X(J' and X<4> are MS Killing 
vectors if and only if b = 0, whereupon X,·, reduces to the 
familiar boost generator 
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zJT - TJz ' 

If we had selected a different gauge, then X<2 J, X"', X<4 J 

would generally be different than the present triad, but the 
number of them which are MS Killing vectors would be (if 
b=i=0) greater than or equal to 2 in any case. 

The Killing bivector components satisfy the equalities: 

(ui 1)/ = wC~) 1/ = 0, 

/ . .(2)/ = ° W(2)' = .. 12b .... -·1 
cuI , ._ I V ~Y/l, 

W\3)' = we:) /, wC~ I' = 0, 

(u\4)' = - aw(2'i J /, wC~ I' = pW(2) J'. 

Suppose we use a linear combination 

A = I c;XCl), c/.=f=O for at least one i> 1, 

to construct a new electrovac V:; by applying ,17'" A to V 4' If 
we restrict ourselves to the case where V 4 is a vacuum and let 
Cl = c. = ° or C2 = C4 = 0, then V:; is type II. We have not 
done anything further in the way of detailed analysis for 
other values of c;, but it is clear that V:; will be type I except 
perhaps for special parameters values. 

J. Singularities 

We next consider the problem of singularities in V 4' 
This is an immense topic which can property be treated only 
by a detailed analysis of each separate case. However, we 
have not carried out any thorough analysis. Nor are we sure 
that our particular type Npp and D metrics merit a thorough 
analysis any more than any other type Npp and D metrics. All 
we shall do here is go over some key points which stress the 
dependence of the singularities, especially with regard to 
their existence and their distribution in R', on the type ofKV 
and on the transformation parameters b 0 and bE' When we 
refer to singularities here, we mean, of course, the singulari
ties of V 4 and not of any extensions of V 4' 

Let the set of all zeros of A be denoted by Z (A ). Consid
er the example of the (N,N) results in Eqs. (27a), (27b), and 
(34a)-(34d). Z (A ) is the timelike 2-surface (in MS) of 
transitivity 

y = - Vl, x = 4r, 
(3: = Rl(bob f; I), y: = Im(bob E I). 

Are any points on this 2-surface "genuine" singularities of 
V 4? Since the curvature tensor is type N, it cannot by itself 
help us answer this question. However, V 4 has two Killing 
vectors and a Killing tensor which make the H-J equation 
for geodesic orbits separable. So, the question can be an
swered by analysis. We have made only a few exploratory 
calculations which show that at least some zeros of A may be 
regarded as singularities when {3 > 0. Specifically, if {3 > 0, 
there are at least some timeJike geodesic line segments of 
finite proper length which have zeros of A as limit points. 
Also, when{3> 0, the mutually orthogonal vectors K a

, and 
wa.,j( (3 / are spacelike, and the corresponding Riemannian 
curvature blows up as we approach any zero of A. 
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For (S,N) and (O,N), Z (A) is the set of points such that 

tT + (a)' = /3, 200' = - r (a = 1,0). 

Z (A ) is empty except when 

f3 = 1 + !r';;;' 1 if a = 1, 

f3;;;.O, r = 0 if a = O. 

When Z (A ) is not empty, it consists of the null hypersurfaces 
of transitivity (in MS) 

0' = -!r if a = 1, 

0' = ± f3 if a = O. 

We have not further looked into the singularity question in 
these cases, though the analysis would not be difficult in view 
of the profusion of Killing vectors. 

The zeros of A are assured singularities of each of the 
type D electrovacs, since Co as given by Eqs. (36d) is a curva
ture invariant which blows up asA-<J. For the (O,P) results, 
Z (A ) is the set of points in R 4 such that 

cs' = - /3 + ytana, r = f3 + rcota. 

For (S,S) and (O,S), 

ES' = - f3 + (a)', 2ay = - r, a;;;.O. 

For the (--,T) cases, 

r = (a4)' - (a1
)' + /3, 2(a1q4 - a4ql) = - r· 

As before, f3 and r are the real and imaginary parts of bo 
X b E.~ 1. The parameters a1, a4

, and the coordinates r, s, yare 
defined by Eqs. (5). 

There is a host of possibilities for these type D cases, and 
the reader can easily work out a classification scheme for the 
zeros of A. As an example, consider (T,T) for which a 3 = 0 
and a4 = a > O. If (a)' + f3 is negative, Z (A ) is clearly empty. 
If(a)' + f3is zero, Z (A) isa timelike line in MS. If(a)' + f3is 
positive, Z (A ) is a timelike 2-surface in MS. As regards the 
geometric character of Z (A ) relative to V ~ itself, that is a 
problem which we have not investigated. 

K. Extension to R4 - Z(A) 

The charts which were introduced in Sec. 2 and which 
we have been using until now were chosen: 

(1) to include K as one of the coordinate basis vectors, 

(2) to make the isometries as manifest as possible, 

(3) to facilitate the calculation of Mrs, 

(4) to obtain the results in forms which are similar to 
and can easily be compared with standard expressions for 
types Npp and D electrovacs (especially the latter). 

Though no explicit criteria were formulated concerning 
the gauges for Mrs, we did select them so as to satisfy the 
above conditions (2)-(4). 

However, in spite of their advantages, some of those 
charts and gauges fail to give us what may be called a "global 
view" of the transformations JY' K' In this final section, we 
shall attempt to supply such a view, and we shall select new 
charts and gauges which serve that end though they do not 
satisfy all of our previous criteria. 
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For given K and given b(flb E,b M> and a or a, the electro
vacs which we obtained constitute a family 

defined over respective domains M ;, ... ,M ~ of R 4. Here, 

M: = M; - Z (A ), 

where M1, ... ,Mn are the domains of the charts which we 
defined in Sec. 2. We now want to investigate the following 
problems: 

(1) When is it possible tojoin V~l, ... ,v~n' i.e., to form a 
single electrovac V ~ whose domain is M' = R 4 - Z (A ) and 
whose restriction to M: is V~;? 

(2) What is a suitable atlas and a suitable orthonormal 
or null tetrad for V~? 

Consider the first question. The new metric is related to 
the old metric by the equation 

g'= IA l'g-K®..1-..1®K-IA 1-1..1®..1 

as can be seen from Eqs. (21) and (16b). The MS metric g and 
the Killing covector K each has R 4 as its domain. Therefore, 
the various electrovacs V~; can be joined if ..1 can be extended 
to R 4. Therefore, the answer to the first question hinges on 
the domains of the potentials Mrs. 

As regards the second question, an obvious atlas is the 
set of Cartesian coordinate systems q a or the corresponding 
null coordinate systems qk,qm,q"qn for which K has the ca
nonical form prescribed by Table I. When the transforma
tion (21) is applied to the MS orthonormal tetrad dq a, we 
obtain 

(47) 

Ifwe grant that A has R 4 as its domain, then the above equa
tion supplies us with an orthonormal tetrad for V ~ such that 
M' is the domain of this tetrad. The Killing vector compo
nents K a in Eq. (47) are relative to the MS orthonormal basis 
ea and can be obtained by inspecting the third and fourth 
columns of Table I. 

Now, we get down to specifics. 

The chart chosen for (N,N) in Eqs. (Sa) already has R 4 

as its domain. Therefore, the same is true for the potentials 
Mrs given by Eqs. (20) and the first line of Table I. Case 
(N,N) needs no doctoring in this section. 

As regards the other cases, we shall spare the reader all 
details concerning the use ofEqs. (20) and (5) and of Table I 
to compute Mrs in terms of Cartesian or null coordinates. 
The important point is how the gauges of Eqs. (20) are al
tered. For some cases, we shall impose gauge transforma
tions such that 

..1-+..1 + dF, F= F(XI,X',X3). 

For (S,N), 

F= (Ibo I' - I)O'S' 

For (S,S), 

F = (Ibo - a2bEI2 - I)a-1x. 

For (T,T), (S,T), (N,T), 
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F = (Ibo - a.abE 12 - 1)a-2(aJqJ + a4q4), 

where 

a.a = (aJ)2 - (a4y, a = [(aJ)2 + (a4)2]I12. (48) 

F = 0 for all other cases. a J ,a4 in Eqs. (48) are defined by Eqs. 
(5g). The parameter a is the same one which appears in Table 
I and which we have used throughout the paper. Thus, a = 1 
for (N,T). 

With the above alterations of gauge and with the use of 
the Cartesian coordinate q a, we obtain new expressions for 
..:1. 

For (S,N), 
..:1 = (Ibo 12 - l)dql + b 6bE [ - i(ql + iq2)du - (dql - idq2)] 

+ (3ul + l)dql + u(ul + 3)dq2J 

For (S,S), 

..:1 = [(Ibo - a2bE 12 - 1)a-1 + 2bq2 + 41bE 1
2a(q2)2]dql 

(49a) 

+ [ - !lbM 12 + IbE 12(EoS2 - 2a2)](qJdq4 - q4dqJ). 
(49b) 

For (T,T), (S,T), (N,T) 

..:1 = [lbo - a.abE l2 - 1 + 2b (a Jq4 - a4q3) 

(49c) 

For (O,N), 

..:1 = (Ib o 12 - l)d (U- 1q2) - i[b jybe<ql + iq2) 

+ Ib E 12( - q2uldu + u Jdq2). (49d) 

For (O,P), 

..:1 = {(Ibo 12 - 1)(EoS2t1cosa + b "i;bE + bah':: 

(4ge) 

To obtain the (O,S)..:1, set a = a in the above Eq. (4ge). To 
obtain the (O,T)..:1, set a = !1T. We recall that30 

u: = 2-112(qJ _ q4), EoS2: = (qJ)2 _ (q4)>, 
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r: = (ql)2 + (q2)\ q3dq4 _ q4dqJ = EoS2dX' 

q1dq2 - q2dql = rd¢;, to = ± 1. 

(50) 

The parameters a·a, aa,~, b, IbM 12 are defined by Eqs. (48), 
(5g), (36e), (46), and (22b), respectively. 

Inspection ofEqs. (49) enables us to draw the following 
conclusion. 

If Khas nozeros, as is truefor(N,N), (S,N), (S,S), (T, T), 
(S,T), (N,T), then there exists a choice of gauges for M" such 
that each member of ,WO K(MS) has 

R 4 - Z(A) 

as its domain. If we restrict dY" K by the condition 1 b 0 1 = 1, 
then the same conclusion applies to (O,N), (O,P), (a,S), and 
(O,T). IfK has at least one zero and if Ibo 1*1, the points at 
whichs = a or r = 0 (as the case may be) are excluded3l from 
the domains of the electrovacs V ~j' and the situation is not 
significantly different from that described in preceding sec
tions where we used the curvilinear coordinates x a. 
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tence that K be one of the coordinate basis vectors. Alternative coordinate 
systems, which the reader may prefer, are given in Sec. 7K of this paper. 

"For exact correspondences of our null tetrad formalism with those of oth
ers, see F. Ernst, I. Math. Phys. 19,489 (1978). 

"Equation (15) is also the correct expression for W F for any axially sym
metric stationary electrovac such that x',x' are ignorable coordinates, g,,(J 

= 0 if a = 1,2 and f3 = 3,4, and the Maxwell 2-form F is given by dA ,dx' 
+ dA.dx' where A,,A, depend only on x',x'. For an axially symmetric 

stationary vacuum, RI 'Ii, = - g .. and RI '!J, = - g" if we make appro-
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priate selections of the arbitrary constants in if), if 4' In our current work 
in this paper, we let R I if, differ from - g" by a constant ( ± a) in some 
cases. 

"These solutions for M 00 and MOE, as well as for the dx4 term of M EE, are 
also valid for any axially symmetric stationary electrovac; (see Ref. 23). 
However, our dx) in M EE is peculiar to the present problem. Our current 
choices of gauge for the Minkowski space potentials will be altered in Sec. 
7K to enable us to extend the domains of some of our results. 

"I. Hauser and RJ. Malhiot, J. Math. Phys. 19, 187 (1978). 
"This theorem can be proven directly from the invariance of 

KcJ({3 - (K.K)ga{3 under the group JY'K' 
"This is the same E which was used by Ref. 25. 
"H.W. Brinkmann, Proc. Nat. Acad. Sci. (U.S.) 9, 1(1923); W. Kundt, Z. 

Physik 163, 77 (1961). For additional references see Gravitation: an Intro
duction to Current Research, edited by L. Witten (Wiley, New York, 
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1962), specifically pp. 85-10\ in the article by J. Ehlers and W. Kundt. 
Also see W. Kinnersley, in General Relativity and Gravitation, edited by 
G. Shaviv and J. Rosen (Wiley, New York, 1975). 

"For a discussion of Killing tensors and their relation to separability, see, 
e.g., N.M.I. Woodhouse, Commun. Math. Phys. 44, 9 (1975); W. Dietz, J. 
Phys. A 9,519 (1976); C.D. Collinson and J. Fugere, J. Phys. A 10, 745 
(1977). 

"'The reader may prefer to use the expressions given by Eqs. (47) and (49) in 
place of some or all of our results in Sec. 6. In that case, examples of 
suitable coordinate choices are q',q',s,X for (S,s), q'.q',r,I/J for (S,T) and 
(T,T), and s,X,r,t/> for (O,P). 

)IThe excluded points at r = 0 generally constitute a conical singularity. 
The excluded points at s = 0 are, in some cases, at infinity with respect to 
the geodesics of the e1ectrovacs V;,. 
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Note on the stability of the Schwarzschild metrica) 

Robert M. Wald 

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 
(Received 28 September 1978; revised manuscript received 27 November 1978) 

It is shown that the standard arguments for the stability of the Schwarzschild metric 
can be made into a rigorous proof that the numerical values of linear perturbations of 
Schwarzschild must remain uniformly bounded for all time. 

In many instances one has a solution describing an equi
librium configuration and one wishes to determine its stabil
ity, that is, determine whether an initially small disturbance 
of the solution will remain small or grow large with time. An 
important example of this problem in general relativity is the 
Schwarzschild spacetime. As is well known, the exactly 
spherical collapse must produce a Schwarzschild black hole, 
since the Schwarzschild metric is the only vacuum, spheri
cally symmetric solution of Einstein's equation. The stability 
of this process is a very important issue in the theory of gravi
tational collapse. Can an initially small deviation from 
spherical collapse or an initially small, nonspherical pertur
bation of an already formed Schwarzschild black hole result 
in a large change at late times, perhaps converting the black 
hole into a naked singularity? Within the context of linear 
perturbation theory, extensive analyses by numerous au
thors (see Vishveshwara, I Price and references cited there
in) have demonstrated beyond a reasonable doubt that the 
answer to this question is no; the Schwarzschild solution is 
stable. The purpose of this note is to remove even the unrea
sonable doubt on this conclusion (still, however, in the con
text of linear perturbation theory) by filling in some math
ematical gaps in previous arguments. The methods of this 
paper are generally applicable to cleaning up stability analy
ses where naive stability arguments similar to the type de
scribed below exist (for example, for a proof of stability of the 
Reissner-Nordstrom metric); however, they are not likely to 
contribute new ideas to stability proofs where the naive argu
ments are not applicable (for example, for a proof of stability 
of the Kerr metric). 

The equations governing scalar, electromagnetic,] or 
gravitational perturbations4

.
5 of Schwarzschild can be ex

pressed (after separation of the angular variables) in the form 

a1 = a1 _ V(r.)/' 
at' J? 

(1) 

where the functionf characterizes the perturbation, r. is the 
Regge-Wheeler4 coordinate, and Vis a smooth, positive po
tential which goes to zero at r. --+ 00 (infinity) and r. --+ - 00 

(horizon). Hence, the operator A defined by 

d' 
A = --+ V (2) 

d? 

alSupported in part by the National Science Foundation under grant PHY 
76-81102 AOI with the University of Chicago and by the Sloan 
Foundation. 

is a positive, self-adjoint operator on the Hilbert spaceL 2(r.) 
of square integrable functions of r • . To show stability of the 
Schwarzschild metric, we should prove the following: Given 
well-behaved initial data forfat t = O-say, for simplicity, 
C oc initial data of compact support in r. -thenfremains 
bounded for all time. We shall give a complete proof of this 
statement below, but first we review a naive stability argu
ment and an energy integral argument. Then, we obtain a 
bound on the square integral off using spectral theory meth
ods (which may be viewed as a mathematically precise ver
sion of the naive stability argument) and, finally, using this 
result, give a complete proof of stability. 

NAIVE STABILITY ARGUMENT 

In this approach, one first postulates that every solution 
of Eq. (1) can be expressed as a superposition of solutions 
with time dependence e at (a complex). Suppose Rea> O. 
Solution of Eq. (1) asymptotically as r. --+ ± 00 shows that 
the solution must be exponentially growing or decreasing 
with r. in these limits. One asserts that an initially well
behaved solution cannot be constructed by including the ex
ponentially growing (in r.) solutions in the superposition, so 
only the exponentially decreasing behavior need be consid
ered. [Alternatively, one appeals to ingoing wave (at the ho
rizon) and outgoing wave (at infinity) boundary conditions 
to eliminate the exponentially growing solution in r.]. But, 
for the exponentially decreasing in r. solutions h, we have, 
by Eq. (1), 

a'I Ih I 'dr. = - I hAh dr •. (3) 

Since A is a positive, self-adjoint operator, the right-hand 
side is real and negative, which contradicts the assumption 
Rea> O. Thus, there are no physically relevant exponential
ly growing modes. One then asserts that superposition of the 
oscillating modes (a imaginary) cannot yield an initially 
well-behaved perturbation which becomes large at late time. 
(Note, however, that the individual oscillating modes are 
themselves badly behaved on the horizon.) 

ENERGY INTEGRAL METHOD 
Many of the unproven assertions of the naive stability 

argument can be circumvented by the f9llowing energy inte
gral approach. Multiplying Eq. (1) by 1 = aJ / at and inte
grating over r., we obtain 
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f ljdr. = - f lA/dr •. (4) 

Adding this equation to its complex conjugate and using the 
self-adjointness of A, we find 

:t(J !i1 2 dr. + JIA/dr.) = 0 (5) 

or 

(6) 

where C is a constant. Since slAJ>o since A is positive, C is a 
bound for S Ii 12 dr •. Thus, in particular, uniform exponen
tial growth in time of initially well-behaved perturbations 
are ruled out. However, this approach still has two impor
tant deficiencies: (1) Growth of perturbations linearly or 
slower with t is not easily ruled out. (2) The bounds in any 
case are on integrals of the perturbation; the possibility that 
the perturbation is blowing up in ever narrowing regions is 
not ruled out. 

The first deficiency is rectified (with, however, a sub
stantial increase in the required mathematical machinery) as 
follows. 

SPECTRAL THEORY METHOD6 

The spectral theorem states that any self-adjoint opera
tor, A, can be approximated by a sum of projection opera
tors; more precisely, there is a one-parameter family of pro
jection operators E J... such that A can be written as 

A = J: '" ;{dEJ...' (7) 

where the precise meaning of the integral (as well as other 
properties of E).) are given, for example, in Refs. 7 and 8. For 
a positive, self-adjoint operator, as is the case here, only posi
tive values of;{ contribute (i.e., E). = 0 for ;{<O). Functions 
of a self-adjoint operator A may be defined using the spectral 
representation, Eq. (7), 

F(A )= f F(;{) dEJ... (8) 

Letlo(r.) andio(r.) denote the (C oc, compact support) 
initial data for/and let 

g, = [cosA Il2t ] 10 + [A -112 sinA 112t ] .10, (9) 

where the operators in Eq. (9) are defined by their spectral 
representation, e.g., 

A -112 sinA 112t = SlIVl t dE . L
'" '- 1 112 

o ;{ 1/2 J... 
(10) 

Now,1o andio (being C'" and of compact support) lie in 
domA ::JdomA 1~2; it is easy to show that [cosA l12t]1o and 
[A -112 sinA 112t lloalsolieindomA 112. Thesameargumentasis 
used in the proof of Stone's theorem"s then proves that 
dg,ldt exists and 

~' = - (A 112 sinA l12t)1o + (cosA II2t)io. (11) 

Similarly, we find 

1057 J, Math, Phys., Vol. 20, No.6, June 1979 

- (A cosA I12t)1o - (A 112 sinA II2t)io 

= -Ag(' (12) 

Thus,g, is a solution ofEq. (1). Furthermore, by Eq. (9)gt at 
[= 0 reduces tolo and by Eq. (10) dg,/dt at t = 0 islo. Since 
solutions ofEq. (1) are uniquely determined by their initial 
data, we must have/ = g. Thus, we have proven that 

/(t,r.) = (cosA l12t )Io(r.) + (A -112 sinA 112[ )io(r.). (13) 

It is easy to show that cosA Il2t and A -112 sinA 112t are bounded 
operators with norm less than one. Thus, 

J If(t,r.) I 2 dr.<211IoW + 21/.10/12, (14) 

which gives the desired bound of the square integral of/Cas 
opposed to j) at time t in terms of its initial data. 

Note that this analysis may be viewed as a mathemat
ically precise version of the naive stability argument. In es
sence, Eq. (13) states that every initially well-behaved per
turbation is a superposition of oscillating modes, and Eq. 
(14) shows that the square integral of such a superposition 
remains bounded for all time. 

COMPLETE STABILITY PROOF 

We now complete the stability proof by showing that 
the numerical values of the perburbation are bounded by 
integrals of it and its derivatives, which, in turn, can be 
bounded by the above methods. The main result needed for 
this completion is the following lemma (see, e.g., Ref. 9). 

Lemma: Let I/':IR-+C be C '" and of compact support. 
Then for all x, II/'(xW<-!U 11/'12 dx + f 11/"12 dx], where 
1/l = dl/'Idx. 

Proof 

I/'(x) = 1 Joc eikx ¢(k) dk 
Y2rr - '" 

= 1 Joc eikx (I + k 2>-112(1 + k 2)112 ¢(k) dk. 
Y 2rr - oc 

(15) 
Hence, by the Schwartz inequality, 

1tf;(x)12<- -- (1 +k 2)1¢(k)j2dk I Joc dk Joc 
2rr _ 00 I + k 2 - 00 

[In n dimensions, square integrals of the first s derivatives of 
I/' bound I/'(x) if s > n12.] 

Applying this lemma to the perturbation/(t, r. ), we 
have 
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If(t,r.) 12,,;! f If(t,r.) 12 dr. + ! f If'(t,r.) 12 dr.. (17) 

But, from the definition of A and the fact that V is positive, 
we have 

f If'(t,r.) 12 dr··,,;fJ(t,r.) Af(t,r.) dr •. (18) 

Furthermore, by Eq. (6) we have, 

f l(t,r.) Af(t,r.) dr·,,;f loA/o + II.IoW· (19) 

[Equation (19) also follows from Eq. (13).] Equations (17)
(19), together with Eq. (14), show that, for all t, r., 

If(t,r.) 12,,;5 I/o 12 dr. + 15 loA/o dr. + f 5 lio 12 dr., (20) 
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which uniformly boundsf outside the horizon for all time in 
terms of the initial data/o,.Io. By continuity, this bound also 
applies on the horizon. (Derivatives off can also be bounded 
in a similar manner.) This completes the stability proof. 

'C.V. Vishveshwara, Phys. Rev. D 1, 2870 (1970). See also V. Moncrief, 
Ann. Phys. 88,323 (1973). 

'R. Price, Phys. Rev. D 5,2419 (1972). 
JR. Ruffini, I. Tiomno, and C.V. Vishveshwara, Lett. Nuovo Cimento 3, 
211 (1972). 

'T. Regge and I.A. Wheeler, Phys. Rev. 108,1063 (\957); L.A. Edelstein 
and C.V. Vishveshwara, Phys. Rev. D 1, 3514 (1970). 
'F. Zerilli, Phys. Rev. Lett. 24, 737 (1968). 
'R.M. Wald, Ph.D. thesis, Princeton University, 1972 (unpublished). 
7M. Reed and B. Simon, Functional Analysis (Academic, New York, 1972). 
'F. Riesz and B. Sz.-Nagy, Functional Analysis (Ungar, New York, 1955). 
'P. Gilkey, The Index Theory and the Heat Equation (Publish or Perish, 
Boston, 1975). 
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Integral bounds for N -body total cross sectionsa) 

T. A. Osborn 

Cyclotron Laboratory, Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada 
R3T 2N2 

D. Bolleb
) 

Instituut voor Theoretische Fysica, Universiteit Leuven, B-3030 Leuven, Belgium 
(Received 19 September 1978;revised manuscript received 9 November 1978) 

We study the behavior of the total cross sections in the three- and N -body scattering 
problem. Working within the framework of the time-dependent two-Hilbert space 
scattering theory, we give a simple derivation of integral bounds for the total cross 
section for all processes initiated by the collision of two clusters. By combining the 
optical theorem with a trace identity derived by Jauch, Sinha, and Misra, we find, 
roughly speaking, that if the local pairwise interaction falls off faster than r ~ 3, then 
CTtotCE) must decrease faster than E ~ 1/2 at high energy. This conclusion is unchanged if 
one introduces a class of well-behaved three-body interactions. 

I. INTRODUCTION 

We investigate the behavior of total cross sections in the 
N-body scattering problem. For all collisions initiated by the 
scattering of two clusters we will obtain integral bounds on 
these cross sections. Our result is based on combining two 
structures common in scattering theory. The first is a trace 
theorem developed by Jauch et al.! to study time delay in the 
two-body problem. The second is the time dependent two
Hilbert space formalism for nonrelativistic N-body scatter
ing.' More precisely, within the two-Hilbert space theory 
one can obtain an integral expression in time for the S ma
trix. This integral has a kernel that is related to a trace class 
operator. The trace theorem of Jauch et al. allows one to 
exhibit a bound for the energy integral of the imaginary part 
of the forward S matrix element. By employing the optical 
theorem this bound is transformed into a bound on the total 
cross section. 

In the two-body problem the calculation outline above 
has been carried out by Martin and Misra. J Let us briefly 
recall their results. Take R (z) and Ro(z) to be the exact and 
free resolvents corresponding to the Hamiltonians 
H = Ho + Vand Ho. For 1m z*O, one can prove under suit
able, but mild conditions on the potential V that R ~(z) 
VR '(z) is trace class when v > ~. Using this fact and the 
program outlined above one arrives at a bound on (Ttot (E) 
that requires the cross section to decrease faster than E ~112 for 
high energy. We find the same conclusion holds for the N
particle case. Furthermore, if we introduce a class of well
behaved three-body potentials, these integral bounds on the 
cross section are unchanged. 

Section II describes the elements of the N-body two
Hilbert space theory we use and gives the statement of the 

a'Work supported in part by a grant from the National Research Council of 
Canada and by a NATO Research Grant. 

h'Bevoegdverklaard Navorser NFWO, Belgium. 

trace theorem. Section III obtains the integral bounds for the 
cross sections, under the assumption that a certain operator 
is trace class. In Sec. IV we prove the trace-class character of 
this operator in the N-body problem. Finally, we consider 
the effect of adding three-body forces to the system. 

II. N-BODY SCATTERING THEORY 

In this section we first define the two-Hilbert space mul
tichannel theory that describes the scattering solutions of the 
N-body problem. The basis theory outlined here is the same 
as that found in the work of Chandler and Gibson.' Howev
er, we use a notation that explicitly exhibits the individual 
asymptotic channels. 

Let .;1'. denote the N-body Hilbert space after the total 
center of mass motion has been removed .. yy consists of 
square integrable functions of the 3(N - I) coordinates de
scribing the particle configuration in coordinate or momen
tum space. Take Vi} to be the local pairwise interaction be
tween particles i and), and let Ho denote the self-adjoint 
operator representing the free N-particle kinetic energy. The 
full Hamiltonian is 

(2.1) 

The second space is formed by the direct product of all 
the asymptotic channel spaces Jf"a' Each distinct channel is 
labeled by an index a. The symbol a denotes both a partition, 
A, of the N particles into Na clusters and the specification of 
the eigenfunction of each cluster. Set A = t al:l = I,Na j. 
Here al is the set containing the labels of the nl particles in 
the I th cluster of partition A. The internal cluster wavefunc
tions are taken to be ¢~l' Consider cluster al. Let ho(al) de
note the Hamiltonian for the internal kinetic energy and 
v(al) the internal cluster potential. Then ¢~l is an eigenfunc
tion of h (al) = ho(al) + v(al) with binding energy - ~l' 
The total binding energy of all clusters in channel a is the 
sum 
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(2.2) 

where the index af runs over aU clusters in A. 

In terms of these cluster properties one may construct 
the chanel spaces .r" and the associated channel Hamilto
nians if" . Consider each cluster to be a point particle with 
the mass of aU of its constituent particles and let Ho[A ] de
note the relative motion kinetic energy operator for these N 
bodies. Then if" is just a 

if" = Ho[A 1 _ €". (2.3) 

This Hamiltonian gives the energy available to the Na clus
ters when they are outside of each others' force fields and 
freely moving. The spaceW'a is the space of square-integra
ble functions in the relative coordinates that determine the 
positions of the centers of mass of the Na clusters. The oper
ator ii;, is the Laplacian in 3(1(, - 1) variables displaced by 
a (ixed energy € ", so it will only have an absolutely continu
ous spectrum. 

The mapping between (}Y' a and JY' is given by the Kato 
identification operator Ja . Letfa be any function in K a' Set 
Fa to be 

(2.4) 

then J a is defined as 

(2.5) 

The wave operator is the basic object in multichannel 
scattering. This operator maps JY' a into K. Define 

U (t) = + ilHJ -- ilii .. 
a e ae , 

then 

fl~±l = s-limUa ( ± t). 
/- -00 

The wave operators satisfy the indentities 

Hfl ~± l = fl ~± liia . 

fl (± ltfl (±) = 8 -' 
a a a/ya' 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where I a is the identity operator on JY' a' The first relation 
here, the intertwining property, is equivalent to the require
ment of energy conservation in the scattering process. The 
second property is channel orthogonality. From the wave 
operator one defines the S matrix by 

S - fl ( - It fl ( + ) (2.10) 
u{3 - a {3' 

Clearly, Sa{3 maps any initial wavepacket in JY'{3 into the 
resultant wavepacket in JY' u' The intertwining property 
implies 

(2.11) 

This is the abstract form of energy conservation for the S 
matrix. Finally, let us define a channel Hamiltonian in JY'. 
Define the sum of all pairwise potentials as V. Let 

Va= IVij' (2.12) 
i,jEal 

Here the sum runs over all al in A. The a channel Hamilton-
ian is 
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Ha=Ho+ Va' 

The definition of Ja implies 

H,,.!,, = J,,H((" 

(2.13 ) 

(2.14) 

For short range potentials, Vi)' that are multiplication
operators in coordinate space by L 2 functions, proofs of the 
existence, intertwining, and channel orthogonality of the 
waveoperators may be found in Hack4 and Hunziker.' The 
only technical feature of two-Hilbert space scattering for 
short ranged interactions that has not been given adequate 
proof is asymptotic completeness. Faddeev6 and more re
cently Ginibre and Moulin' have provided a proof when 
N=3. 

Before turning to the trace theorem we recaU the direct 
integral representation of a Hilbert space. Consider a self
adjoint operator h on a Hilbert space ,:71"'. Consider the situa
tion where h has only an absolutely continuous spectrum A. 
The direct integral representation of ,W" is denoted by 

(2.15) 

The direct integral is a generalization of the direct sum to a 
continuum of Hilbert spaces JY'A' A. being a continuous pa
rameter in the measure space A. Each t/J in JY" is associated 
with an equivalence class off unctions on JY'A' I t/JA J, where 

(2.16) 

The direct integral bears the same relation to the direct sum 
as a function of a real variable does to a sequence. For exam
ple, the scalar product for t/J,ifJ in K' is related to I t/J A 1, I ifJ A J 
by 

(2.17) 

where ( , )A is the scalar product in JYA · This correspon
dence between t/J and I t/J A J is an isomorphism. For more 
details we refer to Ref. 8. Notethatht/Jcorrespondsto 1A.t/J.-l J 
and e -- ihtt/J to Ie - iAtt/J A J. In our applications A. is the energy 
of the system and JY'A may be intuitively thought of as the 
space describing the degrees of freedom remaining in the 
system once the energy has been fixed. In the terminology of 
nuclear physics, the utility of the direct product representa
tion is that it allows one to rigorously define what is meant by 
on-energy-shell quantities. 

The theorem proved by Jauch et al. is then: 

Let VI = e -- ihl be a unitary group with self-adjoint gen
erator h and absolutely continuous spectrum A, and r an 
arbitrary trace class operator on JY". Then there exists a 
dense set DC;; JY" such that for allJ,gED, 

G [J,g] = I" 00 if, v;rv, g)dt (2.18) 

defines a sesquilinear function on D X D. If fA and g A are the 
components off and g in the direct integral representation 
with respect to the spectral family of h, then 

G [J,g] = 1 (fA,G~A)dA., (2.19) 
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where G" is an essentially unique family of trace-class opera
tors in . /Y'" for almost all A and 

1 trG"dA = 21TTrr. (2.20) 

Finally, 

(2.21) 

where Ilr II, denotes the trace norm of rand IIG" II, is the 
trace norm in dY" ofG". 

The proof of the theorem proceeds by direct verification 
for rank one operators, by immediate extension to finite rank 
operators, and finally to arbitralty trace-class operators re
presented as limits of finite rank operators. 

III. TOTAL CROSS-SECTION BOUNDS 

Determining the cross section bounds requires two 
steps. First, we give the time integral formula for the elastic S 
matrix. Then we combine the trace theorem with the N-body 
optical theorem to obtain the bound. Consider the S matrix 
first. We extend Ikebe's representation' from the two-body 
problem to the N-body problem. Let!a be in the domain of 
ila and J/c, in the domain of Ha . Let Fbe any function in ,W, 
then 

:/F,U,,(t )!) = i(F,eilll [HJ" - Jjiale- il171a). (3.1) 

Because of Eq. (2.14) the square bracket operator can be 
expressed as 

(3.2) 

where V" is defined as the sum of all interactions acting 
between the clusters in partition A. Now integrate Eq. (3.1) 
with respect to t and use Eq. (2.7) to obtain 

J
x d 

(F,[l ;,- >;;,) - (F,[l :, + >;;r> = -d if, U,,(t )fa)dt. 
- x t 

(3.3) 

Choose F = [l ~,-- Y;" where !"E W'", Define the elastic a 
channel t matrix to be 

(3.4) 

This t matrix is a bounded operator on jf?a. Recalling prop
erties (2.8-2.10) allows us to write Eq. (3.3) as 

(f~,Taa!a) = f" ao (f~,e'tiiu([l ~ - ltva Ja)e - i'ii'ia)dt. (3.5) 

Weare now in a position to apply the trace theorem. 
However the operator [l ~- ) t va Ja is not in general trace 
class on Jf?". It will become trace class if multiplied on the 
left and the right by resolvent operators. Define the function 
R V(x;z) to be 

1 
R V(x;z) = xER, ZEC, v> O. 

(x - Z)" 
(3.6) 

Under suitable constraints on the pair interaction Vij we 
establish in Sec. IV that for Z not in the spectrum of H, 

!!R V(ila;z*)[l ~-- )tvaJfi V(Ha;Z) II , < 00, (3.7) 

when v > ~ and a is a two-cluster channel. 
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Given inequality (3.7) let us see what bound results for 

T(W - T~(l' In Eq. (3.5) replace!:, by R V(Ha;z)f~ and!" by 
R \{~,;z)f,. Then Eq. (3.5)becomes 

V;"R V(il,,;z*)Ta~ V(il,,;z)j) 

-_ IX (f' il17"F itii". ) 
a,e e Ja , 

-.. ex: 

(3.8) 

where ris the operator in the trace norm of expression (3.7). 
The operator T"a appearing in the left-hand side ofEq. (3.8) 
is bounded and commutes with ila . Therefore, the direct 
integral representation for the left hand side of Eq. (3.8) is 

(r;"R \'(ila;z*)l~~ '(~,;z)f,) 

J"" (' 1'",,(E) ) 
=. f" jat:' IE _ zl2,faE dE, (3.9) 

where !!;,E I and U;,t: J are the direct integral components of 
j~ and/c, and 1'",,(E) is the component representation of 

Statement (2.19) of the trace theorem allows us to re
present the right-hand side of(3.8) as 

J'l,(f;,f:,G (E)J;tlJdE, 

where G (E) is defined by r. Let dY aE be the direct integral 
component of J7'-0a . Then on /Jr' aE' G (E) is trace class. The 
theorem of Jauch et aZ. tells us that G (E) is essentially 
unique, so that for almost all E, 

(3.10) 

This relation implies l' aa (E) is trace class in ,W' aE' The in
equality (2.21) reads then 

foo I tr1'",,(E) I dE< loa, 111'"a(E)II, dE<21TIIFII" 
-€" IE-z12v -€" IE-zI2V 

(3.11 ) 

where we used the fact that Itr1'"aCE)1 < /I l' (la(E )11.- Next, the 
optical theorem states that 

1m tr1'",,(E) = constE~,,(E), (3.12) 

where O-;~,(E) is the sum of all cross sections energetically 
open at E. In the three-body problem a proofofEq. (3.12) 
may be found in Ref. 10. For N>4 we assume the optical 
theorem remains valid, From a technical point of view Eq. 
(3.12) is almost equivalent to the statement that the multi
channel S matrix, S,,/3' is unitary. This in turn is closely relat
ed to asymptotic completeness, The constant in Eq. (3.12) is 
a function of the masses of the N particles. Thus inequality 
(3.11) becomes 

l Ye £O-;;,,(E) 3 

----;dE < 00, v> 4' 
- f' IE _ z12,' (3.13) 

At high energy the integral bound (3.13) requires the O-;~t(E) 
fall off faster than E -'12. 

IV. TRACE-CLASS OPERATORS 

In this section we prove that the operator r is trace class 
in the N-body scattering problem with two- and three-body 
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potentials. It is assumed that our local two-body potentials, 
vi} (y), satisfy the condition 

3 
(1 + 3y'Y'vij{y)EL '(y), 1 >Jl > 4' (AI) 

The variable y is the vector separation of particles i andj. Of 
course (AI) implies that vi}EL '(y), which was the condition 
needed for our statement of the waveoperator properties in 
Sec. III. When!1 is near l, (A 1) is satisfied if the power 
behavior of vi} (y) for large Y is like Iy I - 3 - 8, where £5 is an 
arbitrarily small positive number. For L ' potentials it is 
knownll that Nbody boundstate wavefunctions, tP~1 will 
satisfy 

(4.1) 

Here Yi is the position of the ith particle relative to the center 
of mass of the boundstate cluster al. The yr denote all the 
remaining coordinates and n is any positive number. 

We summarize our first result: 

Lemma 1: Let vij satisfy (AI) for all ij. Then the 
operator 

r = R "(Ha;z*)n ~ - )tvaJ~ "(Ha;z), (4.2) 

is trace class on JV a when v> land z is to the left of the 
spectrum of H, for each two-cluster channel a. 

Proof We show that r can be written as a product of 
two Schmidt operators. We first note that the intertwining 
property allows us to write r as 

r=n~- )tR''(H;z*)vap~''(Ha;z)Ja' (4.3) 

The operator Pais the projection operator defined by the 
range of J a • So P ~ a = J u' Both J a and n ~ - ) are isometries 
mapping JV a into cW'. Thus it suffices to shown that 

(4.4) 

is trace class on cW'. We introduce an operator M on cW'that 
is defined as the multiplication operator with the function 
m(x) = (1 + x') - ", !1 > l. The variable x is the vector dis
tance between the centers of mass of the two clusters in chan
nel a. Referring to Eq. (2.4), we note that x is independent of 

the internal cluster coordinates in tP~I' Thus, M commutes 
with PO' and we may write 

r/ = [R l'(H;z*)VaM-lPa][P ~R V(Ha;z)]. (4.5) 

To compute the fractional resolvent in the left bracket it is 
convenient to use 

R "(H; -I) = sinv1T rae R (H; _ /- 1l)1l - v dll. 
1T Jo 

(4.6) 

In Eq. (3.6), z* = - I, where I is positive and chosen to be 
greater than the lower bound of H. Now define 
A = R V(H;z*)VaM - IPaandB = P ~R V(Ho;z). Clearly it 
is sufficient to show A and B are Schmidt class. 

Let us consider B first. Label the two clusters in channel 
a as I and 2. The boundstate eigenfuctions are denoted by 
tPl(Yl) and tP,(y,)· Here Yl and Y2 specify all the relative parti-
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de coordinates in the two clusters. The variable x is the vec
tor giving the separation of the center of mass of the two 
clusters. The variables X,YhY, have momentum conjugates 
p,q 1 ,q2' In momentum space the kernel of PaM is found to be 

(PQ\q2IP ~ lP/q;Q;) 

= tJl(q\)tJ;(qDtJ2(q2)tJ;(q;)m(p - p'), (4.7) 

where tJl.2 are the Fourier transforms of t/J 1,2 , and m is the 
Fourier transform of m(x). Thus the Schmidt norm of B is 
given by 

liB II~ = f l!fl(Q\)!fl(qD!f2(q2)!f2(q;)m(P - P'W 
Ip2+q~+Q~_zI2V 

Xdp dp' dql dq2dqi dq2' (4.8) 

where p 2, qi, and q~ denote the kinetic energy for relative 
cluster motion, the internal motion of cluster 1 and 2, respec
tively. Define I (v) to be the integralS1P2 

- zl- 2vdp. The 
integral I (v) is finite if v> l' The total kinetic energy satisfies 
the obvious inequality p2 + q~ + q~>p2. This implies Eq. 
(4.8) gives the bound 

(4.9) 

where we have used IImll = IImll and II!full = 111/11,211 = 1. 
It remains to show that A is Schmidt class. The interac

tion va is the finite sum of terms Vi} where i is in cluster 1 
andj is in cluster 2. Consider one of these terms Vi}' deter
mined by the potential function Vi/T/i)' Here T/ij is the rela
tive separation of particles i andj. Let Yi and Yj be the posi
tions of particle i and j measured from the center of mass of 
clusters 1 and 2. Denote By y~ and Yj the remaining inde
pendent cluster coordinates. The coordinate space kernel for 
the operator Vi#-lP)S 

<X'Yl'Y21 V uM-1Palx',Yi,Y;) 

= S(x - x')D (X'Yl'Y2)t/J~(y;)t/J;(y2)' (4.10) 
where 

(4.11) 

We observe that condition (AI) for vi} impliesD isL 2. To see 
this note that x = Yi + Yj + T/i}' Thus, 

I + x'.;;; 0 + 3y;)(I + 3yJ)(1 + 3T/~), (4.12) 

so D is bounded by the product of (I + 3 yfr I tPl (y i;Y~) I, 
(1 + 3y]r1t/J'(Yj'Yj) I and (1 + 3T/~rlviJ{T/i})I· Then condition 
(AI) and Eq. (4.1) D is L 2. 

To complete the proof that A is Schmidt class, Fourier 
transform expression (4.10). We have 

<pq\q21 V uM-1PaiP'q;q;) 

= jj (p - p' ,q\,q2)!f~(qJ)!f;(q2)· (4.13) 

Proceed, as with the estimate of B, and use the fact that 
R (H; -/)VisaboundedoperatortimesR (Ho; -/)V. Then 

IIR (H; -l)VaM -IPa ll 2 <const/- 1/4. (4.14) 

Combining Eqs. (4.6) and (4.14) shows that A is Schmidt 

class if VE(~, 1). This completes the proof. 
4 

I t is of some interest to see if the addition of three-body 
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forces alters our integral bound on afot(E). Denote by Vijk 
the three-body interaction between particles iJ and k. We 
require that the Vijk satisfy' 

JIVijd71ij,17ik )1 3 
+ Ed71yd71ik < 00, E>O, (BI) 

and 

(B2) 

for all71ik and all labels iJ and k. The first condition ensures 
that the scattering theory of Sec. II remains valid. Property 
(B2) has a simple physical interpretation at large particle 
separation. When the distance between i and k is held fixed 
and /.l is near ~, then the three-body potential must decrease 
faster than 17;; 3. 

The only part of our proof that needs reconsideration is 
demonstrating that the operator A is Schmidt class. Take 
particles i and k to be in cluster 1 andj in cluster 2. The kernel 
for the V;jk contribution to A is again given by expression 
(4.10), but with D replaced by D, where 

Dlx'Yl'YZ) = Vijk(1Jij,71id(l + x 2f¢l(Yl)¢iY2)' (4.15) 

We must establish that D, is in L 2• Using Eq. (4.12) we see 

thatD1 is bounded by the product of IVijk(1Jij,1Jik)(1 + 31J~fl, 
l¢bi,y7)(1 + 3y;fl and 1¢2(Yj'Yj)(1 + 3yjfl. The measure 
for the L 2 integration may be taken as d71 ij dYI dY2' Condition 
(B2) ensures that the first factor integrated over d1J ij is 
bounded by M 1• Condition (AI) implies that the last two 
factors are L 2 with respect to dYI and dY2' Thus we have 
demonstrated: 
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demonstrated: 

Lemma 2: Let vij satisfy (AI) and Vijk satisfy (BI) and 
(B2) for all iJ, and k. Then for each two-cluster channel a the 
operator r is trace class when v > ~ and z is to the left of the 
spectrum of H. 

This means, of course, that our discussion in Sec. II is 
not altered and that three-body forces of the type (BI), (B2) 
do not effect the integral bound obtained there. 

In closing we note that for potentials in class (A I) simi
lar trace class estimates for operators analogous to r have 
been found by Simon.12 The operator appearing in Simon's 
work has the resolvents of Eq. (4.2) replaced by spectral 
projections of fia on finite energy interval. 

'I.M. lauch, K.B. Sinha, and B.N. Misra, Helv. Phys. Acta 45,398 (1972). 
'co Chandler and A.G. Gibson, 1. Math. Phys. 14, 1328 (1973). 
'Ph. Martin and B. Misra, in Scattering Theory and Mathematics Physics 
(Reidel, Dordrecht, 1973); Ph. Martin and B. Misra, 1. Math. Phys. 14, 
997 (1973). 

'M.N. Hack, Nuovo Cimento 13, 231 (1959). 
'W. Hunziker, in Lectures in Theoretical Physics, edited by A.D. Barut and 
W.E. Brittin (Gordon and Breach, New York, 1965), Vol. X-A. 

'L.D. Faddeev, Mathematical Aspects o/the Three-Body Problem (Davey, 
New York, 1965). 

'I. Ginibre and M. Moulin, Ann. Inst. Henri Poincare 21,29 (1974). 
'M.A. Naimark and S.V. Fomin, Am. Math. Soc. Transl. Ser. 2, 5, 35 
(1957); L.H. Loomis, Introduction to Abstract Harmonic Analysis (Van 
Nostrand, New York, 1953). 

'T. Ikebe, Pac. 1. Math. 15, 511 (1965). 
'''T.A. Osborn and D. Bolle, Phys. Rev. C 8, 1198 (1973). 
"A.I. O'Connor, Commun. Math. Phys. 32, 319 (1973); I.M. Combes and 

L. Thomas, Commun. Math. Phys. 34, 251 (1973). 
"B. Simon, Commun. Math. Phys. 55, 259 (1977). 
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Using purely algebraic techniques, based on the larger symmetry group of the Kepler 
problem, the phase shifts and the scattering amplitude for Coulomb scattering in N 
dimensions are derived. 

I. INTRODUCTION 
The N-dimensional analog of the ordinary hydrogen 

atom has been discussed extensively in the physics litera
ture. l The focus of these studies has generally been on the 
larger symmetry group and on the spectrum. The scattering 
problem in N dimensions seem~ not to have been discussed 
so far. Some time ago Biedenharn and Brussard' and Zwan
zigerJ pointed out that the nonrelativistic Coulomb phase 
shifts can be calculated solely with algebraic techniques. 
This work represented a novel introduction of group theory 
into the study of scattering problems in the sense that sym
metry properties are employed as tools for treating the dyna
mics is of scattering .. We shall be guided by Zwanziger tech
niques in our strictly algebraic derivation of the phase shifts 
and the scattering amplitude. 

We begin with a brief review of the N-dimensional 
Kepler problem. Next, the scattering states are defined and 
some needed matrix elements are derived. Finally, the phase 
shifts and the scattering amplitUde are evaluated. 

The simplest extension to N-dimensions of the thr~e
dimensional Kepler Hamiltonian in the center of mass frame 
is 

p' a 
H=---, n=l, 

2m r 

where r = (xl,x" ... x N), P = (PloP" .. .pN)' and 

s a 
r' = L xT and Pi = - i-. 

i- 1 aX i 

(1) 

The usual canonical commutation relations holds, [Xi ,Pj] 
= i8'i' where i,j = 1,2, ... ,N and all other commutators 

vanish. 

The generators of the N-dimensional rotation group are 
defined to be 

Lij = XiPj - XjPi' i,j = 1,2, ... ,N. (2) 

As expected, a generalized Runge-Lenz vector exists 
for this problem also and is given by 

1 [2 .( N - 1 \" ] aX i 
= m XiP - plx,p) + I --2-jYi - -r-' (3) 

These operators satisfy the following set of commutation 
relations: 

[LU,L k/ ] = i(8ikLjI + 8j/.- ik - 0i/'-jk - 0jkLi/), (4a) 

[Ai.Aj] = iLij( - ~). i,j = 1, ... ,N, (4b) 

[Lij.Ad =i(8i1~j-8jkA), (4c) 

[Ly,H] = [Ai,H] = 0. (4d) 

Since H commutes with both the Ai's and the Lij 's, we 
can replace H in these relations by its eigenvalues E when
ever we are working in fixed energy subspaces. Therefore, 
for each fixed energy subspace with E < ° (bound states), we 
define a new set of operators Li,x + 1 as follows 

( 
m )112 

L,.N I 1- - LN ~ I.i - 2£ Ai' (5) 

Replacing the set l Ail by l L i.N + 1 l in Egs. (4a), (4b) 
and (4c) we obtain the Lie algebra of the group SO(N + 1). 
As expected, we would have the usual SO(4) symmetry in 
three dimensions. 

The generators L'i' with i,j = 1, ... ,N, N + 1, satisfy a 
representation relation, analogous to the three-dimensional 
counterpart L·A = 0, namely, 

L;j~kl- LikLjI + LjkLi/ = 0, 

for i=l=I=l=k=l=k, 1,2, ... ,N, N + 1, (6) 

as can be checked with a simple calculation. As LouckS has 
shown, the above relation characterizes the generators of 
orbital angular momentum. Moreover, the number of in de
pendent commuting operators is reduced from [(N - 1)/2)2 
for the case where N + 1 is even to N [for N + 1 odd, is 
reduced from N (N + 1)/4 to N]. The states in such an irre
ducible orbital angular momentum representation of 
SO(N + 1) may then be characterized uniquely by the set of 
eigenvalues of the second order Casimir operators L ~, 

1 ex 
L~ = -ILt, a = 2,3, ... ,N, N + 1, 

2 iJ 
(7) 
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and the eigenvalues of LIZ in the subgroup chain 
SO(N + l)~ SO(N)-··~ SO(2). The eigenvalues of these 
operators are given by: 

L ;IIN + ],IN, ... ,la,.·.,m) = la(la + a - 2)1"'!u"-)' 

LI2IIN + ],/N'·· ... ·,m) = mlln + ] ...... ,m), (8a) 

where the la's are integers satisfying 

(8b) 

A concrete realization of these representations can be given 
in terms of the hyperspherical harmonics. The la then repre
sent the degree of homogeneity of the harmonic polynomial 
in the first cx dimensions. 

The bound state energy spectrum can now be obtained 
easily if we notice that L ~ + ] is given by 

L 2 = L 2 _..!.!!...- A 2 = _ ( N - 1 )2 _ a
2
m . (9) 

N+] N 2E 2 2E 

combining these relations with the eigenvalue equations (8) 
we find the well-known result, 

a 2m 
E= , 

2 [ ! N + ] + (N - 1)/2] 2 

(10) 

where IN + 1 takes on integer values from zero up. 

Thus far, we have discussed the bound state case where 
E is negative. The scattering states, however, are character
ized by positive eigenvalues E of the Hamiltonian 

k 2 

E=->O. (11) 
2m 

We have defined the operator Li,N + I by Eq, (5), how
ever this relation no longer defines a Hermitian operator. 
The appropriate modified definition is 

(12) 

Therefore, the commutation relations (4a)-( 4c) are replaced 
by the following ones: 

[LJJ'Lkl ] = i(bi~jl + bj~ik - bi~jk - bjl,Li/), 

[L:N + pL iN + 1] = - iLij' i,j = 1, ... ,N, 

[Lij,L k .. ", + I) 

(l3a) 

(l3b) 

= i(bi~ J~N + 1 - bj~ Lv + I)' i,j,k = 1, ... ,N. (13c) 

These relations define the Lie algebra of the noncom
pact group SO(N, 1). Again, we would just have the expected 
symmetry group SO(3, 1) in 3-space. 

TheSO(N + l)Casimiroperator L ~ + I' Eq. (9), nowis 
replaced by the SO(N,l) Casimir operator L 'J+ l' 

L'2 =~A2_L2= ___ -__ am . 2 (N 1 )2 2 2 

N+I k2 N 2 k2 

Then the eigenvalues I Iv + I of L 'ri + 1 in the new subgroup 
chain description SO(N,l) ~ SO(N)··. :J SO(2) are thus 
just 

I , . m (N-l) 
N+ 1 =ICXT- --2- . (14) 

This result shows that the continuum belongs to the princi
pal series of the group SO(N, 1). b 
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II. SCATTERING STATES ANn MATRIX 
ELEMENTS 

Ordinary, the Coulomb phase shifts are derived by con
structing incoming and outgoing scattering states in para
bolic coordinates. Our ability to separate the Hamiltonian in 
both spherical and parabolic coordinates is intimately con
nected to the higher symmetry of the Kepler problem. A 
separation in parabolic coordinates corresponds to a diagon
alization of an alternate complete set of operators. In three 
dimensions, this means that we simultaneously diagonalize 
the following set of operators: (H, L 2, L I2 ) for an spherical 
quantization and IH,A , = LJ4,L12l in a parabolicone. 1 With 
this hint, we can consider in N dimensions the complete set 

of N commuting operators; L .'J + I,L :V.A· + I'L ~ . I,L 12 • Note 
that we have just replaced L t by L ,'v.N + l' 

The generator L :V.N + 1 unlike L ~ is diagonal on the 
special in and out scattering states which at x N - + 00 or 

x N ---+ - 00 are asymptoticaIIy moving as plane waves/k
<, of 

momentum kX.", parallel to the x", axis. Using Eq. (12) and 
(3), we find that for the asymptotic plane wave forms of the 
in and out scattering states 

L :v . ." + II Vtk :::J!) = ; AN IlJik :~Jt) 

[ am .(N - 1 )]IJT' in) = ±T+ 1 --2- 't"kout· (15a) 

In addition, the action of the other operators on the as
ymptotic plane wave states is 

L ;,1 Vtk :~ut) = L lz \ Vtk :~:J!) = 0, a = N - 1, ... ,3. (I5b) 

Even though the in and out states take on these asymptotic 
plane wave forms only at the earliest times t->- - 00 for the in 
state or the latest times t->- - 00 for the out state, these ei
genvalue equations at very early or late times are valid at all 
times, since the SO(N, 1) Lie algebra commutes with the 
Hamiltonian. 

Since a partial wave expansion corresponds to expand
ing the in or out scattering states in terms of the orbital angu
lar momentum states, Eq. (15b) tells us that only states of the 
form [/~. +- l' lv, 0, ... ,0) can appear in this expansion. Phys
ically, this means that we do not have an angular dependence 
(except on e,v 1) in the scattering amplitude. The in and out 
states can be expanded as 

\Vtk :::iI)= f al,:::illl;"'-t 1,1",0,0, ... ,0) f aJ.:.Jk,l) 
I, ~ U ,{ c () 

(16) 
We have simplified the labeling of the state I/,~ + 1'/",,0, ... ,0) 
by replacing it with \ k.1 ). The label k indicates that we are in 
a subspace of fixed energy E = k '/2m and the label 1 has 
replaced the orbital angular momentum parameter lv' 

In order to find the phase shifts, we need to evaluate the 
matrix elements of L :V,tv + 1 between scattering states. These 
matrix elements can be obtained from those given by Louck 
for the SO(N) groups in the following way. We take his ma
trix elements and make an analytical continuation in the 
SO(N + I) representation parameter IN + I to the SO(N, 1) 
representation parameter I Iv + I in them. We find' 
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.[1 ',,(1 '" + N - 3)[ [l ',,+ (N - 3)/2]2 + a 2m2/k2] ]112, , + I IIN+ I'/N - 1,0, ... ). 
(21'" + N - 2)(21'" + N - 4) 

(17) 

With these results we can now evaluate the coefficients aX' of the partial wave expansion (16) for the scattering states. In 
PUI 

fact, from Eq. (15) and (16) we have 

L ' 1"/in) (N-l ')I'Tlin) ~ inL' Ik1) 
N.N + 1 Y'k out = --2- ± lq Y'k out = A~oaA<H" N.N + 1 ". , (18) 

where we have definedq to beq am/k =qin. Clearly if we find aT, thena~ut can be obtained from aT by replacingqby - q in 
it. 

Using Eq. (17) together with Eq. (18), we can establish the following recursion relation for the partial wave coefficients 
a in . 

A' 

[ 
N - 1 _ i lain = _ (A (A + N - 3){[A + (N - 3)/2)2 + q2})1I2ain 

2 q A (U + N _ 2)(U + N _ 4) A-I 

[ 
(A + 1)(,1, + N - 2){[A + (N - 1)/2)2 + q2}] 112 in 

+ (U +N _ 2)(U +N) aA + l' 
(19) 

The solution of this recursion relation is easily obtained and reads as follows 

a in = (U + N - 2)(,1, + N - 3) [A + (N - 3)/2 - iq]!) 1I2a
o 

A A! [A+(N-3)/2+iq]! 
(20) 

where ao is an arbitrary constant that can only depend on k and must be real. As one expects this result agrees with the one 
given in Ref. (3) for the three-dimensional case. 

From the definition of the S matrix: 

(21) 

and knowing that the problem is invariant under rotations, 
i.e., that S is diagonal in the angular momentum representa-

tion: S \k,A > = SA Ik,A >, with SA = e2i8
" we find that. 

(22) 

Combining this relation with the results obtained in Eq. 
(20) we obtain the desired phase shifts: 

[A + (N - 3)/2 - iq]! 

[A + (N - 3)/2 + iq]! 
(23) 

We see that the analytical structure of this expression 
provides us with the correct energy spectrum for the N-di
mensional analog of the hydrogen atom [see Eq. (10)]. Also, 
as one expects, this result agrees with the well-known three
dimensional result. 

The next question that one can ask concerns the scatter
ing amplitude. Recently Adawi9 has considered the scatter
ing amplitude for an arbitrary central potential in an N-di
mensional space. From his results and specifying that we are 
dealing with a "Coulomb potential," one obtains for the par
tial wave expansion of the scattering amplitUde: 

j(Nl(f)) = _ i2G 
- lr(a)[ 2 ) 112 

rrk 2a + 1 
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00 2~ 
X L (a +A)C~(cosO)e '", (24) 
A~O 

where a=(N - 2)/2 and C~(cosO) are the spherical har
monics of Gegenbauer. This expression reduces to the well
known expansion when N is set equal to three, namely 

/(.1\0) = ~ I (U + l)e2iDAPA(COSO). 
2k A ~o 

We need to point out that this expansion, as J.R. Tay
IoriO has shown, does not converge in the usual sense, but 
does converge in the sense of distributions. Thus one can 
expect that the same problem will occur in our N dimension
al Coulomb problem. In other words, we must consider the 
expansion (24) as a formal one. 

If we use the relation 11 

1 - p _ 22A .- p r (A )F (A - P + 1) 
( - x) - --;;.tn rep) 

and the phase shifts given in Eq. (23), we can carry out the 
sum in Eq. (24) and thus finally obtain the scattering 
amplitude 
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(N)(8) __ 1- 1 
f - k [2k](N-I)12 [sin2(8/2)](N-I)12 

r«N - 112) - iam/k) iam 1 . 2 () 
X exp-- nsm -. r (1 + iam/k ) k 2 

(26) 
This expression reduces for N = 3 to the usual Coulomb 
amplitude. 

As a final remark, we would like to point out that we 
have obtained the result exhibited in Eq. (26) also in a differ
ent way i.e., by directly separating the Schr6dinger equation 
in parabolic coordinates, as one usually does for the three
dimensional case. This result is not surprising as we pointed 
out earlier, since the fact that the equation can be separated 
in this set of coordinates is a consequence of the SO(N + 1) 
symmetry of this problem. 

lSee for example the references given by M. Bander and C. ltzykson, Rev. 
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The relationship between Foldy-Wouthuysen and Lorentz transformations has been 
clarified throughout this paper. We propose a generalized FW transformation 
connecting two particular realizations of the (m ,j) representation of the Poincare 
group: the covariant realization and a canonical realization acting on relativistic 
probability amplitudes. Fermions and bosons must be considered separately because the 
intrinsic parity of the particle-antiparticle systems is ( - lyJ. Thus for fermions we can 
directly take the 2(2j + 1) - dimensional Joos-Weinberg covariant realization, while for 
bosons we must double it to get a reducible 4(2j + 1) - dimensional realization where 
particles and antiparticles lie in orthogonal subs paces. In short, in momentum space the 
FW transformation is the matrix representing a Lorentz boost times the factor 
(m/po)'!2, while in configuration space the FW transformation does not belong to the 
Poincare group. The last part of the paper is devoted to getting quantum-mechanical 
representations of the Galileo group as a contraction of Poincare group representations 
by using mathematical methods earlier developed by Mickelsson and Niederle. The 
relevance of our generalized FW transformation for getting a smooth, well defined, 
nonrelativistic limit is a remarkable result. 

1. INTRODUCTION 

The aim of this work is threefold: (i) to clarify the rela
tionship between Foldy-Wouthuysen (FW) and Lorentz 
transformations; (ii) To study--using rigorous mathemat
ical methods-the nonrelativistic limit for arbitrary spin 
particles by means of contracting representations from the 
Poincare (9) to the Galileo (:1) group; and (iii) To analyze 
the link among FW transformations, nonrelativistic limit, 
and probabilistic interpretation of wavefunctions. 

Since Foldy and Wouthuysen built up-in their famous 
paper I-a unitary transformation passing from Dirac to ca
nonical equation 

i ~ tjJ = /3w( - i\l)tjJ(x) at 
for spin-! particles, several generalizations of this transfor
mation for higher spins have been proposed. Let us empha
size the main features of the original FW transformation: (a) 
It is unitary in the ordinary sense,> that is U t = U- 1

; (b) it is 
related in a direct way to Lorentz boosts; and (c) it diagona
lizes the Dirac Hamiltonian eliminating in this way odd op
erators. These three features have already been included in 
the different generalizations of FW transformations for 
higher spins. Thus, Ramanujan3 and Tekumalla and Santh
anaman4 have defined unitary FW transformations starting 
from canonical wavefunctions. However, as it has been 
pointed out by Jayaramanan,' it is not possible to get local 
covariant wavefunctions, Eq. (25), by applying a unitary 
transformation to canonical wavefunctions, and so general
ized FW transformations are not allowed to be unitary. In 
fact the unitarity of the FW transformation for spin 1/2 is, 

purely accidental, a consequence of the Lorentz invariant 
scalar product for Dirac wavefunctions, in the configuration 
space, whose metric operator is the unity. 

On the other hand, a generalized FW transformation 
has been associated to Lorentz transformations passing from 
rest to laboratory covariant wavefunctions by Weaver, 
Hammer, and Good, in a classic paper, 6a and, independent
ly, by Matthews. 6b However the work of these authors is 
lacking a clear group-theoretical interpretation. In fact the 
original motivation for FW transformation was to perform 
the nonrelativistic limit c---+ 00 starting from covariant 
wavefunctions. Nevertheless getting the canonical equa
tion-and subsequently an Euclidean scalar product in con
figuration space-is not enough to carry out a nonrelativistic 
limit with a finite answer over group transformations. As we 
shall see later there is an infinity of ;;? realizations obeying 
the canonical equation, but only one of these having an asso
ciated probabilistic interpretation, is suitable to peliorm the 
nonrelativistic limit. The distinction between fermions and 
bosons, implemented by the requirement of causality in sec
ond quantization, was pointed out by Nelson and Good, 7a in 
a review paper, and by Hammer, McDonald, and Pursey, 7b 

in a subsequent article. However these authors 7b prove that 
Foldy's transformed ofWHG wavefunctions do not obey the 
canonical equation for bosons. Thus, in order to overcome 
this difficulty, a different realization will be given for bosons, 
and FW transformations will be considered separately for 
fermions and for bosons. 

Recently Krajcik and Niet08 gave an abstract definition 
of FW transformation as a pseudounitary transformation 
diagonalizing a pseudo-Hermitian Hamiltonian in a space 
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with indefinite metric. These authors have studied the exis
tence conditions proving that such a transformation does 
exist, and it is related to Lorentz transformations, for a class 
of first order relativistic equations without constrains. We 
shall not adhere to this approach but, instead, we shall find 
explicit solutions for generalized FW transformations with 
the Hamiltonian in diagonal form. 

In the present work we study the problem from a group
theoretical point of view. Since Wigner's classic paper9 uni
tary irreducible representations (UIR) of the Poincare group 
are well known. In fact, a UIR is specified by two indices, 
coming from the two invariants of 9: m andj (m being the 
mass andj the spin of the associated particle). However in 
order to specify a particular realization we need to fix a cor
responding functional Hilbert space by means of a wave 
equation and an invariant scalar product which makes the 
realization unitary. Moreover two different realizations of 
the same representation (m,]) are related by a similarity 
transformation. In the following we shall consider finite 
mass and arbitrary spin representations. 

Following the Mackey theory of induced representa
tions lO

•
11 we can display two kinds of realizations for a given 

representation (m,}) of ,U}J :(a) Covariant realizations, char
acterized by a local transformation law as 

U(a,A )¢(x) = ,qJv\A )¢<A -I(X - a» 

and, (b) Wigner realizations, characterized by a non local 
transformation law 

U(a,A )<P(x) = ,qJv)(B P- IABk,p)<P <A -I(X - a», 

where p = - i\l, B p- I AB A'p belongs to the little group of 
(m,O) and (a,A ) stands for an element of 9. Only for the spin 
zero case, ,qJ(O)(A) = 1, both realizations coincide. 

In other respects, neither covariant nor Wigner wave
functions have a direct probabilistic interpretation. Howev
er, as we shall see along this work, by making use of Newton, 
Wigner, and Wightman'S localizability theoryI2 it is possible 
to construct functions rp(x)-representing probability am
plitudes for finding the particle at point x-from Wigner 
functions. Because the relevance of the probabilistic inter
pretation we shall introduce a third realization of the (m,}) 
representation of 9 over amplitudes. 

In this way we shall define the generalized FW transfor
mation of a mass m spinj particle as that transformation 
mapping a covariant realization of 9 into a realization over 
amplitUdes. With this definition, the FW transformation is 
unique and composed by two transformations: a Lorentz 
boost passing from the covariant to Wigner realization, and 
a second transformation mapping Wigner functions into 
probability amplitudes. 

In this work we shall construct generalized FW trans
formations starting from the Joos and Weinberg l ) 2(2j + 1)
dimensional realization corresponding to ,qJ V)(A )-
= DO.O)(A ) $D(oJ)(A ). The doubling of the dimensionality 
is necessary when we wish to represent the full Poincare 
group-in particular the parity-and not only the proper 
orthocronus group. 
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Starting from this point of vie\\', it is easy to convince 
oneself that a clear distinction between fermions and bosons 
does emerge. This is due mainly to two facts: (a) The intrinsic 
parity particle antiparticle is ( - 1) 2j

, as has been pointed 
out above, and (b) The parity operator is represented in the 
J oos-Weinberg realization by the /3 matrix, with eigenvalues 
± I, each one corresponding to a (2j + 1 )-dimensional sub-

space.1I Thus the nonlocal condition Po> 0 (po < 0) specifying 
particle (antiparticle) orbits can be replaced, for fermions, by 
the positive (negative) parity condition. In this way for half
integer spin representations in Weingberg realizations, fer
mions and antifermions do appear in orthogonal subspaces 
corresponding to the eigenvalues + 1 and - 1 of the parity 
matrix. On the other hand, for integer spin representations 
in Weinberg realization, bosons and antibosons are in the 
same subspace because the intrinsic parity is + 1 in this 
case. We can summarize the distinction between fermions 
and bosons in the following way: To separate a particle and 
an antiparticle is equivalent to separating parity eigenstates 
for fermions while this is not true for bosons. As we shall see, 
this difficulty for bosons can be solved starting, from a 
4(2j + 1 )-dimensional covariant realization where particle 
and antiparticle states are separated from the very 
beginning. 

Regarding the nonrelativistic limit, Inonii and Wignerl4 

studied a limiting procedure between Lie algebras-called 
contraction-which was applied to get Galileo algebra from 
Poincare algebra. Several problems where left open in In
onii-Wigner's work. In particular: (a) The contraction was 
not well defined for the group but only for the algebra. (b) 
The relation between 9 and ;5 representations was not de
fined. A first step towards the enlargement of the definition 
to the group was given by Saletan l5 while a rigorous math
ematical definition of group contraction is due to Mickelsson 
and Niederle. 16 These authors also gave the mathematical 
prescriptions for contracting representations. Finally a gen
eralized contraction for Lie algebras has been studied by 
Doebner and Melsheimer,17 where the power of the contrac
tion parameter is no longer constrained to be equal to one. In 
this work, using Michelsson and Niederle prescriptions we 
are able to contract [7 representations into ;5 representa
tions for finite mass and arbitrary spin. The essential features 
of this contraction are already present for spin less particles 
and were studied in more detail in a previous paper. 18 The 
fundamental point for contracting representations is to find 
two representation spaces, for both groups, related by a simi
larity transformation depending on the contraction param
eter (c in this case) in such a way that, in the contraction limit 
(c_ 00), the realization of a group goes to the realization of 
the other. In our case this role is played by probability ampli
tudes. We can compute the transformation mapping relativ
istic into nonrelativistic probability amplitudes. This trans
formation is the identity in momentum space while it is 
given, in the configuration space, by a rather complicated 
expression, Eq. (99). 

Let us remark that starting from a true representation 
of & we can get nontrivial projective representations of ;5 
having a quantum-mechanical interpretation. 19 
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2. REALIZATIONS 
A. (2j + 1) component representations 

Let us consider here the restricted Poincare group g; 1+ 

whose unitary irreducible representations (UIR) are widely 
known since Wigner's work. 9 Thus a mass m. spinj particle 
is represented by a (2j + 1) component wavefunction 
aa(p)«(7 = - j •... J} transforming under elements 
(a.A IE & 1+ as follows: 

(u(a.A)a Up) = eJPaD~~,(B;,- 1AB,t'p)aa.(A -'p). (1) 

where D (j) is the (2j + 1 )-dimension UIR of the three-space 
rotation group, Bp is the boost transforming the 4-vector 
p = (m,O) to p = (w,p). with w = (P2 + m2)'12, and the rota

tion B;' 1B A'p belongs to the little group of p. Summation 
over repeated indices will be understood from now on, 

The invariant scalar product for Wigner functions can 
thus be given as 

(2) 

Hence the components W-'/2a,,(p) should be square-integra
ble functions ofp. Complex conjugated Wigner functions a;, 
will transform with the corresponding complex conjugate 
representation of the rotation group given by 

(3) 

C being a (2j + 1)2 matrix characterized by the properties 
C *C = ( - ) 2j and C+C = 1, and whose explicit representa
tions we do not need. A mass m, spinj antiparticle will be 
represented in this way by the wavefunction b ;,(p) trans
forming under I a ,A IE /j) I~ as 

[u(a,A)b *lJp) 
= e il'a{CD U)(B- lAB )C-'} ,b ',(A -'p). (4) p ,1. Ip ua (T 

Taking as the starting point the Wigner functions a" (p), 
Weinberg'1 defines two covariant wavefunctions al/ (p) and 

(3" (p) 

a,,(p) = u,,(p,p)a/p), 

(31/(p) = v ,,(p,p)b ;,(p), 

(Sa) 

(5b) 

the covariant spinors Un. Vn being constructured by the fol
lowing boosting procedure: 

un(P,p) = Dnm(BI')um(p) 

vip,p) = Dnm(Bp)vm(P')C-'p'p' 

(6a) 

(6b) 

where um (P) is the mth row of a Pauli spinor associated to 
the state with a third spin component, p, and D n", (A ) being 
any Lorentz group representation such that D (R ) contains 
the component D (i>R. This means that the representation 
applies to the spinors u«(7) in the usual quantum-mechanical 
way 

D'lnlR )um «(7) = u,,«(7')D~?,,(R), (7a) 

D",,,(R )v",«(7) = vl/(u')D ~!,,(R ). (7b) 

Using Eqs. (1), (4), and (5)-(7) we translate into covariant 
function language what was said about the trasnformation of 
Wigner functions 
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[u(a,A)a In(P) = eipaDnm(A )am(A -'p), 

[u(a,A )(3L(p) = e - ipaDnm(A )(3m(A -'p). 

(8a) 

(8b) 

Let us now restrict the above considerations to two im
portant UIR of the Lorentz group. 

(a) Representation (j,0) characterized by the following 
choice for the algebra: 

JU,O) = J, K(J·O) = - iJ, (9) 

where J are the (2j + 1)-dimensional matrices of the SU(2) 
algebra, and D (j}(A ) will denote the matrix representation 
of the finite element A, in particular, 

D (j)(Bp) = exp{~ e}, with Ipi = (mc) sinhe. (10) 
Ipl 

The condition D'l/n(R ) = D ~:"(R ) along with Eqs. (7) per
mits one to choose for the rotation basis 

u,,((7) = 81/" = - v/(7). 

In the configuration space we can build a covariant 
wavefunction 

X {aJp)e ipx + (3,,(p)e ipX }, 

(II) 

(12) 

where al/ and (3" are the Weinberg functions (5) associated 
to the representation (j,0). cP n (x) transforms covariantly un
der .'? 

[u(a,A)¢ ],,(x) = D~;JA )¢IIl(k'(x - a». (13) 

(b) Representation (O,j) characterized by the following 
choice: 

J(o.j) = J, K(o.j) = iJ. 

Let us denote by D(j\A) the matrix representing A 

D(j)(A ) = D U\A -'Yo 

(14) 

(15) 

Thus for rotations both representations coincide, and the 
relations (7) and (10) are also valid in this case. However the 
corresponding definitions for covariant functions eX nand tJ" 
are given in terms of the (O,j) covariant spinors 

UI/(p,p) = D~,~~.(Bp)u",(P), (l6a) 

v,,(P,p) = D~,~~.(Bp)vlll«(7)C"I' 1, (16b) 

.0 being, according to (\5), 

D( il(B ) = exp (~ e) = D Ul(B . 1). (17) 
p Ipl p 

In configuration space we can write in analogy to (12), a 
covariant wave function 

d>,,(x) = (21Tt112(mc)'1l 

f d3p A 

X - {eX,,(p)e 'I'X + ( - )2j(3,,(p)e ipx }. 
0) 

(18) 

It was necessary to insert the factor ( - ) 2j in (18) in order to 
get the correct commutation relations between the fields. As 
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we shall see in the following, this factor will be of the utmost 
importance in writing the FW transformation between 
antiparticles. 

B. 2(2j + 1) component representations 

Niederer and O'Raifertaigh11 showed that a linear im
plementation of parity is possible if and only if there exists a 
pseudo unitary representation u(A ). In other words, u(A ) 
should verify 

u teA )1]u(A ) = 1] (19) 

with 1]2 = 1,1]+ = 1], where 1] is the parity matrix, that is, 

mp(p) = 1]¢(jj), 

with p = (w, - p). 

(20) 

We shall next see that the pseudounitarity condition 
can be fulfilled by the direct sum D(j.O) (fJD(O,J). It is thus 
convenient to assemble both functions tPn and In in a 
2(2i + I)-component function, for instance 

1/J(x) = 2-112 (tP (X»). 
tf(x) 

This can be written as 

eft(x) = (21Ttlll(mc)11l 

where 

eft< + l(p) = L U (p,a) a(p,a), 
a 

eft ( - )(p) = 2: V (p,a) b *(p,a), 
a 

with the 2(2i + 1 )-dimensional spinors given by 

U (p,a) = g;(j) b *(Bp)U (0), 

V(p,u) = 9;(J)(Bp ) V(u). 

i1J(j) is the representation (j,0) (fJ (O,)), that is 

(

D(J)(A) 0) 
§(j)(A) = ° 

D (j)(A -I)t 

which fullfills the pseudounitarity condition 

i1J U)(A t = 13 g;(j\A-').B 

- (0 1) with/3 = 1 0' 

Finally the four spinors U and V are simply given as 

U (u) = 2- 112 (U(U»), V (u) = _ 2-1/2 c (U(u'). ) 
u(u) ao' (_ )2J u(u') 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

= _ 2-1/2 (U(U) ) (28) 
( - ) u(u) 

Each branch of the hyperboloid p2 = m 2c2 transforms 
according to a separate representation of !!.P, therefore two 
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independent invariants can be drawn out of eft(x). Moreover 
eft ( + )(p) and eft( - )(p) belong the same representation of 
SL(2,C), so that we can write (11) 

(eft}) eft2) 

= f d: {eft~+)t.B eft~+) + E( - )2j eft~-)t t3 eft~-)}, 
(29) 

Only in the case where E = + 1 the invariant is positive defi
nite, A further analysis of this invariant shows that for 
E = ( - ) 2j + I it is local in configuration space, explicitly 

(eftlt eft» = i(21Ttl 

X f d1x {eftt(X).B.p2 (x) - .pI (x).B eftlx)} (mctl, 

(30) 

while for E = ( - ) 2j it is non-local. As a consequence only 
for fermions a local invariant does exist which is positive 
definite, unlike the case ofbosons where we should decide 
between positivity or configuration space locality. The treat
ment for fermions will be clearly different of that for bosons, 
as will be patent in the next section. 

3. FOLDY-WOUTHUYSEN TRANSFORMATIONS 
FOR ARBITRARY SPIN 

In the above paragraphs we noticed the fact that repre
sentation (j,0) (fJ (O,}) has room for both fermions and bo
sons. Here we shall be concerned with the possibility of sepa
rating particles and antiparticles [for instance, putting 
particles (antiparticles) in the (2i + 1) upper (lower) dimen
sional subspace]. Let us introduce the representation !iJU) 

equivalent to g;(j) 

§(J)(A) = Si1JU)S-I, (31) 

where S is the unitary transformation 

S = 2-112 (1 1). 
- 1 I 

In this new representation the wavefunction (22) reads 

I/t(x)_Seft(x) = (21Ttll2(mc)1/2 

with 

and 

I/t~ + l(p) = w~ + )(p,u)a(p,u), 

I/t~ - )(p) = w~ - )(p,u)b *(p,u), 

(32) 

(33) 

(34) 

w< ± )(p,u) = fiJU)(Bp)uj ± l(u). (35) 

The spinors uj + ) are the same for bosons and fermions 

uj + )(u) = (u~»), (36) 

but 

uJ - )(u) = C~), for half-integer j, 
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_) (- v(o)) . uj «(1) = 0 for lllteger j. (37) 

Let us now define 2(2} + 1 )-dimensional Wigner func
tions as 

f/>~± l(p) = §~(;,(B p I)¢~,t l(P). (38) 

these will transform under the action of .9 as 

[u(a,A )f/> (± )]n(P) 

=e±iaP9~{;, [Bp-IABA'p]f/>~±l(A -lp). (39) 

Again, B; lAB /I'p is an element of the little group associat
ed top. 

It is worth while to remark here the resemblance be
tween the 2(2} + I)-component functions introduced in this 
section and the original (2j + 1 )-component Wigner func
tions. However in the (2j + 1) case, functions transform un
der D(JI,(l), while antiparticles transform under CD (J'C-f, 
(4). This is not the case here where both particles and anti
particles transform stand in the same representation !jJ(j), 

because of the rotation C performed in the rotation basis, Eq. 
(26). 

We can write 2(2j + 1) Wigner functions in configura
tion space as 

f/>(x) = (21Ttll2(me)1/2 f d 3p {t:/J ( j I(p) e ipx 

(0 

(40) 

An analysis ofEq. (38) reveals that the functions f/>( 1- land 
f/> ( - ) of(38) are orthogonal if and only ifj is half-integer. As 
a consequence of this, the functions f/> [Eq. (40)] describing 
fermions satisfy 

iJ, f/> (x) = (3w( - i\!)f/>(x) (41) 

which is not true for bosons, due to the lack of projection 
operators (1 ± (3) for integer). As Eg. (41) will be essential in 
the next section we shall treat fermions and bosons 
separately. 

A. Regarding fermions 

We shall generalize here the treatment developed by 
Foldy-Wouthuysen for spin 1/2, that is for wavefunctions 
verifying the Dirac equation and transforming according to 
the representation (1/2,0) ffi (0,1/2). Our first step concerns 
localizability. 

Following Newton-Wigner-Wightman 12 we shall de
fine localized fermions states as 

(42) 

with u ( 1: l as given by (36) and (37). Therefore the probabil
ity amplitude for finding fermions at x is given by 

cfJ (t lex) = (h)-V' f d'p e ~ ipxqJ ( t lex) 
W

I12 

(43) 
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where 

cfJ (± l(p) = w- I !2f/> (± )(p) (44) 

is the probability amplitude in momentum space, which 
[with the aid of (37)] we see transformed as 

[u(a,A )cfJ (±)] n(P) = e ± iap (w~~;») 1/2 9~{;, 

X [B p- I AB/I'p] cfJ ~± l(A -lp). (45) 

The configuration space amplitude cfJ (x) 
= t/J ( + )(x) + t/J ( -- >ex) satisfies the canonical equation (41), 

as can be directly deduced from the fact 

(46) 

Let us now define the FW transformation U(;) as that map
ping covariant functions (33) into probability amplitudes 
(43), that is 

t/J(x) = U(j,cfJ (x). (47) 

Taking into account that cfJ ( + l(P) is orthogonal to cfJ (- l(P), 
we obtain the explicit form of the FW transformation 

(48) 

where~/(j)( - i{3\!) is the boost .~:(j'(Bp) in configuration 
space, where according to (43) and (46) we substitute p by 
- i{3\!. Let us see that for J = 1 this definition coincides 

with that of Foldy. Using (11) and taking into account that 

J I/2 =cr/2 

we get 

(49) 

D(1121(Bp)= me+(V-crp (50) 
[2me(w + me)]'il 

and 

f/(I12\Bp) = me + & + ap a = (~uo). (51) 
[2mc«(v + me)]fl2' v 

Then inserting (51) in (48) we get the FW expression' 

U(I/2)= me+(v+yp (p= -i\!). (52) 
[2{v({u + me) )'12' 

To complete our approach and to prepare the nonrelati
vistic limit, let us write the positive definite scalar product 
{(29) and (30)] in terms of amplitudes. Taking into account 
(19) and the fact that 1] = (3 up to a phase factor, we can use 
definition (38) to get 

or, what is the same 

(1/1,,1/12) = f d lp {t/J \ i )t cfJ2( t l + t/J,( )t t/J,( - l}. (54) 

In configuration space this expression is simply 

(1/1,.1/1,) = (21T)' f d 'x t/J,'(x)t/Jix) (55) 

in complete analogy with the nonrelativistic scalar product. 
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8. Regarding bosons 

We have already mentioned the fact that neither covar
iant wavefunctions (33) nor Wigner functions (40) are suit
able for defining the FW transformation for bosons. This can 
be easily understood by inspecting the spinor part [(36) and 
(37)] ofWigner functions. Particles and antiparticles belong 
to the same subspace, thus we have not at hand projectors 
equivalent to (1 ± {J)/2 to build up the canonical representa
tion. This is closely related to the fact that the intrinsic parity 
of the boson-antiboson system should be + 1 due to causal
ity. In order to introduce a FW transformation we shall need 
to start from covariant functions with 4(2j + I) components. 
We first invert (33) 

I/l ± )(P) = [4(21T)3mc ]-112 f d lx e~ipx {w¢(x) ± i¢(x)}. 

(56) 

Now we take the 4(2j + 1) covariant spinor 

(
¢( + )(P») 

¢(P) = 1// - )(p) (57) 

which transforms under &' as 

( 
eipa .,@(}J(A) 0) 

[U(a,A)¢](p)= 0 e-ipa"@(})(A) ¢(A-lp). (58) 

This is a completely reducible representation, being simply a 
multiple of the identity for !I" 1+ transformations. This is the 
price to be paid for the canonical representation. The 
4(2j + 1) Wigner functions can be defined following (38) 

<I> (P) = (.,@w (B;; 1) ® I)¢(P) (59) 

with transformations laws parallel to (39). 

Let us now define the localized boson states as in the 
fermion case 

<I> ~± )(P) = e ± ipx{j)1I2. (60) 

Thus the probability amplitude for finding the boson at point 
x will be 

t,h ~ ± lex) = (21T)-'12 f ~:~ e ~ipx <I> (± )(P) 

= (21T)-312 f d lp e ~iPXt,h (± )(p), (61) 

where t,h (P) is again the corresponding probability amplitude 
in momentum space 

t,h (± )(p) = {j)-1I2<1> (+ >(P). (62) 

In these formulas we made use of the projectors 

p ± = (1 ± 17)/2, 

where 17 is the operator giving the sign of the energy 

17=1®{J= ( I 0). o -1 

The 4(2j + 1) amplitude in configuration space is now 

(63) 

(64) 

t,h (x) = (21Tt 312 f d lp {e - ipx t,h (+ )(P) + eiPxt,h ( - )(p)} 

(65) 
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which obviously satisfies the canonical equation 

iJf/J (x) = 17{j)( - iV)t,h (x). (66) 

On the other hand, covariant functions, (57) are in configu
ration space 

¢(x) = [(217,)-lmcJII2 J d;: {¢( + )(P) 

X e - ipx + ¢( - )(p) eipX}, 

where 

In this representation, the scalar product (29) is 

(67) 

(68) 

(¢1>¢2)= J d;: {¢tfJ'¢~+)+¢~-)'fJ'¢~-)}, 
(69) 

with 

fJ' = (~ ~) =fJ®I. (70) 

Now using the pseudounitarity of the representation (58), 
that is, 

(71) 

[which is a direct consequence of (26)}, we can write the 
scalar product in terms of amplitudes as 

(72) 

which looks like (55) but with a double number of components 
for the fields. 

Returning to the FW transformation, we define it as that 
mapping 4(2j + 1) covariant functions to amplitudes, that is, 

¢(x) = U(})¢J (x), (73) 

or explicitly 

. (mc) 1/2 (!:Ij v\iv) UV)= -
w 0 

= - (C/V) (p) ® /) (mC)I!2 . 
p -= ill"· 

OJ 
(74) 

Let us remark that the parity matrix isfJ' in this representa
tion, so the boson-anti-boson intrinsic parity is + 1 as re
quested. However, unlike the fermion case fJ' does not coin
cide with the operator giving the sign of the energy 17 (64). 

The spinless boson is a specially simple case because the 
spin part of the Lorentz group is trivially represented by the 
identity D OO(A ) = 1, therefore we do not need to double the 
representation as in Sec. 2.2 in order to get 2(2j + 1) compo
nents. It is enough to follow the treatement introduced here 
in order to get a two-component canonical representation 
acting on (56) and (57) (where now ¢( ±) has only one com
ponent). The representation thus obtained is the canonical 
representation due to Foldy.20 
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4. NONRELATIVISTIC LIMIT FOR ARBITRARY 
SPIN 

A. Contraction from the POincare group to the 
Galileo group 

In a previous paper, 1 
, we worked out a rigorous method 

for contracting the Poincare group to the Galileo group (in 
the limitc---+oo). Let us briefly remind you of the main points 
used in that construction. '6 

Given two groups G and G', we say G' is a global con
traction of G if we can construct a family of homeomor
phisms I, of G on G' (cE(O, 1]) such that 

x'.y' = lim/. [J,-I(x')'I,-1 (y')J 'V x',y',G'. (75) 
E ... 0 

This means it is possible to deform continuously the group 
law in G to the group law in G '. 

In our particular problem ::P ---+.'9, we can take c = c- 1 

and we define the family I. in the following manner: 

Given g = e iaP ei(3KR (U)E:.i', we definelc (g) as 

t(g)= '= il1l':, -- iaP iVK' R ( ) ( ... : J c -g e e e U EJ , (76) 

where b = aD c-1,V = c(3, pit, K, J are the infinitesimal gen
erators of::/' and p;), P, K', and J those of f§ [R (u) = ex
p(iuJ)]. Then with the aid of the composition laws of :7 and 
,(fj and the commutation rules of their Lie algebras, it is 
straightforward to check Eq. (75). 

Along with group contraction we have an associated 
contraction of the algebras starting from 

[Ji,Jj ] = iCij" J k , [Ji,Kj] = iCij,,l(,,, 

[Ki,Kj] = - iCij" J", [Ji,Pj ] = iC'j'l'" , 

PI'P,,] = 0, [Ki• Pj ] = i8 ij Po, [Ki,PO ] = iPi (77) 

and defining the generalized Inonii-Wigner contraction1718 

(78) 

we get the Galileo algebra in the limit c--+ 00. Explicitly 

[Ji.J,] =icij"J", [Ji,K;] =ic,j"K~, [K;,K;] =0, 

[Ji,p)] = iCij" P", [Ji,P [1] = K ;'Pj = 0, [K ;,P [1] = iPi' 
(79) 

which are the commutation rules for the Galileo group_ 

B. Positive mass and arbitrary spin 
representations of the Galileo group 

Nonrelativistic particles with positive mass and arbi
trary spin are described by unitary irreducible projective re
presentations of the Galileo group labeled by the values of 
the mass m, spin S' = J - m-1K' X P, and internal energy 
u = Po - p2/2m. They act in the space of square-integrable 

functions tP~(p) as follows l9
: 

[ u'(b,a,v,a)tP'](p) 

= eib (utP'!2m)e- ipaD(J) [u]tP'(R-I(p-mv», (80) 

where D(J)(R) is the (2) + I)-dimensional representation of 
SU(2). 
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Introducing the configuration space functions tP' n (x,t ) 
by the transformation 

tP '(x,t) = (21Tt J12 f d lp e- i(u + P'/2m)t eipx tPn(P), (81) 

we get the associated representation 

[u'(b,a,v,a)tP ' ](x,t) 

= e·· i(mv'/2)«( - b) eimv(x --a) D(J)[a]tP' 

X (R -1(X - a - vet - b ),t - b). (82) 

The phase factor appearing in (85) corresponds to the nontri
vial projective character of this representation. On the other 
hand, it is necessary to keep the Galileo invariance of the 
Schrodinger equation. Functions tPn (p) and tPn (x,t) not only 
transform in a covariant way but at the same time they repre
sent probability amplitUdes. This fact simplifies the interpre
tation of those representations. We only need to consider one 
realization of each representation [that given by (80) or (82)] 
unlike the Poincare case where we have to choose between a 
covariant realization or a Wigner realization on amplitUdes. 
This was shown in Secs. 2 and 3. 

Antiparticles have room in the Galileo group being de
scribed by representations with mass m, spin}, and internal 
energy u, which can be deduced from (81), (82) by complex 
conjugation [keeping in mind thatD (J)O(R ) = CD (j)(R )C -I]. 

Denoting by tP " ' '(tP ,( - 1) the wavefunctions associated with 
particles (antiparticles) we have the Schrodinger equation 

iJ( rP ,( -+ )(x,t) = ± [P2/2m + u 1 rP ,(t) (x,t). (83) 

C. Contraction of representations 

Let us now settle a bridge between the relativistic and 
Galilean descriptions of finite mass and arbitrary spin parti
cles. Our first step will be to define the contraction for 
represen ta tions: 16 

Given a group G and its contracted group G " and given 
a representation of G,D (g), (acting on ,W) and a representa
tion of G ',D '(g'), (acting on ,F'), we say D '(g') is a contrac
tion of D (g) if there are a family of representations D '(g) 
equivalents to D (g) (acting on the spaces ,;Y'') and a family 
U. of continuous linear mappings from ,;Y" on 57", such that 

(i) D '(g) = D (g) 

(ii) limU. D f [If - [(g') 1 U. 1 = D '(g'). (84) .. () 

It is worthwhile to point out that DE (g) = U. DE 
X [lEI (g') 1 U E I is a realization of D (g) on the space JY", 
such that D. (g)---+D '(g') as c---+O. Thus we go from D to D' in 
two steps. First we find a representation DE (unitaryequiv
alent to D) acting on the same space asD' (this is attained by 
the use ofFW transformation as we shall see below). Second 
we go to the limit c-o arriving to D '. 

Let us start with half-integer} representations in mo
mentum space. We begin with the FW transformed repre
sentation (45). Taking into account (25), (31), and (32) we 
have 
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g{J)(A ) 

= ~( D{J)(A) + D(})t(A -I) 

2 _ D{J)(A) + D(M(A -I) 

D (j\A ) - D (])t(A -I») 
D (D(A ) + D (})t(A -I) , 

(85) 

but Rw = B p- 'ABA -'p is a rotation, therefore 
D (l)t(R .; I) = D (J)(R

w
)' and 

(

D U)(Rw) 0) 
gU) (Rw) = 0 (86) 

DU)(R
w

) • 

Thence (45) is a direct sum of two irreducible representa
tions acting on </J (+ )(p) and </J (- )(p), they can be given sepa
rately using the projectors (1 ± /3)/2. Choosing, for in
stance, that acting on </J ( + ) 

[U(a,A)</J(+)] (p) 

= eiap (W~~;»)'/2 D U) (Rw) </J (+) (A -Ip). (87) 

Both (87) and (90) act on the same Hilbert space of (2) + 1) 
component square-integrable functions. We now choose a 
family of trivial projective representations equivalent to 
(87). 

Uc(a,A ) = e - imca" U(a,A ). (88) 

The generator of time translations is in this family the kinetic 
energy. Moreover, going to the limit c-ooas in (84), we get 
(80) 

lim [Uc (fc- I (b,a,v,a» </J (+ )](p) 
c '00 

( 
(A -I »);/2 

1· i(P" - mc)cb - iap W P = 1m e e 
c-~oc W(P) 

X D (l) (B p- lAB A'P) </J (+ )(A -Ip), 

where according to (76) 

A = /,:- '(v,a) = eivk/c R (a). 

Thus we have 

and 

(A -lp)O = (1 + u2/2c2)pO - vp/c + o (uJ/c3), 

(A -Ip) = R -I (p - my) + o (u/c), 

lim D(l) (B p-' ABA •P) 
c-~ 00 

= lim DU'(Bp-')D(j)(A)DU)(BA-I p) 
C -,"" 00 

= D(l)(R), 

where we used (91) and (10). Lastly 

c- "'00 

(89) 

(90) 

(91) 

(92) 

= ei(p'12m)b e - iap D (j) [a] </J ( + ) (R - I(p - my»~ (93) 

which is (80) with U = o. 
The factor e- imca" plays two roles in the limit c- 00 • (i) 
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To assure the convergence of this limit. (ii) To lead up to 
nontrivial projective representation of the Galileo group for 
which, instead of (79), we have 

(94) 

as requested for quantum-mechanical representations. 

If we choose, instead of (87), the representation acting 
on </J ( - ), we must introduce a factor e + imca, to get a finite 

limit. Then 

= e - i(p'/2m) b eiap D (j) [a] </J ( - )(R -I(p - my»~ (95) 

as corresponds to antiparticles. 

To complete our discussion, let us now go to configura
tion space. After (43) and (45) the realization of Poincare 
group in terms of configuration space amplitudes is given by 

[U(a,A) </J (± )](x) 

= f d 'x' K ( ± >Cx,x';a,A ) </J (± lex'), xb = X o, (96) 

with 

K ~~ )(x,x' ;a,A ) 

= (21Ttl f d lp e~ipx e ± irA -'p)x' 

(97) 

We now pass to the equivalent projective representation 

U~±>Ca,A) = e~imca"U(a,A), (98) 

and introducing the transformation 

V~ ±) = expi(c Y p2 + m 2c2 
- p2/2m)t, 

p = - iV. 

we get 

mv' 
~i-(t-b) 

=e 2 e±imv(x-a)DV)[a]</J'(±) 

X(R-I [x-a-v(t-b)],t-b), 

(99) 

(100) 

which are the Galilean representations associated to (83) with 
u = 0, The role of(99) is clear: it maps the re1ativistics ampli
tude (43) on the nonre1ativistic one with u = 0, 

The local exponent which appears in (100) is the only 
surviving remembrance of the non local nature of the trans
formation law (96). This factor is needed for the invariance 
of the Schr6dinger equation as we pointed out in the para
graph following equation (82), 

For representations with integer} we contract along the 
lines stated above, but taking into account that the represen
tation defined on functions (62) trivially reduces to two re
presentations with (2) + l) dimensions when we use the 
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projectors 

p ± = 1 +/3 ® 1 ± 17. 
2 2 

These representations act like those associated with fer
mions, (87) being the corresponding transformation law. 

5. CONCLUSIONS 

Let us briefly summarize our main results. The first 
achievement of this paper has been to settle the relationship 
between FW and Lorentz transformations for arbitrary spin. 
Due to the fact that the original FW tranformation was uni
tary and non-Hermitian, it could not be directly associated 
to a Lorentz boost, even if this was the intuitive physical 
picture for this transformation. In this work a definite math
ematical meaning was given to it. We first introduce two 
different realizations of Poincare group: the covariant real
ization-widely used due to its simple transformation prop
erties-and a special case of Wigner realization, whose 
quantum-mechanical interpretation will be relevent for fur
ther applications. Then we define FW transformation as that 
mapping the first realization into the second. With this defi
nition FW transformation in momentum space turns out to 
be a Lorentz boost-that carrying the particle to rest -times 
the trivial factor (m/po)ll2, while this simple decomposition 
is no longer possible in configuration space. As a byproduct 
of this formalism an essential difference does emerge be
tween bosons and fermions due to the different intrinsic par
ity for the corresponding particle-antiparticle system. As a 
consequence of this fact FW transformation should be con
sidered separately for fermions and bosons. 

The second part of the paper is devoted to the nonrelati
vistic limit. Using a contraction formalism previously devel
oped by the authors,13 we can establish a smooth connection 
between relativistic representations and quantum-mechani
cal Galilean representations. The role of FW transforma
tions has been proved to be capital as a first step in this 
limiting procedure. Unlike other approaches,21 our contrac
tion procedure directly leads to the (2j + 1) physical repre
sentations of the Galileo group, free of redundant compo
nents. The heavy mathematical apparatus we used is a price 
to be paid for this remarkable result. 

In this work we gave up the case of interacting particles. 
As it is well known, Foldy and Wouthuysen introduced I a 
sequence of unitary transformations which depend on the 
electromagnetic field in order to get the nonrelativistic Ha
miltonian. However, as has been pointed out by Goldman,22 
this procedure runs into difficulties because the time depen
dence of the transformation shifts the expectation values of 
the Hamiltonian. To find a correct answer to the interaction 
problem several questions must be studied in detail: the com
patibility of gauge invariance with Lorentz covariance of 
wavefunctions, and secondly the kind of interaction-min i-
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mal coupling or else--compatible with the implemented 
gauge. A detailed analysis of this situation deserves further 
attention and it will be the task in a forthcoming paper.21 

Using procedures similar to those employed through
out this paper, we hope to disentangle the groupal content of 
other transformations, relevant to different physical situa
tions, such a Melosh, Gomberoff et ai,24 etc. This task seems 
simpler in the first quantization language we used here. We 
intend to use the present formalism as the basis of a corre
spondence principle to be applied to such situations. The 
possibility of getting a precise prescription for writing the 
representations of the various contracted groups associated 
with physical situations is the main virtue of our method. In 
particular we are interested in high energy limits and their 
related covariance group, a first step in this direction has 
been accomplished in a previous work.2' 
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Two variable expansions of Galileian scattering amplitudes are proposed for a two
particle system with arbitrary spins. The barycentric decomposition of such a system 
permits, on the one hand, to realize the associated Hilbert space in the form 
H = L 2(R3) ® HINT> where HINT is the Hilbert space of the states of the system 
expressed in their CM frame, and, on the other hand, to introduce what we call the 
internal Galilei group G(3)INT as the maximal subgroup in G(3)X G(3) which respects 
the barycentric decomposition. For this group we have a natural unitary representation 
acting on HINT induced by the PIUR of G (3) X G (3) acting on H. The reduction of this 
representation with respect to the chain of subgroups G(3)INT :)E(3)INT :)SU(2) :)SU(I) 
provides the usual one variable expansions while the reduction with respect to the chain 
G(3)INT :)G(3)o INT :)SU(2) :)SU(I) provides an example of a two variable expansion. 

INTRODUCTION 
Several papers and a review article l were devoted to 

two-variable nonrelativistic expansions of the scattering am
plitudes. Let us just recall that the basic idea consists of ex
pressing the amplitudes as series and/or integrals in such a 
way that the kinematical variables, namely the energy and 
the scattering angle, only appear as arguments of known 
functions. The expansion in one variable (the scattering an
gle) is very familiar: it leads to a series of Legendre polynomi
als, the coefficients of which, a,(E), still depend on the ener
gy. Provided that certain mathematical conditions are 
satisfied for the functions a" it is, of course, always possible 
to expand them into a series or an integral, for example in 
terms of Laguerre polynomials or of Bessel functions, in or
der to obtain the desired two-variable expansion. However, 
this is not the most fruitful way of proceeding because there 
is no physical motivation in the choice of such an expansion. 
The authors cited in Ref. 1 have introduced physical ingredi
ents to justify several choices of expansions by means of 
group theoretical considerations, but they have restricted 
their study to the case of particles without spin. It is the aim 
of this paper to generalize their results to the general case of 
particles with arbitrary spins. 

The motivation for such a study was largely explained 
in Ref. 1. The relativistic treatment is certainly the ultimate 
goal, and we intend to pursue it in a following article. The big 
advantage of the nonrelativistic scattering theory rests in the 
extreme simplicity of the many-body Galileian kinematics 
compared to the Einsteinian case. In particular, we have in 
mind the barycentric decompositions. 

When we try to generalize the results of Ref. 1 to parti
cles with spins, we are immediately faced with the problem 

"'Work supported partly by the Echanges France-Quebec. 
"'Permanent address: Laboratoire de Physique Theorique, Universite de 

Bordeaux I, chemin du Solarium 33170 Gradignan, France. 
"'Permanent address: Department de Mathematiques, Ecole Polytechni

que de Montreal. 

of physically interpretating various spinlike indexes. To 
overcome this difficulty, it is necessary to have a deeper un
derstanding of the group considerations which were intro
duced. In order to do that, we must adopt another point of 
view. 

A scattering amplitude is more or less nothing else than 
the kernel of the transition operator T. For an elastic scatter
ing process, this operator is defined on the Hilbert JY space 
of two noninteracting particles. The kinematical assump
tions are introduced by means of a projective unitary repre
sentation of the Galilei group G(3). This representation can
not be chosen arbitrarily: the two particles being 
noninteracting, it is obtained by a restriction to the diagonal 
subgroup ofG(3)X G(3) of the tensor product of the irredu
cible representations which define each particle. [Clearly we 
have a unitary action ofG(3) X G(3) on JY.] It is well known 
that this representation is reducible into a direct integral of 
irreducible ones essentially labelled by the internal energy 
and internal angular momentum. Corresponding to this de
composition, we have a decomposition of the Hilbert space 
and of the transition operator T which is assumed to be an 
intertwining operator for the representations. The standard 
one-variable expansions of its kernel follow directly from 
this decomposition. Ifwe want to introduce group theoreti
cal considerations in order to motivate some choices of two
variable expansions, it is certainly not the kinematical group 
which will be useful since the internal energy is an invariant. 
In G(3) X G(3), however, there exist many subgroups, and in 
particular the one we call the internal Galilei group is quite 
relevant in such an approach. It is a subgroup closely related 
to the barycentric decomposition of a two-particle system. 
We introduce it, and mention some ofits properties in Sec. 1; 
for reasons of clarity we have adopted the context of classical 
mechanics. 

In Sec. 2 we make some minor additions to the standard 
results on projective unitary irreducible representations of 
the Galilei group. In particular we consider two realizations 
of the Hilbert space of these representations associated with 
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two chains of subgroups, their relativistic analog being ex
tensively used. 

In Sec. 3 we deal with the reduction of the tensor prod
uct of two PIUR's ofG(3) with respect to both the kinemati
cal Galilei group and the internal Galilei group. We obtain 
several realizations of the Hilbert space of the representa
tion, and we construct the unitary operators which connect 
them. 

Finally in Sec. 4 we use the results of the previous sec
tion to get the two variable expansions of the scattering am
plitudes, both in the (l- s) coupling scheme and in the heli
city one. 

1. GALILEIAN GROUP ACTION ON CLASSICAL 
TWO-PARTICLE SYSTEMS 

A very extensive treatment of the Galilei group G(3) 
can be found in a review articel by Levy-Leblond2 Let us just 
recall some fundamental facts in order to establish notation. 

With respect to a standard parametrization, the group 
law of the extended Galilei group 

~(3) = R D G(3) [G(3)~R7 D SU(2)] 

is given by 

(S,T,a,v,A )(S ',T',a',v',A ') 

= (S + S' + 1T'lv1 2 + v·RAa',T + T',a + T'V + RAa', 

where R: SU(2) -+ SO(3) denotes the usual Hamilton 
homomorphism. 

(1.1) 

Corresponding to this parametrization, a basis for the 
Lie algebra g(3) is denoted by 

t1,dY',.9' i,.5Yi'/il. i = 1,2,3. (1.2) 

The nonzero commutation relations are 

[/i'/j] = EijJk' [/i,.9'j] = Eijkf7 k, 

[/i'.5Yj] = E ijk.5Y k' 

[.5Yi,.9'j] = [)ijjl, PVi,dY'] = .9'i' 

and the invariants in the Lie algebra are generated by 
1, '1/ =dY'-11~11.9'12, 

(1.3) 

IYI = 1/ -1~I.5Yx.9'l· (1.4) 

We shall have to consider the following two subgroups 
of ~ (3), each isomorphic to R 3 D SU(2). 

The homogeneous Galilei subgroup 

G(3)0 = t (O,O,O,v,A ) 1 

with invariants generated by 

1.5Y1 and .5Y./. 

The Euclidean subgroup 

E(3) = t (O,O,a,O,A ) 1 
with invariants generated by 
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(1.5) 

1.9' I and .9'./. (1.6) 

It is not our purpose to treat scattering in the context of 
classical mechanics: However, the reasons for the introduc
tion of the various subgroups of ~ (3) X ~ (3) that we consid
er appear more directly in the classical framework than in its 
quantal counterpart. 

The fundamental object of the mechanics of a Galileian 
classical system is a symplectic manifold on which the Gali
lei group acts via symplectomorphisms. Such a system is 
called elementary if the action of the group is transitive. Ac
cording to an analysis of Souriau, who the first developed 
these ideas,' the symplectic manifolds associated to the ele
mentary systems are all symplectomorphic to the orbits of 
the co-adjoint representation of the extended Galilei group. 
The orbit analysis furnishes a classification of all elementary 
Galileian classical systems. It turns out that this classifica
tion is very close to the classification of the elementary Gali
leian quantum systems furnished by the projective irreduci
ble representations of G(3). 

Denoting by t jl* ,.JY'*, ,0/'; ,,5V; ,/; l, the dual basis of 
(1.2) and by 

1*= - m1* - E/ff'* + p.&'* - S·.5Y* + j./*, 

an arbitrary element of the dual space g(3)*, it is easy to 
verify that the co-adjoint action L1 (g) = Ad(g-l)* of ~ (3) is 
given by 

L1 (S,T,a,v,A ) : P -RAP + mv, 

S -RAS - T(RAP + mv) + rna, (

; :;~ 1mlvl2 + RAP·v, 

j -RAj + maXv + axRAP + RA SXv. 
(1.7) 

Note the trivial action of the one-dimensional extension 
group. Given an element I * with m=;i=O, one sees that the 
invariant functions defined on its orbit are 

m, U=E __ 
1_lpI2, s=lsl=lj-~sxpl· 

2m m 

Performing the change of variables 

(m,E,p,s,j) -(m,U,p,q,s), q = ~ S, 
m 

we get 

(1.8) 

L1 (S,T,a,v,A ): (: :E~ + mv, 
q -RAq - (r/m)(RAP + mv) + a, 

s-RAs, 
(1.9) 

Consequently, when m=;i=O and s=;i=O, which will be tacitly 
supposed from now on, the orbits (!/ (m,s, U) are of dimension 
8, diffeomorphic to R 3 XR3 XS 2

, and completely character
ized by the three real numbers m, s (s > 0), and U. The me
chanical interpretation of these numbers are the mass (when 
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m > 0), the spin, and the internal energy of the elementary 
system (a particle). Taking into account the transformation 
formulas (1.9), it seems obvious that p and s have to be inter
preted as the linear momentum and the intrinsic angular 
momentum, the interpretation of q, however, is not so obvi
ous. It must be emphazised thatthe orbit 67 (m,s, U) is notthe 
usual phase space :r of the particle since no natural action of 
the Galilei group can be defined on such a space. On the 
extended phase space :r X R, a natural action is defined by 

{

Pt----+RAP + mv, 

x ~R AX + tv + a, 
D (1",a,v,A ) : (1.10) 

S I-+RAs, 

t~t + 1", 

where x is the position and t the time. 

The connection between 67 (m,s, U) and :r X R requires 
a dynamical postulate. The extended phase space and the 
Galileian action (1.10) do not contain any dynamics as op
posed to 67(m,s, U) which is a model for the manifold of all 
motions of a free particle. More precisely, the dynamical 
group for a free particle 

U). : (p,x,s,t )_(p,x + (A 1m )p,s,t + A ), AER, (1.11) 

foliates the extended phase space into orbits (motions) of 
dimension one. Since the phase space "at t = 0," i.e., the 
section 2 = [(p,x,s, t = 0) J c:r X R intersects each motion 
exactly once, this section provides a realization ofthe motion 
manifold :r X RI U and can obviously be identified with the 
orbit 67(m,s,U). Furthermore, it can be seen that an action of 
G(3) can be induced on :r X RI U; in the special realization 
we consider, it is simply given by 

J5 (1",a,v,A ) = U _ roD (1",a,v,A ) : 2-2, 

and it is easily verified that it is identical with (1.9). 

Each point (m,U,p,q,s) in 67(m,s,U) can therefore be 
interpreted either as a motion (not a state) of a free particle or 
as an initial state at t = 0; the variable q represents the posi
tion o/the particle at the time t = O. In the passive interpreta
tion of a Galilei transformation, formulas (1.9) express the 
connection between the characterizations offree motion giv
en by two Galileian observers. 

Since our concern in this article is neither classical me
chanics nor geometric quantization, we do not introduce any 
symplectic structure; only group actions are relevant for the 
following. 

The symplectic manifold JI associated with a nonele
mentary system, for example, a system of several particles 
not necessarily without interactions, can always be decom
posed into orbits of the Galilei group 

(1.12) 

where Mis the total mass of the system and sis a label which 
removes possible degeneracies. These orbits tJ s (M,S, U), ge
nerically of dimension ten, should not be confused with the 
orbits 67 (m,s, U) of the co-adjoint representation of Y (3). In 
general, however, there exists a covariant mapping 
f..t : JI-g(3)* which gives a meaning to the labels M,S, U. 

1079 J. Math. Phys., Vol. 20, No.6, June 1979 

Moreover, a fundamental feature in Galileian mechanics is 
the existence of a barycentric decomposition 

JI-JI CMXJlINT> (1.13) 

whereJi CM-R1XRl is the set of pairs (P,Q) on which the 
Galilei group acts as follows: 

(P,Q) I--+(RAP + Mv,RAQ - (r/M)(R P + Mv) + a). 

(1.14) 

We recognize the transformation laws for the total linear 
momentum and the position of the barycenter at the time 
t = O. Owing to this decomposition (1.13), the decomposi
tion (1.12) can be reduced to the corresponding decomposi
tion of the "internal manifold" JI INT' 

Now let us restrict ourselves to the case of a system of 
two noninteracting particles. The motion space is here sim
ply the Cartesian product 

67(m h S"u,)X 67(mz,sz,uz) 

on which the group Y (3) X Y (3) acts in an obvious way. We 
introduce the barycentric decomposition by means of the 
bijective mapping f/J: 67 (m hShU ,) X 67 (mZ,sZ,u2) 
-j/ CM X Jl1NT defined by 

f/J : «PhqhS,)'(PZ,qz,sz» -<:(P,Q),(p,q,s"sz», 

where 

{

p = p, + pz 

Q = (lIM)(m,q, + mzq2) 

p = (lIM)(mzp, - m,P2) 

q = (q, - q2) 

andM = m, + m2 denotes the total mass of the system. This 
mapping is based on the dual mapping of the diagonal injec
tion 1-(1,1) of g(3) into g(3) X g(3). Here j( INT 
- Rl X Rl X S 2 X S 2 and p and q are respectively interpreted 
as the relative linear momentum and the relative position at 
the time t = O. 

Since f/J is a bijective mapping, it induces an action of 
the group :1(3)X :1(3) on JI CMXc~t'lINT' Taking into con
sideration formulas (1.9) and (1.15), it is easily verified that 
this action does not preserve the Cartesian decomposition 
(1.13). Some subgroups, however, do, and it can be checked 
that the maximal subgroup of :1 (3) X Y (3) which preserves 
this decomposition is 

,CjJ = I (Sh1",a"v,,A ),(S2,r,az,v2,A ) J c :1 (3) X Y (3). (1.16) 

Indeed, when setting 

a, = a + (m2IM)b, v, = v + (m2IM)u, 

a2 = a - (m,IM)b, V2 = v - (m/M)u, 

we get 

P~RAP+Mv, 

Q ~RA Q - (1"/M)(RAP + Mv) + a, 

P~RAP +/1-u, 

q ~RAq - (r/Ji,)(RAq + f..tu) + b, 

si~RASi' i = 1,2, 

M. Daumens and M. Perroud 
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whereJl = m l m 2/M denotes the reduced mass of the system. 

This maximal subgroup itself contains two subgroups 
of particular interest: 

1) The diagonal subgroup: 

~ (3)d = I (S,7,a,v,A ),(S,7,a,v,A ) l, (1.19) 

which is the extended kinematical Galilei group of the sys
tem. It is the group with respect to which we perform the 
foliation (1.12) or the decomposition (1.13). Its Lie algrbra is 
simply the diagonal subalgebra of g(3) X g(3). 

2) The "internal subgroup": 

f = I (SI,7,(m 2/M)b,(m z/M)u,A), 
(;2,7, - (ml/M)b, - (mJM)u,A)J, (1.20) 

Note that this subgroup depends essential1y on the masses 
m l and m2' It could be defined as the maximal subgroup of :% 
which stabilizes the pair! P = O,Q = ° l. This is a I2-dimen
sional group which can be seen as a central extension of the 
Galilei group G(3) by a two-dimensional Abelian group. We 
define the internal Galilei group of the two-particle system as 
the subgroup 

G(3)INT = ! (0,7,(m 2/M)b,(m 2/M)u,A), 

(0,7, - (mJM)b, - (mJM)u,A)l ef, (1.21) 
the Lie algebra of which is generated by the elements 

g; _ m 2 f!lJ m l g; 
INT- M 1- M 2, 

cy/, m z 'Y/' m 1 'Y/, 
Jl INT = - Jl 1 - -./l 2, 

M M 

[Indexes 1 and 2 refer to the algebra g(3) X ! 0 land 
10 l X g(3) in g(3) X g(3).] 

(1.22) 

For each given motion of the two-particle system, it is 
possible to choose a Galilei frame (with respect to the kine
matical group) in which P = 0, Q = 0 (the eM frame of 
motion). In such a frame, the internal GaiJilei group acts 
purely on the internal variables p, q, SI, and S2 through for
mulas (1.18). (Note that in the CM frame, p = PI = - P2, 
which gives a useful interpretation ofp.) In this manner, it 
acts transitively on the set of all motions expressed in their 
CM frames. It conserves the total mass M of the system, but 
it generates all the values of the internal angular momentum 
and of the internal energy of the system. As a matter of fact, 
the total angular momentum and the total energy 
J =j, + j2 = leM + SINT = QxP + (qXp + SI + S2), 

(1.23) 

= _1 IPI2 + (_1 Ipl2 + U l + u2) 

2M 2Jl 
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reduce, in the CM frame, to SINT and UINT" Taking into 
account the action of G(3)INT on p, q, SI' and S2, we see that 

O<;S[NT = ISINTI < 00, U l + U 2<;U1NT < 00. (1.24) 
Hence, the action of G(3)INT provides a tool to classify the 
orbits &'(M,S'NT'UINT) of the kinematical group G(3)d in 
the product manifold tJ (m,shu 1) X tJ (m2,s2,u2)' Since we are 
not interested in classical mechanics, we do not perform this 
classification here [by finding the "degeneracy label" of for
mula (1.12)]; this tool, however, will be used in Sec. 4 in the 
quantum mechanical analog, which consists of reducing the 
tensor product of two irreducible unitary representations of 
.cg (3) into its irreducible components. 

2. THE PIUR'S OF THE GAll LEI GROUP G(3) 

A Hilbert space on which a projective unitary represen
tation ofthe Galilei group acts is associated with each Gali
leian quantum system. Such a system is called elementary if 
the representation is irreducible. The projective irreducible 
unitary representations (PIUR's) of G(3) have all been clas
sified.' The ones which are not equivelent to true representa
tions are characterized by the pairs (m,s) mER., 2sEN, and 
up to unitary equivalence, they can all be obtained by restric
tion to G(3) of irreducible unitary representations of the ex
tended Galilei group ~ (3) which belong to the classes 
(m,s,u), uER. A standard realization of such representations 
is given by 

(u(msu)(5,r,a,v,A )f)(p,a) 

= exp [ - im; - i( 2~ I p I' + U)7 + iP.a] 

s 

X L D~(r'(A )/(R,;- I(p - mv),a'), (2.1) 
a' --:: 

where 

fEL 2(R'XJ:), 1: = I - SI - S + l, ... ,s - l,sl, 

UI f) = "J: s,< L d)p If(p,a) 12 

and D 'is a spin-s representation of SU(2), 

The corresponding representation v of the Lie algebra 
[notation: v(1) = iL 1 gives, for the basis (1.2), 

M= ·-m, H= -- _l_\pl'_u, Pk=Pk, 
2m 

K . a (Q M-1K' a ) k=lm-, k= - k=l-, 
apk apk 

(2.2) 

J k = Sk + i(PI.i!..- -- Pi -f!-), (k,/J) = Cyc1 (1,2,3). 
api apl 

Since the mapping Jl: L '(Rl X 1: )-l>g(3)* defined by 
<.p(j),.:l') = UI(1/1)V(Y)f), V YEg(3), is covariant: 
Ll (g)oJl = flol u(msu)(g), g(3)* of the Lie algebra. Conse
quently, the physical interpretation of the functions in 
L 2(R3 X~) and the observables (2.2) associated to the Lie 
algebra has to follow the same pattern as in classical mechan
ics: A functionfEL 2(Rl X~) represents either a quantal mo-
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(ion (not a state) of a free particle of mass m (m > 0), spin s, 
and internal energy u or an initial state (at the time t = 0) for 
the evolution law generated by the Hamiltonian H. Conse
quently, the observable Q = I QI,Q2,Q)) represents the posi
tion operator at the time t = O. 

Note that L 2(R) XI) is the spectral representation 
space for the operators P" i = 1,2,3, S2, and S) (and M): 

(PJ)(p,tJ) = p;/(p,tJ), (SY)(p,tJ) = s(s + l}(p,tJ), 

(SJ)(p,tJ) = tJ I(p,a). 

This is the so called "canonical realization" of the 
(m,s)-PIUR class ofG(3). Another equivalent realization 
known as the "helicity realization" is obtained when, instead 
of the spin operator S), it is the helicity operator 

J.p 
A = - (2.3) 

IPI ' 
which is diagonalized. The relation between these two real
izations is given by the unitary operator on L '(R) XI ] 

j(p')' ) = (TJ)(p')' ) = ± D A,,(h (p)-I)/(p,o), 
Oc::- -5' 

(2.4) 

/(p,tJ) = (T 1- Ij)(p,tJ) = i D ~A (h (p)l1(P,A ), 
A = -.I' 

where h (p) is defined in (A 1). It is easy to verify that the 
representation 

ti(msu)( •.. ) = T,u(msu)( ... )T 1- 1 

acts on L l(R) X X) as follows: 

({j(msu)(t,r,a,v,A l1)(p,A ) 

= exp[ - imS - i [(1I2m)lpI2 + ujr + ip·a) 

X i DJ.A {h (pt'Ah {R A- l(p - mv»l1 
A' = -" s 

(R A- l(p - mv),A '). (2.5) 

In Sec. 3, we need two particular realizations of the re
presentation class (m,s). They are related to two group-sub
group reductions, and they provide the spectral representa
tion space for two different complete sets of operators. 

A. The Euclidean subgroup E(3) 

We consider here the chain of subgroups 
G(3) -:JE (3) -:J SU(2) -:J SU(l). 

By considering the restriction to E(3) of the representa
tion (j(msu) in (2.5), we obtain 

((j(msu)! E(3)(a,A l1)(p,A ) 

= exp(ipoa) XX", (h (pylAh (R A-1p»i(R A- Ip,). ». 
t since D = h (pY'Ah (R A- Ip)ESU(1), D"'A (D) = 0",,,, XA (D) 
[cf. (AI»). J 
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By virtue of (A I), this representation is reducible fol
Jowing the decomposition formula (A 12). Then, by using the 
unitary transformation defined by (AI5), we complete the 
reduction of the chain of subgroups considered. We obtain 
the Hilbert spaceJY(E(3» offunctionsj«ms),p')'J,n) satisfy
ing (A 18) and defined on the spectra of the operators (in 
addition, of course, toM and S2) IPI, helicity A, total angular 
momentum J, and its projection J 3• For completeness, let us 
rewrite transformations (A 15) in this context: 

j«ms),p,AJ,n) 

= (T,j)«ms),p,AJ,n) 

= ( 2j + I )1/2 f dfl (ro)D~A (h (ro»j(pro,A), 
41T S' 

(2.6) 

j(p,A) = (T 2-j)(P,A ) 

= f f. /«ms),p')'J,n) 
j= I'" 1 n = -j 

B. The homogeneous Galilei subgroup G(3)o 

Here the chain of subgroups considered is 
G(3) -:J G(3)o:J SU(2) -:J SU(l). 

The restriction ot G(3)0 of the representation u(msu) 

gives 

(u(msu) tG(3)0(V,A }()(p,a) 

s I D ~AA }((R A l(p - mv),tJ'). 
a'= -5 

Up to the factor m before v, we recognize the quasiregular 
representation ofE(3) defined by (AI I). As indicated in the 
Appendix, the complete reduction of the chain of subgroups 
is achieved by the unitary transformation (A 17). In order to 
avoid notational confusion we rewrite (A 17) in the form 

j{(ms),p, vJ,n) 

= (T/)«ms),p,vJ,n) 

f(p,tJ) = (T-l })(p,cr) 

= [ 1 J 1/2 iIi f''' dp p2 
21)"'1(2s + 1) V= -sj= Ivl n= _)0 

XDf:'!7(p,I)*j«ms),p,vJ,n). 

!n this case, we obtain the Hilbert space £"(G(3)o) of functions 
!(ms),p,vJ,n) satisfying (AI8) and defined on the spectra of 
the operators (M,S2), IKI, IKI-1J·K, J2, and J). According to 
the interpretation previously given for the operator Q, the 
operator IQI = (lIm)IKI has to be interpreted as the dis-
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tance between the particle and the origin of the frame at the 
time t = 0, while the operator IKI-IJ·K is a kind ofhelicity, 
i.e., the projection on the position vector at the time t = 0 of 
the spin of the particle. 

The unitary transformation 

T, : JY'(E(3»-JY'(G(3)o) 

is given by 

T, = TT }- 1 T 2- I, 

where T" T2, and T are respectively defined by (2.4), (2.6) 
and (2.7). After some manipulations involving in particular 
(AS), (A6), and (A 7) we get 

j«ms),p,vj,n) 

= (T,j){(ms),p,vj,n) 

( 
2 )\/2 S roo 

= rr(2s + l)(2j + 1) ). ,?_ .)0 dp p
2
d )sA (P) 

xj«ms),p.Aj,n) 

j«ms),p.Aj,n) 

= (T,-i)«ms),p.Aj,n) 

- d ~~ * ( 
2 )1/2 s SOO 

- rr(2s + 1)(2j + 1) v'?-s 0 PP jS).(P) 

xj«ms),p,vj,n). 

Remark: On the space JY'(E(3» the group E(3) acts ac
cording to (A19) 

(-0 (a,A V)«ms),p.Aj,n) 

f, ± D)~"n,(a,A V«ms),p.Aj',n'), 
f = I). 1 n' = -- j' 

while on the space JY'(G(3)o)' the group G(3)o acts as 

(U(v,A V)«ms),p,vj,n) 

f, ± Df~'n,(mv,A V«ms),p,vj',n'). 
j' = I). 1 n' = __ oj' 

The extension of these representations to a representation of 
G(3) equivalent to u(msu) is of course possible, but it involves 
in general integral operators which we do not write down 
here. 

3. TWO·PARTICLE GALILEIAN QUANTUM 
SYSTEMS 

For a nonelementary system, the projective unitary re
presentation of G(3) which is defined on the Hilbert space 
associated to the system is not irreducible. However it is 
possible to decompose the Hilbert space JY'into a direct 
integral of spaces JY'Mj,U,t;, on which the action of G(3) [or 
.'9(3)] is given by the representations U(MjU): 

JY'= f$ dl1(j, U,t)JY'Mj, u,t;,· (3.1) 

Here M denotes the total mass of the system and 5 denotes 
some label which removes the degeneracies. Moreover, as in 
classical mechanics, there always exists a barycentric de-
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composition so that 

JY'=JY'CM®JY'INT (3.2) 

where JY' cM=L 2(JR'). The action ofG(3) on this space JY' CM 
is unitarily equivalent to 

(U 1 CM( 7,a, v,A }f)(P) 

= exp( - ;~ 1 P 12 + IP·a Y(R A- I(p - Mv». (3.3) 

When the space ,,0/ is realized in the form (3,2), the 
decomposition (3,1) reduces to a corresponding decomposi
tion of the "internal space" <cW"NT' 

Now let us consider the special case of a system consist
ing of two noninteracting particles. Then the Hilbert spaces 
is the tensor product ,W = ,W m"s"u, ® ,W m"s"u, and the ac
tion of the kinematical group is simply defined as the restric
tion to the diagonal subgroup .'9 (3)d of the representation 
u(m,s,u,) ® u(m,s,u') of [Ij (3) X f!j (3), For the realization (2, 1), 

we have 

=L 2(JR' xR 1 X2, X22) (3.4) 

and the barycentric decomposition (3.2) is performed by 
means of the unitary transformation of oW', 

j(P,p,a"aJ = (TBf)(P,p,a"aJ 

f( m, m 2 ) 
= MP+P'MP-p,a"a2 (3.5) 

induced by the change of variables [cf. (1.15)1 

{ 

- ~P 

(

p = p, + P2' p, - M + p, 
B 1 B-' 

p = -(m2P, - mlP2), m 1 P 
M P2= - -po 

M 

Indeed, the space of functionsj(P ,p,a"a2) is naturally iso
metric to the tensor product L 2(JR') ® JY'INT with 
Jf"NT""L 2(JR' X2, X22), 

In the case of the Hilbert space (3.4), the decomposition 
(3.1) is well known2.4: 

00 ioo $ 

JY'= Ell . Ell p2 dp JY'Mj,U,t;,' 
t;, J = 0 0 

(3,6) 

where p = Ipi and U = U'NT = (l/2I1)P2 + U, + U2 [cf. 
(1.23»). There exist two standard choices for the degeneracy 
label 5 depending on the manner of "coupling" representa
tions ofSU(2) which occur in the reduction process. 

A. (/- s) or canonical coupling 

Here 5 = (I,s) and the unitary transformation which re
alizes the decomposition (3.6) is given by (p = pW,WES2) 

X ( dO (w)Y~(w)*J(P,p,a"a2). 
Js' 

(3.7) 
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B. Helicity coupling 

Here 5 = (Al,,1z) but first let us introduce the following 
unitary transformation on JY': 

(BJ)(P ,P,,1l,,1Z) 

L L D~,a,(h (pt l )Di,a,(h (ptl )J(P,P'O"hO"Z)' 

Let us mention that A 1 and - Az are the helicities of the two 
particles since p represents the momentum of the first parti
cle in the CM frame of the two-particle system. 

Let us examine in more detail the decomposition (3.6) 
in relation with the barycentric decomposition 
JY'~L Z(R3) ®JY'INT' Since the group ~(3)X ~(3) acts on 
JY' via the representation u(m,s,u,) ® u(m,s,u,), we have a well 
defined action of its subgroups [jJ, f, and G(3)INT' More
over, the action of the group [jJ respects the barycentric 
decomposition given by (3.5). Indeed, by setting 

g = ((51,T,a + ;; b,y + ;; u,A ). 

(3.8) 

it is easy to verify that the representation of [jJ on JY'is 

(~(g}/)(P ,P'O"h0"2) 

= exp[ - im151 - imlz _ i(_I_IPlz + _1_ lpI2 
2M 2f..l 

+ Ul + U2)T + lpoa + ipob] .4.4 D~,a;(A) 
at (71 

XD ;,a;(A }/(R A- '(P - My), R A- '(p - f..lu),O";,O"~). 

(3.9) 

This representation can be written in the form 

(~(g)F)(P) = Y(A (P)-lgA (g-IP»F(g-IP), 

where 

F:R3_Jf'INT [F (P)(P'O"h0"2) 1 = J [P,P'0"1'0"2) l, 
A (P):O-P,A (P) = «0,0,0,P/M,I),(0,0,0,P/M,I»E~(3)d' 

gP=RAP+My, 

and Y is the following unitary representation of the group 
f defined on the space JY'INT: 

(Y(Sh52,T,b,u,A )cfJ )(P,O"h0"2) 

= exp [ - im151 - im25 - { 2~ Iplz + Ul + U2)T + iPob] 

x I L D ;;,a;(A )D ;,a;(A )cfJ (R A '(p - f..lu),O";,O"z). 
aj a; (3.10) 
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Hence the representation ~ of [jJ appears as a representa
tion induced by the representation Y of the internal sub
group f. A projective representation 71 of the Internal Ga
lilei group G(3)INT is simply obtained from Y by setting 
51 = 52 = ° in formula (3.10). It is not irreducible but of 
course 

SI + S2 71 ~ EI1 U{J1su, + u,) (3.11 ) 
s ~ Is, - s, I 

and this reduction can be realized by the Clebsch-Gordan 
transformation 

(3.12) 

The decomposition (3.6) is performed by expressing the 
internal space JY'INT as a direct integral of spaces irreducible 
with respect to the diagonal subgroup ~ (3)d' By virtue of 
(3.9) this group acts on JY'INT only through its subgroup.rl 
consisting of the elements ofSU(2) and of the time transla
tions; according to the definitions (1.19) and (1.21) we have 

.rI = ~ (3),{1G(3)INT" 

Hence, since .rI C G(3 )INT> all we have to do is to compute 
the reduction into irreducible components of the restriction 
to.rl of the representation 71 ofG(3)INT' In other words, we 
have to find a realization of JY'INT in which the internal 
energy operator HINT (i.e., the generator of the time transla
tions) and the internal angular momentum JiNT are 
diagonal. 

In the previous section we have considered two particu
lar realizations of the Hilbert space of the PIUR's ofG(3). 

The first one was related to the chain of subgroups 
which in the present context will be written as 

G(3)INT ::J E(3)INT ::J SU(2)::J SU(l). 

The subgroup E(3)INT does not contain .rI; however it is 
clear from (1.1) that the time translations commute with the 
entire subgroup E(3)INT' Consequently, in the realization 
defined by (2.6) both HINT and J iNT are diagonal. Actually, 
this realization, together with the reduction (3.12) give, up to 
some appropriate change in the degeneracy label 5, either the 
realization (3.7) or the realization (3.8). 

The second one, related to the chain of subgroups 

G(3)INT ::J G(3)o INT::J SU(2)::J SU(l). 

does not lead to the decomposition (3.6) because the internal 
energy operator HINT is not left invariant by the subgroup 
G(3)o INT' Indeed we have 

:!? (0,0, u, 1) t HINT:!? (0,0, u, 1) = HINT + iu I U 1
2

• 

However, in spite of, or rather thanks to this lack of invari
ance, the realization of JY' associated with the realization 
(2.7) of JY'INT will be used to obtain a two-variable expansion 
of the scattering amplitude. By virtue of (2.7), the unitary 
transformation 

S:JY'-_JY, 

where JY is the space offunctionsj(p,s,p,vJ,m) such that 
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is given by 

(sj)(P,s,p,vJ,m) = ----
[21T2(2s + 1) ]112 

(S -j)(P,p,S,(T,) 

X D):' sa(P, l)*i(p,s,p,vJ,m). 

v 

(3.13) 

The space tW' is the spectral representation space for the 
total linear momentum, the length S2 of the vector sum of the 
two spins, the internal angular momentum J ~Nn its projec
tion J3 INT' the distance at t = 0 between the two particles 
and finally the projection of JINT on the relative vector posi
tion at t = O. 

The unitary operators which connect this realization of 
the space tW' with either the (I - s) coupling one or the heli
city coupling one are given by 

(1) (1- s) coupling: 

(TJ)(P,s,p,vJ,m) 

= LL( 2(2/+ 1) )1/\SA10 ljA) 
A I 1T(2s + 1)(2j + 1)2 

x roc dp p2 d j,A (p)j(P,pJ,m,l,s), 
Jo 

(T c 1)(P,pJ,m,/,s) 

= L L ( 2(2/ + 1) )1I2(SA10ljA) 
l' A 1T(2s + 1 )(2j + 1)2 

x roo dpp2d)s').(P)*i(p,s,p,vJ,m), 
Jo 

(2) Helicity coupling: 

(Thl)(p,s,p,vJ,m) 

( 
2 )112 = L (SlA 1S02IsA) 

1T(2s + 1 )(2j + 1) A,A,'( 

>< 1'" dp p2 d)sA (p)j(P,pJ,m,A,,A2)' 
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(3.14) 

(3.15) 

( 
2 )112 

= 1T(2s + 1)(2j + 1) 2,2 ~ (SlA,s02IsA ) 

x f" dpp2d)sA (p)*i(p,s,p,vJ,m). 

These transformations are obtained after some manipula
tions by using formulas (2.6), (2.7), (3.6), (3.7), and (3.12). 

Let us note that in both cases, the transformations in 
one direction involve an integration over the spectrum ofthe 
internal energy operator (which is a kinematical invariant) 
while in the other direction they involve an integration over 
the spectrum of the operator interpreted as the distance at 
t = 0 between the two particles. 

4. TWO-VARIABLE EXPANSIONS OF 
SCATTERING AMPLITUDES 

The phenomenological Galileian elastic scattering the
ory deals with a unitary operator (the scattering operator) 

S: ,W---+,W 

defined on the Hilbert space (3.4) of two noninteracting par
ticles. The kinematical Galileian invariance in scattering is 
introduced by means of the intertwining condition 

U(g)S = SU(g), V gEG(3), 

where U(g) denotes the projective unitary representation 
u(m,.s"u,) ® u(m"shu,j. According to the Schur lemma and to 
the decomposition (3.6) of the space tW' we must have for 
both realizations (3.7) and (3.9), 

(Sf)(P,pJ,m,s) = L S (PJ,s,s '}f(P,pJ,m,s ') (4.1) 
5' 

with IS (PJ,s,s ')1.;;; 1. The interpretation offunctionsJas de
scribing a motion of two free particles is well adapted to this 
scattering theory: These motions are the asymptotically free 
limits of the true motion of the interacting particles. This 
formalism can be extended to non elastic scattering but for 
this more general case the Hilbert space (3.4) is only a part of 
the space which has to be considered and consequently in its 
decomposition (3.1), the degneracy labels S in (4.1) have to 
be completed in order to take into account the various chan
nels. However in this section we limit ourselves to reactions 
of the type 1 + 2---+3 + 4. Recall that the interwining condi
tion implies by virtue of (3.1) the conservation of the total 
mass M of the system. 

For applications, it is not the scattering operator which 
is relevant but the transition operator T defined by 

T= i(S - 1). 

Therefore, we shall be concerned with the "matrix 
elements" 

T (pJ,s,s ') = i(S (pJ,s,s ') - {) 55.)' 

The barycentric decomposition (3.2) is particularly useful 
since, because of(4.1), we have 
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T= 1 ® T. 
We can therefore restrict ourselves to functions belonging to 
the internal space dY1NT and from now on, when referring to 
formulas (3.7), (3.8), (3.13), (3.14), and (3.15) it will be al
ways understood that it is their restriction to dY1NT which 
has to be considered. Hence, for the transition operator T, 
and with this convention, formula (4.1) becomes 

(f!)(pj,m,s) = I T(pj,s,s')f(pj,m,s')· (4.2) 
s' 

This equation holds both for the canonical and for the heli
city coupling realization of dY1NT" When considering the 
original realization dY1NT = L 2(JR' X.2"1 X.2"z), it is not diffi
cult to establish that the corresponding operator 

(4.3) 

where Cs is defined either by (3.7) or by (3.8), is ofthe follow
ing form, 

(T' !)(P,Ul>uz) 

= 441, dfJ (ro') T(p,ro,ro',ul,uz,ui,u2) 
(71 (71 

(4.4) 

with p = pro, p' = pro' (Ipl = Ip'l = p). 

Following a standard analysis which we do not repro
duce here, the kernel T(p,ro,ro',Uh U2,ui,u2) is related to the 
scattering amplitudes by 

where ro' = e1 is the direction of the incident beam and 
ro = ro(q;,(}) is the direction of a scattered particle tradition
ally expressed in the eM frame of a pair of incident and 
target particles. 

When the scattering amplitudes are expressed, by using 
(4.3), in terms of the matrix elements T(pj,s,S') defined by 
(4.2), we obtain the two following well known one-variable 
expansions: 

(1) Canonical coupling [cf. (3.7)]: 

I I (SIU1SZU2 Isu)(sluis2U2 Is' u') 
s s' 

x I I I (su 1m I ju')(s'u'IOlju')T(pj,I,s,1 ',s') 
I I' j 

( 
21' + 1 )112 I 

X Y m(ro). 
417 

(2) Helicity coupling [cf. (3.8)]: 

a(p,ro.AI.A2.A i.A 2) 

= ~ ( 2
j

4
: 1 )T(Pj,)..I,)..2,).. i,).. 2) 

J 

XD~, + A, A;A ;(h (ro»*. 
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(4.6) 

(4.7) 

For the case of spin-zero particles, both formulas re
duce to the familiar expansion 

a(p,q;,(}) = I ( 21 + 1 )T(P,l)PI(COS(}). 
I 417 

(4.8) 

In these formulas, the specific dymanics of the scatter
ing process is entirely contained in the matrix elements 
T (pj,s,s '). The direction of scattering ro only appears as the 
argument of known special functions related to the group 
SU(2), but this is not the case for the internal kinetic energy 
E = (l/2f1)p2 which appears (viap) in the matrix elements 
T(pj,s,s '). As mentioned in the Introduction, this situation 
presents some disadvantages and it would be a significant 
improvement to provide a formalism which treat the inter
nal kinetic energy on the same footing as the direction of 
scattering. It is the idea of the two-variable expansions to 
construct satisfactory representations of the functions 
p ...... T(pj,s,S') in terms of known functions depending on a 
set of interpretable indices. 

It is clear that such two-variable expansions cannot be 
obtained on the basis of purely kinematical considerations. 
Indeed, while it is true that the definition (4.2) of the matrix 
elements T (pj,s,s '), based on the decomposition of the 
space dY1NT into subspaces irreducible with respect to the 
kinematical Galilei group, is responsible for the one-variable 
expansion of the scattering amplitudes in terms of functions 
depending on the direction variable ro, it is also true that this 
definition cannot lead to a similar treatment for the variable 
p since this latter is an invariant for the action of this group. 

However, the transition operator T acts on the internal 
Hilbert space dY1NT and on this space we have a unitary 
representation of the internal Galilei group whose gener
ators all have a physical meaning. Moreover, let us recall 
that the decomposition ofthis space into subspaces irreduci
ble with respect to the kinematical group was performed by 
means ofthe realization of dY1NT associated with the group
subgroup chain G(3)INT:::::> E(3)INT:::::> SU(2):::::> SU(l). In this 
realization, the internal energy operator and the internal an
gular momentum, which are two kinematical invariants, are 
represented by diagonal o~rators. The decomposition (4.2) 
of the transition operator T and the subsequent one-variable 
expansions (4.6) and (4.7) follow directly from that: As func
tions of the direction variable ro, the scattering amplitUdes 
are expanded in series of orthogonal eigenfunctions of the 
internal angular momentum operator. A similar treatment 
will be possible for the p variable only if we start from a 
realization of dY1NT in which the internal kinetic energy is 
not a diagonal operator. In the other realization of this space 
that we considered in Sec. 3, associated with the group-sub
group chain G(3)INT:::::>G(3)o INT:::::> SU(2):::::> SU(I), this is 
precisely the case. Moreover, since the internal angular mo
mentum is still represented by a diagonal operator, nothing 
will be changed in the ro dependence of the scattering 
amplitudes. 

In this realization, the transition operator is given by 

T" = TsTT s~ 1, 

where Ts denotes either the unitary transformation Tc or Th 
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defined respectively by (3.14) or (3.15), and it can be written 
in the (possibly formal) form 

(T "l)(s,pJ,m) 

= ~ ~ 100 

dp' pI2T(p,pIJ,s,v,sl,vIV(sl,p'J,m). (4.9) 

In the case S = (I,s), it can be directly verified that 

T (p,p' J,s, V,S', Vi) 

2 ( (21 + 1)(2/' + 1) )112 
= 1T(2j + 1)2 ~ ~ ~ f; (2s + 1)(2s' + 1) 

x T(PJ,l,s,lI,S')d%,~, (P)*. 

Conversely, by computing T as T c- 1 T /I Tc, we get 

T(pJ,I,s,ll,s') 

2 (21+1)(2/
1
+1»)112 

= 1T(2j + 1)2 ~ ~ ~ ~ (2s + 1)(2s' + 1) 

x (sA'/ 0 ~A )(S' A '1'0 ~A ') LX> dp p2 LYO dp' p'2 

X roo d I 12dPV (P)*T(P ,. I ')dP'V' (P') Jo p P jSA ,p J,S,V,S ,v jS'A' . 

(4.10) 
Similar formulas hold of course for S = (A I,A,2)' The impor
tant point to note in this formula is that the variable p only 
appears in the special function d )sA (P). 

For later use, we define the following function 

A (P,VJ,s,S',A, ') 

1 100 

= I dplp'2 
21T2y (2s + 1)(2s' + 1) v' 0 

x 100 

dp p2T(p,pI,j,s,v,sl,v')d f;;'~ ,(P'). 

Then, formula (4.10) can be written as 

T(PJ,I,s,ll,s') 

(4.11) 

= 41T Y(2/+1)(2/'+1)III(sAIO~A) 
(2j + 1)2 v A A' 

X (s'A I 1'01 jA ') 100 

dp p2d)sA (P)A (P,VJ,S,S',A, '). 

(4.12) 

Finally we obtain the two-variable expansions of the scat
teringamplitudeseitherby replacing T(PJ,l,s,ll,s')in(4.6) by 
its expression (4.12) or by computing directly the transition 
operation T I as C -IS -I T /I SC for the canonical coupling, 
where C is defined by (3.12) and S by (3.l3). For the helicity 
coupling scheme, we have to compute the kernel of 
DC -IS -I T /I SCD -I, where D is defined by (3.8), we get: 
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(1) Canonical coupling: 

X Df;'sa(p,I)*A (P,vJ,S,SI,CT'). (4.l3) 

(2) Helicity coupling: 

a(p,ro,A,I,A,2,A, i,A, :1) 

= ~ ~ (sIA Is2A2IsA )(sIA iS2A ~IS'A ') ~ t 100 

dp 

Xp2D fl"sA (p,h (p»*A (P,VJ,S,S',A, '). (4.14) 

Let us notice that, by using (3.14), formula (4.12) can be 
inverted to give 

A (P,VJ,S,S',A, ') 

= _1 III Y(2/+1)(2/ ' +1) (sIAII'OIj,{I) 
21T2 1 I' A (2s + 1)(2s' + 1) 

X (sAlOl jA) Loo dp p2d 'lsA (P)* T (PJ,I,s,l' ,S') 

but it is obvious that some conditions have to be imposed on 
the function A (p, VJ,S,S',A, ') in order to obtain not just a for
mal expression. 

It is possible to exploit the remarkable structure of the 
d Z~m(P) functions which is given explicitly in (A9) in order to 
express the two-variable expansions (4.l3) and (4.14) direct
ly in terms of spherical Bessel functions. Before doing this, it 
is judicious to introduce the following function 

D(P I' I A') = Y 41T ( (21 + 1)(2s + 1) )1/2/ 
, J,S,S , 2j + 1 

X I (svlO Ijv)A (P,VJ,S,S',A, ') 

which is the generalization to the cases of arbitrary spins, of 
the so-called "Galilei amplitudes" introduced in Ref. 1. 

After some manipulations we obtain: 

(I) Canonical coupling: 

a(p,w,a},CT2,a1,a;) 

= I I (SICTIS2CT2 1 SCT)(SICTiS2CT~ 1 S' CT') 
S s' 

X I I (sCTlm 1 jCT') 
1 j 

X Y~(ro) 100 

dp P11(Pp)D (p,lJ,S,SI,CT'). 
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B (p,lj,s,s' ,a') 

2/ + 1 
= -- L L (sla1s,a, I sa) 

2j + 1 a,a, a;a; 

(2) Helicity coupling: 

a(p,ro,A1,A"A ;,A;) 

L L (SIA 1S2A2 I sA) 
s s' 

X (SIA is,A; I s'A ') L L (sAl 0 IjA) 
I j 

x ( 2~ + 1 )1!2( 2j + 1 )1/2D 1 'A (h (ro»* 
2) + 1 41T 

x 100 

dpp2Mpp)B(p,lJ,s,S',A '). 

B (p,lJ,s,s',A ') 

= (. 2~ + I )3/2 L L (SIA 1s,A2 I SA )(SIA is,A ; I s'A ') 
2} + I A,A, A ;A; 

X (sAlOl jA) dfl (ro) dp p' _'J __ f 1'" ( 2' + 1 ) 1/2 
S' 0 41T 

By taking into account the known behavior of the func
tionsj[(x) near x = 0, it is easily seen that these expansions 
have the correct threshold behavior (p~). 

CONCLUSION 

The two variable expansions of scattering amplitudes 
we propose here are based on the decomposition of the "in
ternal space" of the two particles into invariant subspaces 
associated with the chain of subgroups G(3)INT::) G(3)o INT 
::) SU(2)::) SUe I). It would be possible to obtain other expan
sions by choosing other chains, for example, 
G(3)INT::) G(3)o INT::) E(2)::) SU(I) or G(3)INT::) G(3)o INT 
::)R3. These two examples have already been considered in 
Ref. 1 for scalar particles and from a slightly different point 
of view. The first one is related to the eikonal expansion. 

We have shown that the internal Galilei group can be 
naturally introduced by means of the barycentric decompo
sition concept. Except for the rotations and for the time 
translations, which are shared with the kinematical group, 
this group has no further connections with kinematical 
properties of the system. It acts on the internal properties of 
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the system: relative space translations and relative Galileian 
boosts. Note that this internal group concept associated with 
the barycentric decomposition could be easily generalized to 
an N-particle system. 

This method of approaching the two variable expan
sions has been applied in relativistic theory and will be the 
subject of a future paper. The main and new problem which 
arises in this case is concerned with some technical difficul
ties due to the lack of good properties in the barycentric 
decomposition of a relativistic system when the particles 
have different masses. 
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APPENDIX 

We give in this Appendix some results about the quasi
regular representations of the Euclidean group E(3). It does 
not contain anything new except for the introduction of the 
d Z~m functions which are used in the main text so as to make 
the Galileian treatment as close as possible to the relativistic 
one. For references about representation theory of E(3), see 
W. Miller Jr.\ 

The faithful irreducible unitary representations ofE(3) 
are characterized by the pairs (p,A ), pER.+ , 2AEZ. A stan
dard realization is 

(U(PA)(a,A )f)(ro) 

= exp! iprooa lXA (h (rotlAh (R A lro»f(R A l ro), (AI) 

where 

fEI. ~(S'), ifl g) = 1, dfl (ro)f(ro)*g(ro), 

dfl (ro) = sine df{J de, 

h (ro)ESU(2) is such that Rh(w): eJ ---+ro,s 

XA is a character ofSU(1). 

An orthonormal basis of L ~ (S ') of eigenvectors of the 
operators J' and JJ is given by 

where D ~A is a Wigner D function and 1,1 I <j < 00, 

-j<;m<j. 

The matrix elements of U (a,A ) are defined by 

D J:'/m,(a.A ) = (Fj", I U(PA )(a.A )F)m.)' (A3) 

In particular 

D J:'/ m.(O, A) = ~jj' D~m.(A ). (A4) 

Any element of E(3) can be factorized in such a way 
that only translations along the third axis are involved, 

(a,A) = (O,h (a»(ae3,1)(O,h (at1A), (A5) 
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wherea = lal andh (a) h (a-Ia). Hence the only new matrix 
element to be considered is D f~fm,(ae3' 1), By using the defi
nition (A3) with the scalar product defined by (AI), one 
shows that 

Df~fm,(ae3,1)=0 if m=l=m'. 

Then, by defining the reduced matrix element d Z~(a) of 
E(3) as following 

D f,~fm,(ae3' 1) = 8mm,d Z~m(a), (A6) 

we have 

D f,~j'm,(a,A ) = L DJmn(h (a»d Z~n(a)D~m,(h (atlA ), 
n 

where the summation over n runs from -min(jj') to 
+ min(jj'). 

(A7) 

The reduced matrix elements are explicitly given by 

d Z~(a) = 1 y' (2j + 1)(2)' + 1) IT dO sinOeipa 
cosfJ 

Xd ~A (cosO)d ~A (cosO )*. (AS) 

By using the familiar expansion in spherical Bessel functions 

eia
•
b = f (21 + l)iJ/(ab )p/(v'w), a = av, b = bw, 

/=0 

the integration in Eq. (AS) can be easily performed and we 
get 

d f~m(a) = ( 2< + I ) 1/2 L (21 + 1)il/(pa) 
2J + I / 

X (l 0)' m I jm )(1 O)'A I jA ). (A9) 

Thi~ simple expression exhibits the symmetry of these 
functions with respect to the permutations p~,j+-+)', and 
A+-+m. 

Let us mention the following "orthonormality" 
property 

"lac da a2d pA (a)*d p'A '(a) 
~ JLhm Jvlm 
m 0 

= !!.... (2jl + I )(2j2 + I )8AA ' 8(p - p') 
2 p2 

(AW) 

and, by virtue of the symmetry p~, a similar "closure" 
property. 

By quasiregular representation of E(3), we mean a uni
tary representation of the form 

(U(S)(a,A }f)(x,a) 

i D ~a.(A }feR A- I(X - a),a'), (All) 
o'=--s 

where/EL 2(R3 X.l'),.l' = ! - s, - s + l" .. ,s - l,s), 2sEN, 

(fl/) = "t_ s 1, d 3X I/(x,a) I 
2 < 00. 

This representation can be seen as induced by the D S repre
sentation ofthe maximal compact subgroup SU (2) ofE(3). It 

1088 J. Math. Phys., Vol. 20, No.6, June 1979 

is reducible, more precisely we have 

(AI2) 

Actually, when performing at first a fourier transformation 

j(p,a) = (Y I)(p,a) = (21Tt 312 ( d 3X eipox F (x,a), 
JR' 

we obtain an equivalent representation 

O(s)( ... ) = YU(S)( ... )Y-I 

such that 

(O(s)(a,A ll)(p,a) 

a' = - s 

Then, by using the unitary transformation (p = Ipl, p = pw) 

f(p,}.,w) = (Tj)(p'}',w) = i D~a(h (wtl)j(pw,a) 
a= -s 

(AI4) 

we easily establish the decomposition (All) by introducing 
the spherical coordinates ofR3. 

The spectral representation space JY\s) for the opera
tors IPI, J.p, J2, and J 3 associated to the representation U(s) 
is simply obtained starting from the space L 2(R+ X S 2 X.l' ) of 
the functions f(p,}.,w) by introducing the unitary 
transformation 

j(p'}'j,m) = (TJ)(P'}'w) 

= -- dfl (W)DjmA (h (w)}f(P,}.,w), ( 
2j + I )1121 -

41T S' 

l(p,}.,w) = (T 3- 1)(P,}.,w) 

f f j(p'}'j,m) 
J= IAI m=-j 

Then 

(IPI j)(p,}.j,m) = pj(p'}'j,m); 

(J.Pj)(p,}.j,m) = pAj(p'}'j,m), 

(J'l')(p'}'j,m) = j(j + l)j(p'}'j,m); 

(JJ)(p,}.j,m) = mj(p'}'j,m). 

(AI5) 

(AI6) 

When starting from the space L 2(R' X.l' ) of the functions 
I(x,a), we have to consider the unitary transformation 

T= T3T2Y. 

After some manipulations [using (A5) and (A6)], we can 
write T and its inverse in the form 

j(p'}'j,m) = (TI)(p'}'j,m) 

1 1 d 3x DI'A X 1 x a [2~(2s + 1»)112 af:-s R' lmsa( , }f( , ) 
(A17) 
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f(x,o) = (T-1)(x,u) 

= 1 112 ± f ! (00 dp p2 
[2~(2s+ 1)] <7= -sj= IAI m= _jJo 

X D )~s(j(x, l)*j(p')'j,m). 

Note that 

and that the representation 

U(s)( ... ) = TU(S)( ... )T- I 
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acts as follows, 

(U(S)(a,A Y)(p,).j,m) 

f ± D )~j'm,(a,A Y(P,).J',m'). (A19) 
j' = IA 1 m' = _oj' 

IE.G. Kalnins, J. Patera, R.T. Sharp, and P. Winternitz, in Group Theory 
and its Applications, edited by E. Loebl (Academic, New York, 1975), Vol. 
3; Phys. Rev. D 8,2552 (1973); 10, 3527 (1973). 

'1.M. Levy-Leblond, in Group Theory and its Applications, edited by E. 
Loebl,(Academic, New York, 1971), Vol. 2. 

'J.M. Souriau, Structure des systemes dynamiques (Dunod, Paris, 1970). 
'J. Voisin, J. Math. Phys. 6,1822 (l965). 
'W. Miller, Jr., Commun. Pure Appl. Math. 18,527 (1964). 
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Positivity conditions on correlation functions that imply Debye 
screening 

Paul Federbush 

Department of Mathematics, The University of Michigan, Ann Arbor, Michigan 48109 
(Received 13 July 1978) 

In the classical statistical mechanics setting, a set of positivity conditions on certain two
point correlation functions is exhibited that implies Debye screening for a large class of 
Coulomb-like models. For example, for the model treated by Brydges, for which he has 
rigorously proved shielding, in a range of parameters where (ct.>'(x)J(y»z 0 for all x 
and y and all s odd, there is screening. (Alternative conditions require positivity for 
only two correlation functions.) Strong estimates are obtained for the rate of 
exponential falloff. 

Currently there is much interest in acquiring under
standing of De bye screening. An outstanding problem is the 
question of proving shielding in quantum statistical mechan
ics (assuming it is valid). Toward this end, the short range 
difficulties of the 1/ r potential have been controlled. I 
Brydges has recently proved screening for classical Coulomb 
systems. 2 We feel the present approach may provide insight 
into the problem, dealing with shielding charges in a sugges
tive way. We will deduce exponential falloff of the two point 
correlation function, for a large class of models, under the 
assumption of positivity for certain two-point correlation 
functions. This work may be interesting for a number of rea
sons. First, it is possible a proof of these positivity conditions 
will be forthcoming, giving a new proof of shielding. Second, 
we obtain strong statements on the rate of exponential 
falloff. Third, the positivity conditions may be tested for in 
numerical experiments (or theoretically) to provide a good 
estimate of the range of parameters for which shielding 
holds. 

We study a classical statistical mechanical system of 
several species of "charged" particles, species i with charge 
qiand fugacity Zi' See Ref. 3, for example, for the basic defini
tions. The partition function is written as 

(1) 

with 

v = ! f : J ( ~ + V)J:, (2) 

v the short range potential, y/r the Coulomb term, and 

p, the density of species i. We assume for convenience 

We define cp as 

It is helpful to define the notation: 

Z = I (e - /3v), 

[A]=I(e f3VA), 

(A) _ [A] 
-Z' 

(6) 

(7) 

(8) 

to discuss ensemble averages of a function A. We also define 

w = (- Ll )v. (9) 

We are now prepared to state several conditions from 
which we will prove a number of results. 

Condition I: There existsf(z,x) J(z) (i.e., the x depen
dence is suppressed) satisfying 

( -.1 + 41TY ~ Zi q7!3 + ~ Zi Q7!3W* y<Z) 

= 41TYO(Z - x) + w(z - x), (10) 

withj>O all z (andjfalling off exponentially). 

Later we will show such anjexists in a number of inter
esting cases, and find the falloff explicitly in these cases. 

Condition II: (J (y) dJ (x»>O ali x,y, (11) 

Condition 1/1.1: (J (y) cp '(x)bO all x,y, s odd, 
(12) 

Condition IIl.2: 

(13) 

Condition III.3: 

\J(y) ~Ziqi( - e /3q,q,(x) + I -j3q,4> (x») »0 all x,y. 

(14) 

A system is charge symmetric if the species occur in 
pairs with equal fugacities and equal and opposite charges. 

Theorem 1: For a system satisfying Conditions I, II, and 
111.3, or for a system satisfying Conditions I, II, and 111.2, or 
for a charge symmetric system satisfying Conditions I, II, 
and 111.1, one has 

O.;;;«y) cp (x»';;;cj(y,x). (IS) 
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From the conditions onf, this implies the exponential falloff 
of the two point correlation function; the system shields. 

For the system studied by Brydges, suitably scaled, (10) 
becomes 

( -.1 + 2zq2(3)f = 4m5, (16) 

an equation on a unit lattice,.1 the discrete Laplacian. [we 
have picked his I = 1, and y = (l/41T).] 

Theorem 2: For this system one may pick 

(17) 

where g is the fundamental solution of (16), some of whose 
properties are given in the Appendix. 

We note that it is not known that Conditions II or III 
hold in the region where Brydges has proved shielding, but 
we believe they do. 

We next consider a system with 

e - ar 

v= -y--. 
r 

(18) 

This choice eliminates the singularity ofthe total potential at 
r = O. Equation (10) in momentum space becomes 

41Ta2Y)t 2 - 41T =ay , 
k 2 +a2 k 2 +a2 (19) 

with 

(20) 

We pick 

j _ 41Ta2y (1 1) 
- r

2 
- r, k 2 + r, - k 2 + r2 ' 

(21) 

(22) 

r, = 
a 2 _ (a' - I61Ta2y)1I2 

2 
(23) 

Theorem 3: For this system, with 

a 2 > I61TY> 0, (24) 

one may pick/satisfying 

0 /1"( ) cexp(-V-;:/x-y/) 
"V x,y <; . 

/x-y/ 
(25) 

We thus have two natural systems satisfying Condition 
I. 

Before turning to a proof of Theorem 1 we first consider 
a simpler statistical mechanics model, a Gaussian distribu
tion of continuous charges on a unit rectangular lattice. 

Z = 1) (J dJ,e - a/2J;)exp [ ( ~P) {; J{ ~ + v)JJ]' 

(26) 

There is a J j for each lattice site i. I/r denotes the Green's 
fUGction for a discrete Laplacian.1. With a notation similar 
to Eqs. (6)-(8) one has the pull-through formula (an integra
tion by parts), 
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J(J/J) = J..J( aB ). 
a aJi 

(27) 

As in (5) one defines 

¢ = I (~ + v) /i' (28) 

We want to study (Jy¢x), y and x lattice sites, and write 

(29) 

(the dependence of/on x is suppressed). We apply (27) to the 
third term in braces, 

= ! /y + \Jy{¢x - IfJi - ! Ih( ~ + V}jJj}). 

If we can find an / satisfying 

(a + (Jy(lIr)* + pv*)/ = a( ~ + V). 
an exact analogy of (10), we get 

1 
(J)x) = -fr, 

a 

(31) and (32) directly yield 

( I) (JJ) = . 
I } a + py / r + {Ju Ij 

(30) 

(31) 

(32) 

(33) 

Any correlation function can be calculated by this result and 
Wick's theorem for this Gaussian model. It follows that for 
such a Gaussian model if a, p, y and v are picked to ensure 

(Ji ¢);;,O all i and j, 

and (as is automatic) 

(¢i ¢i);;'O all i, 

(34) 

(35) 

that it satisfies Conditions II, 111.1, 111.2, and 111.3. It is easy 
to show that a Gaussian model approximating the models of 
Theorem 2 or Theorem 3, having the same/in a discretized 
form, satisfies (34). That is, our Conditions II and III hold 
for the continuous approximations of our models, essentially 
the P-D limit (with (Jz fixed). 

Returning to a proof of Theorem 1, we first exhibit an 
analog of the pull-through formula (27) in the classical sta
tistical mechanics setting. We let B be a functional of the 
!Pi (x) j. Then 

J (p,{x)B) = Zi J (B (.IX), (36) 

where B (-ix) is B with Pi (y) replaced by Pi (y) + 8(y - x). As 
in (29) we write 

(J(y)¢ (x» 

= (J (y) {¢ (x) - f/(Z)J (z) + f /(z)J (Z)}) (37) 

and apply (36) to the last term in braces getting 

V(Y~W)=C+E+~ 0~ 

where Cwill be a set of terms identically canceling, Mwill be 
the main term, and E will serve the place of an error. 
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(39) 

Applying the Laplacian to the coefficient of J one gets exact
ly Eq. (10) in Condition I, 

M = I Zi q~f(Y,x) (e - (3q,q, (Yl) . (40) 

The expectations in (40) are all positive, their values deter
mine the constant in (15) of Theorem 1. 

E= IZiqi f f(z)(J(y)(e-(3q,q,(z) -1 + (Jq,¢J (z»)). 

(41) 
By Condition 111.3 we assumeE<;O. Thus from (38) we have 

O<;(J(y),p (x» = M + E<;M, (42) 

The first inequality is Condition II; this is Eq. (15). The 
statement of 111.1 trivially yields 111.3 for symmetric sys
tems, The inequalities of(13) and (14) are identical by a 
simple application of (36). 

Proceeding to collect some final points we note that it 
was only necessary to ensure C<;O, not that C = 0, and this 
freedom may be helpful in some situations. It is amusing to 
attempt to eliminate the need for an error term in (38) by 
allowing thefin (37) to be a functional of the J's. This was 
attempted in Ref. 4 with very limited success; other expres
sions like (38) were obtained with smaller error terms. 
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APPENDIX 
We look at some properties of the Green's function for 

the discrete Helmholtz equation on a unit rectangular 
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lattice, 

with 

( - L1 + a)g = 4m5. 

(I) In one dimension, 

g(x) = c'e- k lxi, 

ek + e - k - 2 = a. 

(II) In three dimensionsg(x 1,X2>X,), symmetric in its ar
guments, satisfies 

for the same k as in (I). 

(III) In three dimensions 

( 
Ix. I N+r) " ,,' I ' , g<;c exp - L-- n--- , 

i 2 Ni-ri 

where 

and 

4(~Ny + (6 + a)'?; 2 
=N i, Ni>O. 

(6 + a)' 

(II) follows easily from (I). (I) is verified by directly substi
tuting into the difference equation. (III) is derived from a 
random walk expression for the Green's function. s 

1D. Brydges, P. Federbush, Commun. Math. Phys. 49, 233 (1976); Com
mun. Math. Phys. 53, 19 (1977). 

'D. Brydges, Commun. Math. Phys. 58, 313 (1978). 
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'P. Federbush, "A Functional Relationship for the Two Point Correlation 
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Generalized susceptibility of a solitary wave8
) 

K. C. Leeb) and S. E. Trullinger 
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(Received 31 August 1978) 

We define a generalized susceptibility for solitary wave solutions of the nonlinear Klein--Gordon equation 
and obtain its expression in terms of the complete set of functions which arise in the linear stability 
analysis of the solitary wave. Explicit expressions are presented for the susceptibility of the sine-Gordon 
soliton and the 4>4 kink. Plots are presented for the long-wave dynamic polarizability of the 4>4 kink which 
have application to the response of ferroelectric domain walls to an oscillating external electric field. 

I. INTRODUCTION 

Solitary wave solutions of nonlinear wave equations 
have received considerable attention recently because of 
their wide applicability in several branches of physics, I par
ticularly in condensed matter systems. 2 The sine-Gordon 
(SG) soliton and ¢>' kink are two cases of particular interest, 
for example, as models for charge carriers) in weakly-pinned 
charge-density wave condensates and domain walls4 in fer
roelectrics, respectively. Solitary waves propagate through 
the system without distortion of shape and exhibit remark
able stability and other particle-like properties. This has 
prompted their use as models for extended particles in non
linear quantum field theories.5.6 

There have been some recent advances in understand
ing the behavior of solitary waves under the influence of 
external perturbations. 7

•
8 These studies indicate that solitary 

waves of the nonlinear Klein-Gordon type (e.g., SG and t/J4) 
may be viewed as stable extended particles which are defor
mable under the influence of external forces. In this paper we 
study the response of a nonlinear Klein-Gordon solitary 
wave when it is subject to an external disturbance and damp
ing. The linear response of the field when a solitary wave is 
present is compared to the response in the absence of a soli
tary wave in order to extract the intrinsic response of the 
solitary wave. 

In Sec. II, we define the generalized susceptibility9 for 
the linear response. We derive an expression for the suscepti
bility in terms of eigenfunctions of a Schrodinger-like equa
tion which arises in the stability analysis for the solitary 
wave solution of the nonlinear Klein-Gordon equation. In 
Sec. III we calculate the susceptibilities for both the SG soli
ton and t/J4 kink, obtaining explicit expressions for these two 
examples. In Sec. IV we present plots of the t/J4 kink long
wavelength susceptibility for representative values of the 
damping constant. These results have application to the elec
tric polarizability of domain walls4 in ferroelectrics. Finally, 
in Sec. V we summarize our results and present some general 
comments. 

a)Research supported by the National Science Foundation under grant No. 
DMR77-08845 and by the SNU-AID Graduate Basic Sciences Program. 

b)Permanent address: Department of Physics, Seoul National University, 
151 Seoul, Korea. 

II. GENERAL FORMALISM 

We consider a Lagrangian density, !£' (t/J) of the nonlin
ear Klein-Gordon type for a real scalar field in one space 
and one time dimension. In dimensionless variables (Z,T), 
!£'(t/J) has the form 

!£'(t/J) = J.. ( at/J )2 _ J.. ( at/J )2 _ U(t/J), (2.1) 
2 aT 2 az 

where U (t/J ) has at least two degenerate minima, say at t/JI and 
tP2' such that U (t/JI) = U (t/J2) = 0. The equation of motion for 
the field tP is given by 

iftP _ a
2
tP + U'(t/J) = 0. (2.2) 

arZ az1 

The static solitary-wave (kink) solutions, tPiz), are obtained 
by integrating Eq. (2.2) (with at/Jlar = 0) subject to the 
boundary conditions tPs( + 00) = tPh t/J,( - 00) = tP2' or tPs 
( - 00) = tPh t/J,( + 00) = tPl' The traveling solutions may be 
obtained by boosting t/Js(z) to a frame moving with velocity v 
(Ivl < 1). 

The stability of the solitary-wave solutions may be in
vestigated by determining the nature of small deviations 
from the static waveform t/Jiz). This is accomplished by con
sidering solutions to Eq. (2.2) of the form 

tP (Z,T) = t/Jiz) + ¢(z)eim
, (2.3) 

where I ¢(z) I is assumed to be small. Substitution of(2.3) into 
(2.2) and subsequent linearization in ¢ yields the following 
equation for ¢, 

( - !!..:.. + U II (tPiZ»)¢ = 0)2¢. 
dz1 

(2.4) 

The ground state of this Schrodinger-like equation always 
occurs at 0)2 = 0, implying that all eigenvalues 0)2 satisfy 
0)2>0, and hence the solitary wave is stable against small 
oscillations. 

The "bound" state at 0)2 = ° corresponds to the so
called "translation mode"5-8 of the solitary wave since 
¢ = tP ;(z) satisfies Eq. (2.4) with 0)2 = O. In general, there 
also exists a continuous spectrum of eigenvalues correspond
ing to "continuum" states with the dispersion relation 

O)~ = m 2 + k2, 

where m2 is defined by 

m 2 = U"(t/Js(z= ± 00». 

(2.5) 

(2.6) 
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In addition, there may exist other bound states (with 
0< OJ' < m') which correspond to localized "internal" oscil
lations of the solitary wave. 

One can form a complete orthonormal set, ! t/Ji)' from 
the eigenfunctions of Eq. (2.4). The orthonormality condi
tion is expressed by 

(2.7) 

where i and} are discrete labels for bound states and continu
ous labels (k) for the continuum states. For i = k and} = k', 
tiij = 8(k - k '). The completeness relation is expressed by 

J t/J; (z)t/J,{z') = 8(z - z'), (2.8) 

where the symbol f i denotes summation over discrete bound 
states plus integration over continuum states. We shall use 
this complete orthonormal set for the expansion of external 
disturbances and for the response of the field to such 
disturbances. 

We consider the effect of a spatially and temporally 
varying external "force" F(z,r) together with damping on 
the solitary-wave solution ¢,(z). The equation of motion 
(2.2) for the total field is modified to read 

a'¢ _ a
2

¢ + U'(¢) + r a¢ = F(z,r), (2.9) 
ar} az' ar 

where ris a damping constant. We seek a solution ofEq. 
(2.9) of the form 

¢ (z,r) = ¢,(z) + -1¢ (z,r), (2.10) 

i.e., we assume that a response A¢ to the disturbance is 
superimposed on the initially static solitary wave. We as
sume that \-1¢ \ is small'o if F(z,r) is small in magnitude. We 
then substitute Eq. (2.10) into Eq. (2.9) and linearizeinA¢ to 
obtain 

a
2

-1¢ _ a'-1¢ +U"(¢S<z»A¢+r aA¢ =F(z,r). 
ar' az' ar 

(2.11) 

In general the solution of the linear equation (2.11) can 
be expressed formally in terms of a linear integral operator 
whose kernel we denote by K (z,z';r - r'). We can then write 

-1¢ (z,r) = J~ xc dr' r+ 00

00 

dz'K (z,z';r - r')F(z',r'). 

(2.12) 

The upperlimit of the r' integration in (2.12) is bounded by r 
because of causality. It is convenient, therefore, to define 

K(z,z';r) = 0 (r<O), (2.13) 

and rewrite (2.12) as 

J
+OO J+oo 

-1¢ (z,r) = _ 00 dr' _ 00 dz'K (z,z';r')F(z',r - r'). 

(2.14) 

We now introduce Fourier time transforms of -1¢, F, and K, 

J 
+ 00 

-1rfo (z,fl ) = _ 00 dre - iIlr A¢ (z,r), (2.1Sa) 
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(2.1Sb) 

and 

a(z,z';fl) = J-+ 0000 dre - iflTK (z,z';r). (2.1Sc) 

It then follows from Eq. (2.14) that 

Arfo (z,fl) = J-+ 0000 dz'a(z,z';fl )F(z',fl). (2.16) 

In order to express a(z,z';fl ) in terms of the eigenfunc
tions ! t/Ji) ofEq. (2.4), we first expand F(z,r) and-1¢ (z,r) in 
terms of I t/J;): 

F(z,r) = - dflei!}TF(z,fl) 1 J+ 00 
21T - x 

(2.l7a) 

= _1 J + 00 dflei
!1T J;; (fl )t/Ji (z) 

21T - 00 i 
(2. 17b) 

and 

(2.18a) 

Substituting Eqs. (2. 17b) and (2.18b) into Eq. (2.11) and us
ing Eq. (2.4), we obtain 

J + 00 dfl' eW 'T J ~rfoj (fl ')(OJ7 - fl" + in T)t/J'{z) 
- 00 21T j 

= r+ oc'" d~' eW
'
T J;; (fl ')t/J,{z). (2.19) 

Multiplying both sides of Eq. (2.19) by e - i!1T t/J;(z) and inte
grating over z and r, we obtain 

~ J;{fl) 
-1¢/fl) = (OJ] _ fl ') + irfl . (2.20) 

Substitution of Eq. (2.20) into Eq. (2.18b) yields 

-1¢ (z,r) = J -+ 00 dfl ei!}T J : (fl ~t/Jj (Z~ 
- 00 21T j (OJj - fl ) + lrfl 

J + 00 dfl ei!1r J J + 00 dz' 
- 00 21T } - 00 

F (z' ,fl )t/J; (z')t/Jj (z) 
X , 

(OJ] - fl ') + Wfl 
(2.21) 

where the last equality is obtained using the inverse transform 
of Eq. (2. 17b), 

J
+OO 

Jj (fl) = _ 00 dz' F(z',fl )t/J;(z'). (2.22) 
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The Fourier transform ofEq. (2.21) with respect to r then 
gives 

.1r$(z,il) = J+oo dz'{ f 21/1j(Z)~;(Z? }F(Z',il). 
- 00 Jj (wJ - il ) + ITil 

(2.23) 

By comparing Eq. (2.23) with Eq. (2.16), we finally obtain 
a(z,z';il) in terms of ! 1/1j 1, 

( 
, il) i 1/1j (z)1/1;(z') 

az,z' = . 
, j (w] - {l2) + iril 

(2.24) 

It is often of interest to consider only that portion of the 
response to the perturbation corresponding to the deforma
tion of the solitary waveform. For this purpose we drop the 
term with wJ = 0 from thej sum in Eq. (2.24), since this term 
represents the contribution of the translation mode without 
deformation. We denote this modified response function by 
a' (z,z';{l), i.e., 

'( , il) I' 1/1j (z)1/1;(z') a z,z' = , 
, j (w] - il 2) + iril 

(2.25) 

where the prime on the generalized summation symbol indi
cates that the term with w] = 0 is to be excluded. In general, 
1/1i for the continuum states is nonvanishing in the limit as 
Izl-oo. Therefore, a'(z,z';il) contains a portion which mea
sures the response of the field far from the center of the soli
tary wave. Thus, we must also subtract this background con
tribution in order to obtain the intrinsic response of the 
solitary wave. The subtraction procedure employed guaran
tees the convergence of several integrals encountered in ob
taining the generalized susceptibility of a solitary wave, 

a(p,k;il )= f_+oooo dz e - iPZa'(z,k;il), 

where 

J+'" 
a'(z,k;il) = _ 00 dz' e - ikz'a'(z,z';il) 

- lim dz' e - ikz'a'(z,z';il). J
+OO 

Izl~oO -- 00 

(2.26) 

(2.27) 

This generalized susceptibility, a(p,k;il ), provides a measure 
of the p-Fourier component of the solitary wave response to 
a perturbation in the form ofa monochomatic wave obeying 
the dispersion relation il = il(k). If the field carries charge 
and the perturbing wave is an electric field, the dynamic 
polarizability of the solitary wave may be defined as the 
p = 0 component of a(p,k;il ), 

ao(k;il )-a(O,k;il). (2.28) 

III. GENERALIZED SUSCEPTIBILITIES OF THE 
SINE-GORDON SOLITON AND "~4" KINK 

In this section we calculate the generalized susceptibil
ity for two example solitary waves, namely the sine-Gordon 
soliton 1 and the r/J4 kink.4-6 For both of these examples the 
eigenfunctions f 1/1il are known analytically, enabling us to 
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obtain explicit expressions for the susceptibility. 

If we choose 

U(r/J) = 1 - cosr/J, 

then the sine-Gordon soliton is obtained as 

and 

U"(r/Js) = 1 - 2 sech2z. 

The normalized eigenfunctions are? 

1/10 = ~ sechz, w6 = 0, 
\h 

for the translation mode, and 

1 I 'k 
1/1k = --= - e' Z(k + i tanhz), 

Y21T Wk 

with 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3,5) 

Wk = 1 + k 2 (3.6) 

for the continuum states. Substituting Eqs. (3.5) and (3.6) 
into Eq. (2.25), we obtain 

a'(z,z';il ) 

1 J + 00 eik 
(z - Z')( k + i tanhz)( k - i tanhz') 

=- dk . 
21T _ 00 (k 2 + 1)(k 2 + 1 - {l2 + ir{l) 

(3.7) 

The integral in Eq. (3.7) can be evaluated by closing the 
contour in the upper half of the complex k plane for z > z' and 
in the lower half plane for z < z' . We find 

a'(z,z';il ) 

1 ( e - (z - z'\ 1 + tanhz)(1 - tanhz') 
2(Q2 + 1) 

+ i~ eiQ (z - Z')(iQ - tanhz )(iQ + tanhz'») (z > z'), 

(3.8a) 
and 

a'(z,z';{l ) 

1 (e -(z' - z)(1 + tanhz')(l - tanhz) 
2(Q2 + 1) 

+ i~ eiQ(z' -- z)(iQ - tanhz')(iQ + tanhz») (z <z'). 

(3.8b) 

In Eqs. (3.8a) and (3.8b), Qis defined to be the branch of 
(il 2 

- 1 - iril )1/2 having a positive imaginary part. 

Ifwe choose 

U(r/J) = !(l - r/J 2)2, 

then the r/J4 kink is obtained as 

r/JsCz) = tanhz 

K.C. lee and S.E. Trullinger 
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and 

U"(¢J,) = 4 - 6 sech2z. (3.11 ) 

for the additional bound state corresponding to localized 
internal vibration of the kink, and 

Unnormalized eigenfunctions [tPil for this case are given 
elsewhere, II and upon normalization we obtain 

\1'3 
tPo(z) = -- sech2z, w6 = 0, 

2 
(3.12) 

eikz 

tP k (z) = -[ 2-1T-(-I-+-k-2)(-4-+-k-2)-]-112 

for the translation mode, 
X [3 tanh2z - 3ik tanhz - (1 + k 2)], (3.14) 

__ tP_l(_Z_) _=_(_%_)_1I_2_se_c_hz_ta_n_hz_' _W_i_=_3, ____ (_3_.1_3) J with wi = 4 + k 2, for the continuum states. 

The susceptibility a'(z,z';fl ) of the ¢J4 kink may be calculated from Eq. (2.25) in a manner similar to that above for the sine
Gordon soliton. We find 

a'(z,z';fl) = 3 sechz tanhz sechz' tanhz' _ ~ I e -- (z - z') (tanh2z + tanhz)(tanh2z' - tanhz') 
2 Q'2 + 1 2 Q '2 + 1 

3 2( ') i 1 Q '( , +_ e- Z-Z(tanhz+l)2(tanhz'-1)2+- ei z-z) 

4 Q'2 + 4 2 Q'(Q'2 + 1)(Q'2 + 4) 

X [3 tanh2z - 3iQ' tanhz - (Q ,z + 1)][3 tanh2z' + 3iQ' tanhz' - (Q'2 + 1)] (z > z'), (3.1Sa) 

and 

a'(z,z';fl) = 3 sec hz' tanhz' sechz tanhz - ~ e --- (z' - z) (tanh2z' + tanhz')(tanh2z - tanhz) 
2 Q'2 + 1 2 Q'z + 1 

3 2( , ) i .Q'(' ) + _ e - Z - Z (tanhz' + 1)2(tanhz _ I)Z + _ e' Z - Z 

4 Q'2 + 4 2 Q'(Q'2 + 1)(Q'z + 4) 

X [3 tanh2z' - 3iQ' tanhz' - (Q '2 + 1)][3 tanhzz + 3iQ' tanhz - (Q'2 + 1)] (z <z'). (3.1Sb) 

In Eqs. (3.1Sa) and (3. 1 Sb), Q' is defined to be the branch of (flZ - irfl )'IZ having a positive imaginary part. 

Except for the contribution of the first term on the right-hand side of Eqs. (3.15), the integrations over z' appearing in the 
expression (2.27) for a'(z,k;fl) are of the following form for both the sine-Gordon soliton and ¢J4 kink: 

JZ YO dz' eiA.(z - z'}(AaZ + Ba + C) (A tanh2z' - B tanhz' + C) + 100 

dz' e - iA (z - Z')(A~ - Ba + C) 

X (A tanhzz' + B tanhz' + C), 

where a = tanhz and A+, A_, A, B, C are all complex constants. These integrals are evaluated in terms of the hypergeometric 
function,lz F, and the final integrals over z in Eq. (2.26) may be expressed in terms of the generalized hypergeometric 
function,12 jF2• After some tedious algebra, we find the following result for the sine-Gordon and ¢J 4 cases, 

, 3 1Tzkp 1T 1T M 
a(p,k;fl) = -tJ sech - p sech - k + I I/(DI,ao(1 ),a 1(l),ail », 

2 1 + Q '2 2 2 1= 1 

(3.16) 

where tJ = 0, M = 2 for the sine-Gordon case and tJ = 1, M = 3 for the ¢J 4 case. The quantities II are given by 

I, = DI ± ± am(l)an(l) I 2ir [m r(m - (i/2)r(p + k» r(n + 1 + (i/2)r(p + k» 
2i(k+P)m=On=O r=±lA~r) r(m+n+l) 

X.J'z(n,l,m - i.. r(p + k); _ i..A ~r) + l;m + n + 1) _ n r(m + 1 - (i/2)r(p + k» r(n + i.. r(p + k») 
2 2 r(m+n+l) 2 

X.J'2(n,l,m+l- i..r(p+k);- i..A~r)+I;m+n+l)+ n ) 
2 2 1 - (i/2)A ~r 

X r (m + I - (i/2)r(p + k»r (n + 1 + (i/2)r(p + k » v ( 1 2 1 _ i.. r(p k )'2 _ i.. ~ (r). 2)] 
r(m + n + 2) }-<2 n + , ,m + 2 +, 2 /l, I ,m + n + , 

(3.17) 
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where, for the sine-Gordon case, 

1 D _ 1 
DI = 2(1 + Q2) , 2 - 2iQ(1 + Q2) , (3.lSa) 

ao(l) = a2(l) = a2(2) = 0, al(l) = - al(2) = 2, 
(3.1Sb) ao(2) = 1 + iQ, 

A\±I)=i±k, A~±I)=Q±k, 

and for the t/J 4 case, 

(3.1Sc) 

3 
D I = - ----

2(1 + Q '2)' 
3 

D 2 = ----
4(4 + Q'2)' 

(3. 19a) 
i 

D) = -2-Q-'(-I-+-Q-'2)-(4-+-Q-'2-) , 

ao(1) = ao(2) = al(2) = a2(2) = 0, 

al(1) = - 2, ail) = 4, al(3) = - 6(2 + iQ '), 
(3.19b) 

az(3) = 12, ao(3) = 2 - Q'2 + 3iQ', 

A \ ± ) = i ± k, A ~ ± ) = 2i ± k, A ~ ± ) = Q' ± k. 
(3.19c) 

Equations (3.16)-(3.19) embody our results for the general
ized susceptibility for all wave vectors p and k. It should be 
noted that because of the factor (k + pyl appearing in I/> the 
limiting form of II must be used when k + p = O. 

For the sine-Gordon soliton, the long-wavelength 
(k = 0) dynamic polarizability, a o(O;I1), defined by Eq. 
(2.2S), is found to agree with the quantity - a(11 ) deter
mined previously in Ref. S, and we do not repeat the expres
sion here. Instead we focus in the next section on the nature 
of the dynamic polarizability of the t/J 4 kink. 

IV. DYNAMIC POLARIZABILITY OF THE <1>4 KINK 

The general expression (3.16) for a(p,k;11 ) simplifies a 
great deal when we take the long-wavelength limit 
(p-fJ,k-fJ) to obtain the k = 0 dynamic polarizability 
ao(k = 0;11 ) = a(O,O;I1). For the t/J 4 kink we obtain 

a o(O;I1) = 3(Q'2 + 4tl - [2Q '2(1 + Q '2)(4 + Q '2)t l 

X [ ~~(3) + al(3)a2(3) + ai(3) - 2ao(3)ai3) 

ai(3) 2al(3)az(3) - a~(3) 
+--+------

n+l n+2 

where (z)n denotes the Pochammer symbol, 

(z)n = z(z + 1)··.(z + n - 1). 

2az(3) )] 
+ 3' n+ 

(4.1) 

(4.2) 

The k = 0 polarizability corresponds to the response of 
t/J to a spatially uniform external oscillating field. As we can 
see from Eq. (3.16), the internal vibration mode of the ¢4 
kink does not respond to a spatially uniform disturbance (the 
first term in (3.16) vanishes when k = 0]. This is due to the 
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r = 4,0 h 

1=-0.5 
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i- 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8. F--"- ~ __ L_ -- _-' ___ --1 __ ~ --~-L----L-L--~---'--

C\ ...__---
l " ...__ ~ ~ ....--/Im{-ao(O;fl.l} r--0.5 -
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FIG. I. Dynamic polarizability of the 6' kink vs. frequency. The real and 
imaginary parts of -- cr,,(O;Jl) are shown as solid and dashed curves. respec
tively. for three example values (1.0,2.0,4.0) of the damping constant r. 
There is only one absorption peak (dip in- cr) near the fundamental har
monic o~cillation frequency. Jl = 2. since the internal oscillation at 
Jl = V J is not excited by a uniform field. 

fact that the eigenfunction (,p" see Eq. (3.13)J for this mode is 
an odd function of z. 

Equation (4.1) may be rewritten in terms of Q ' as 

ao(O;il) = 3 [ 4 + 3Q'2 + Q '4 

Q '2(1 + Q '2)(4 + Q '2) 
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+ 
6(4 - Q '2 + 4iQ') 

n+l 

+ n:3)]' 
For small fl, we find 

24(3 + iQ') 

n+2 

- ao(O;fl ) ~ ~ - .2..iFfl + (j (fl 2). 
16 

In Fig. 1 we have plotted our numerical results for 

(4.3) 

(4.4) 

- ao(O;fl) obtained from Eq. (4.3) for three representative 
values of the damping constant r. The real part of 
- ao(O;fl) starts at 0.75 (independent of nat fl = 0 and for 
r < ro( $ 2.0) it rises to a maximum, then falls to a minimum 
after passing through zero near fl = 2, and finally rises to its 
asymptotic value of zero at fl = 00. If r > ro, 

Re[ - ao(O;fl)] decreases from 0.75 immediately as fl in
creases from zero. The imaginary part of - ao(O;fl) is al
ways zero at fl = 0, decreases to a minimum and then rises 
to its asymptotic value of zero. The form of this response is 
very reminiscent of that for a harmonic oscillator and is quite 
similar to the behavior of the response of the sine-Gordon 
soliton as described in Ref. 8. 

V.SUMMARY 

In this paper we have defined a generalized susceptibil
ity for a solitary wave solution of the nonlinear Klein-Gor
don equation, and we have derived its expression in terms of 
the eigenfunctions of the Schrodinger-like equation which 
arises in a stability analysis of the solitary wave. Two exam
ples have been worked out explicitly; the sine-Gordon soli
ton polarizability reduces to that obtained in Ref. 8 in the 
long-wavelength limit; for the ¢;4 kink we have numerically 
evaluated our general expression to obtain the dynamic po
larizability for example values of the damping constant r. 
We find that if the perturbing field is uniform in space, the 
internal vibration mode of the kink is not excited, due to its 
odd parity. However, if the disturbance is inhomogeneous 
then there is a nonvanishing contribution of this mode to the 
generalized susceptibility a(p,k;fl) when p=/=:O. The maxi
mum response of the vibration mode can be obtained by ap-
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plying a standing wave with its node coincident with the 
center (¢; = 0) of the ¢J4 kink. If we view the ¢J4 kinks as mod
els4 of domain walls in ferroelectrics, the Im[ao(k;fl (k »] pro
vides a measure of the absorption of energy from a mono
chromatic electric field with dispersion fl = fl(k ). 

After this work was completed, we became aware of 
recent work by Theodorakopoulosand coworkersll in which 
they have also studied the response ofthe ¢;4 kink to an oscil
lating field. These authors also employ the complete ortho
normal set of eigenfunctions used here. These functions have 
also been used recentlyl4.l' to study the interaction of the ¢J4 

kink with the linear oscillations. 

ACKNOWLEDGMENT 

We are grateful to Dr. Theodorakopoulos for commu
nicating his results prior to publication. 

lA.C. Scott, F.Y.F. Chu, and D.W. Mclaughlin, Proc. IEEE 61,1443 
(1973). 

'See. for example, Solitons and Condensed Matter Physics, Springer Series 
in Solid State Sciences. Vol. 8, edited by A.R. Bishop and T. Schneider 
(Springer-Verlag. Berlin. 1978). 

1MJ. Rice, A.R. Bishop, I.A. Krumhansl. and S.E. Trullinger, Phys. Rev. 
Lett. 36,432 (1976). 

'I.A. Krumhansl and 1.R. Schrieffer. Phys. Rev. B 11. 3535 (1975). 
'R. Rajaraman. Phys. Rep. C 21. 229 (1975). 
6R. Jackiw. Rev. Mod. Phys. 49, 681 (1977). 
'M.B. Fogel, S.E. Trullinger, A.R. Bishop, and J.A. Krumhansl, Phys. 
Rev. Lett. 36,1411 (1976); Phys. Rev. B 15,1578 (1977). 

"M.B. Fogel, S.E. Trullinger, and A.R. Bishop. Phys. Lett. A 59, 81 (1976). 
'See, for example, L.D. Landau and E.M. Lifschitz. Statistical Physics (Ad
dison-Wesley, Reading, Massachusetts. 1958), p. 391. 

IOIf F (z,r) contains a term which is constant in time, then A,4> is small only 
after the removal of secularities due to the translation of the solitary wave. 
See Ref. 7. 

"l. Goldstone and R. lackiw, Phys. Rev. D 11,1486 (1975). 
"LS. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series. and Products 

(Academic, New York, 1965). 
llN. Theodorakopoulos, S. Hanna, and R. Klein, in Solitons and Condensed 

Matter Physics, Springer Series in Solid State Sciences, Vol. 8, edited by 
A.R. Bishop and T. Schneider (Springer-Verlag, Berlin, 1978). 

14W. Hasenfratz and R. Klein, Physica A 89,191 (1977). 
"Y. Wada and J.R. Schrieffer. Phys. Rev. B 18. 3897 (1978). 

K.G. Lee and S.E. Trullinger 1098 



                                                                                                                                    

Resolvent integration techniques for generalized transport 
equationsa) 

R. L. Bowden 

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 

William Greenberg 

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 

P. F. Zweifel 

Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 
(Received 24 July, 1978) 

A generalized class of "transport type" equations is studied, including most of the known exactly solvable 
models; in particular, the transport operator K is a scalar type spectral operator. A spectral resolution for 
K is obtained by contour integration techniques applied to bounded functions of K. Explicit formulas are 
developed for the solutions of full and half range problems. The theory is applied to anisotropic neutron 
transport, yielding results which are proved to be equivalent to those of Mika. 

I. INTRODUCTION 

In 1973 Larsen and Habetler l introduced a technique 
for solving the one-speed neutron transport equation based 
on contour integration of the resolvent of the transport oper
ator about its spectrum. (Although the transport operator, 
K -I in their notation, is unbounded, its bounded inverse K 
can be treated by resolvent integration. This leads to an "ei
genfunction expansion" in the sense of Titchmarsh, for K. 
To return to the neutron transport equation which involves 
K -I rather than K, it is necessary to develop a functional 
calculus for K, after the manner von Neumann introduced 
into quantum mechanics2

; this was accomplished in a later 
paper.J) 

The Larsen-Habetler method has been extended in the 
past two or three years to a number of more general forms of 
the neutron transport equation. Instead oflisting these refer
ences here, the reader is referred to a recent comprehensive 
review article. 4 One special case should be noted, however, 
namely the so-called "critical" situation (which in one-speed 
theory corresponds to the situation c = I). The orthodox 
resolvent integration technique cannot be applied in such a 
case, because K -I is not invertible on its range. A modified 
and somewhat cumbersome technique can be used, howev
er.' The idea is to restrict K -I to a domain on which it is 
invertible, and proceed after the manner of Ref. 1, later ex
tending results to the whole space. 

Since the (linearized) equations describing electron os
cillations in plasma and the kinetics of rarefied gases are 
similar in form to the neutron transport equation, it seems 
that resolvent integration techniques might be valuable in 
solving these equations also. However, they both pose diffi
cult problems. For example, the unbounded operator de
scribing gas kinetics is not invertible, and even ifit is restrict
ed to a domain in which it is invertible, its inverse is still 

"Research supported by the National Science Foundation under Grant 
ENG 75-15882. 

unbounded. Thus it is not possible to integrate around the 
spectrum. The linearized Vlasov equation describing plasma 
oscillations is also unbounded, and although it is in general 
invertible, its inverse also is unbounded, so again straightfor
ward resolvent integration techniques fail. (The relevant 
equations for these two physical problems are discussed in 
Ref. 6, Chap. 10.) 

Very recently, a method suggested by Larsen' has been 
successfully applied to the Vlasov equation,8 the gas kinetics 
equation (for a BGK model)9,10 and also to conservative neu
tron transport. 1I For the first two cases this method was cru
cial to the solution; in the neutron transport case it merely 
simplified the previous somewhat cumbersome method de
scribed above. The basic idea was to transform the transport 
operator K-+S = (K - 5"/)-1, where 5" is in the resolvent set of 
K. Then since S is a bounded operator with "thin" spectrum, 
the orthodox contour integration method can be applied to S 
to develop an eigenfunction expansion. Then a functional 
calculus is obtained along the lines of Ref. 3, so that the 
equation involving K = S-I + 5"1 can be solved. (In more 
mathematical terms, a "constructive existence theorem" can 
be proved,) 

In the present paper, we extend this technique, as devel
oped in Refs. 8-11 to a general class of transport type equa
tions of the form 

a 
ax l/J(x,f,l) = - (Kl/J)(x,f,l) + q(x,f,l), (I a) 

where 

(Kf)(p,) = k (p,)f(p,) + n~1 gn(p,) L In(s)f(s) ds. (lb) 

HerefE2'P(A,o) = pg, A C R is a directed Liaponov contour 
and k (p,) is a real valued, u-measurable function on A. The 
functions k, g n' and J n are assumed to obey certain continuity 
and differentiability conditions which we enumerate later. 
In order to place Eq. (1) in perspective, we observe that the 
three equations discussed in Refs. 8-11 correspond to the 
following values of k, gn' and I n: 
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1. One-speed conservative neutron transport (Ref. 11) 

k(P)= ~, 
J1.. 

gn(P) = - ~, 
J1.. 

In(P) =~, 

A = [- 1,1], 

N=l. 
2. BGK model for gas kinetics (Ref. 9), 

k(P)= ~, 
f1 

J I,,) = _1_ e -I" 
nil"" V 1T ' 

A =lR, 

N=l. 
3. Linearized Vlasov equation (Ref. 8), 

k(P)=f1, 

gn{J1..) = 17(P), 

In(P) = 1, 

A =R, 

N=l. 

[17(P) is proportional to the derivative of the equilibrium 
electron distribution.] 

4. One-speed neutron transport, anisotropic scattering 
(Ref. 6, p. 87), 

k(P)= ~, 
f1 

- (2n - 1) c 
gn{J1..) = 2 ;In - jPn - j{J1..), 

In(P) = Pn - j{J1..), 

A=[-1,1), 

N=No• 

(Thefn are the Legendre moments of the scattering kernel 
and Pn are Legendre polynomials.) 

Other equations of transport type can be expected to 
occur in various areas, gas dynamics, radiative, and electron 
transport, etc., which basically involve the linearized Boltz
mann equation. The solution to such equations can then be 
read off from our results. Although the smoothness restric
tions which we place on coefficients in our transport-type 
equation are merely sufficient conditions, we believe that 
they are sufficiently general to encompass virtually all cases 
which may arise from physical application. 

The plane of our paper is as follows. In Sec. II we com
puteS = (K - st' and theresolventofS, (z1 - SY'. We also 
obtain the spectrum of S. Then in Sec. III we perform the 
integration about the continuous spectrum of S, and in Sec. 
IV integrate about the point spectrum. These two results 
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together give a "full-range" eigenfunction expansion for S. A 
similar "half-range" expansion is obtained in Sec. V. Then, 
in order to translate these into eigenfunction expansions for 
K, which are needed to solve Eq. 11, we first need to extend 
the results to Banach space. The analysis ofSecs. III-V has 
been restricted to a dense subspace of Holder continuous 
functions (since it was necessary to evaluate boundary values 
of Cauchy integrals). Once the extension is carried out in 
Sec. VI, a functional calculus for S can be developed; this is 
done in VII and so, as was explained earlier, an eigenfunc
tion expansion for K = Sol + s1 is thereby obtained. Sec. 
VIII presents some applications to boundary value 
problems. 

II. RESOLVENTS 
We wish to consider the integrodifferential Eq. (1). The 

operator K [Eq. (lb)] may be written in the obvious notation 

Kf = kf + g{ J(s) f(s) ds, (2) 

and where there is no confusion, we shall abbreviate 
f.1 J(f)f(s) ds = J(s). K is not assumed to be bounded; in 
any case we shall for the most part restrict its domain to 
D (K) = (f IKfEfJJ, f Holder continuous on compacts }. Fi
nally, we shall let (J ® g)mn(P) = J m{J1..)gn{J1..), and shall write 
f1Ij for the product of N copies of the Banach space fJJ. By a 
solution ofEq. (1), we demand a continuously differential 
function ¢:R-fJJ satisfying specified boundary conditions 
(to be discussed later), where the inhomogeneous source 
term q:R-+fJJ is assumed to satisfy a uniform Holder condi
tion (on every compact subset of A). 

Lemma 1: If there exists sEC/lR such that the following 
are satisfied: 

(i) TE; = f J ® g(s) ds + 1 invertible on CN, 
- A k (s) - 5 

( .. ) 1 J/l 11 -- gE.>!J , 
k-5" 

(iii) ;JP , :f-J( _1 -f)EdJ *, 
,; k-s 

then S; = (K - 5"1)-' exists as a bounded operator on :di. 

Proof Letting (K - 5"I)! = (k - Of + g.J(f) = h, we 
obtain 

f= _l_h _ g.J(f) 
k-5" k-5" 

forfin the (dense) domain of K. This is valid in :YJJ by (ii) and 
the fact that [lI(k - 0] :f-[lI(k - 5" )JfEL (.%'), the 
bounded operators on .%' ,sinceesssuplll(k - OI<IIms 1-'· 
Then, computing J(f) and utilizing (iii), after some rearrang
ing we have 

N f J m(s)gn(s) ds (1) 
112: /,'(f) A k (s) _ 5" + bmn = Jm k _ 5" h , 

which may be written 

f J ® g(s) ds + 1 J(f) = J( _1 - h ). 
A k(s) - 5" k - 5" 

Inverting 
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A(5)= r J®g(s)ds +1, 
JA k(s)-s 

by virtue of (i), we obtain 

(K - sl)Y = ( _1_ Jr- _1_ g·A -1(5 )J( - I_f). 
k-s k-5 k-5 

(3) 

We have thus proved as well, 

Lemma 2: With 5 defined as in the previous lemma, and 

then 

A (z) = r J(s)® g(s) ds + 1, 
L k(s)-z 

S f= (K - 51>-1 = (_1_ Jr- _1_ g.A -1(5) 
s k-5 k-5 

Lemma 3: The resolvent of S5 is given by 

[ 
k-s Jr 1 

(Ss-zl)-1= l-z(k-5) + l-z(k-5) 

(4) 

(5) 

X g·A -1(5 + ~ )J( 1 f). (6) 
z 1- z(k - 5) 

Proof We compute 

(S5 - zI)f = h, 

as in Lemma 1, obtaining 

f = k - 5 h + 1 g.A -1(5) 
1 - z(k - 5) 1 - z(k - 5) 

thus, 

J --f =J h ( 1 ) ( 1 ) 
k - 5 1 - z(k - 5) 

+ itl J( (k _ 5)(1 ~ z(k _ 5» g)cA -1(5)J){ k ~ sf) 

_ (1 _ r J ® g(s) ds A -1(5») - I 
- L(k(s)-5)(1-z(k(s)-s» 

XJ h . ( 1 ) 
l-z(k-s) 

We may then rewrite the expression forfas 

f= k-5 h+ 1 
1 - z(k - 5) 1 - z(k - 5) 

(
A r J ® g(s) ds ) - I 

X g. (5) - JA (k (s) - S){l - z(k (s) - 5 » 
1101 J. Math. Phys., Vol. 20, No.6, June 1979 

XJ . ( h) 
k-z(k -5) 

Let 

r J®g(s)ds 
As(z) = A (5) - JA (k(s) - S)(l-z(k(s) - 5»' 

Then we may write 

As(z)=I+ r J®g(S)( 1 
L k(s)-5 

- ds, 1 ) 
(k (s) - n(l - z(k (s) - 5» 

and utilizing 

1 1 1 
-- - ------- = -----
k - 5 (k - 5)(1 - z(k - 5) k - 5 - (liz) , 

obtain 

As(z) = A (5 + liz), 

which completes the proof. 

Lemma 4: LetI15(z) = detA (5 + lIz)andNpbetheset 
ofzeroesofl1s' LetQ = fz = 1I«(i) - 5)EC!(i)ERank J. Then 

O"p(Ss) = Np' O"iSs) = Q. 

Proof This is an immediate consequence ofWeyl's 
theorem and Eqs. (5) and (6). 

III. CONTINUOUS SPECTRUM 

Definition: We shall call the triple {k,g,J J of transport 
type if k is one-one and differentiable and if for f3 = 1 or else 
for f3 = - 1, s-k (s) - fJ is continuous and each of the func
tions t-k -1(tfJ), s_J (s)/k (s) - 112(1 - fJ)k '(s), and 

s-J (s) ®g(s)/k (s) - 112(1 -fJlk '(s) is Holder continuous on 
compact subsets of A. 

Here and throughout we write k (stl for 11k (s) and 
k -1(s)forthe inverse function evaluated ats, e.g., k -1(S) = sif 
k(s) = s. 

Lemma 5: Assume! k,g,J J is of transport type, and for 
fEfdJ Holder continuous with compact support, define 

MJz) = A -1(5 + lIZ)J( 1 f). (7a) 
I -z(k - 5) 

Then the boundary values M ± and A ± are given by 

M ±( 1 ) 
f k«(i) - 5 

=A -I(k«(i))±i J(s)f(s)ds (k«(i)-s) 
5 A k«(i) - k(s) 

(7b) 
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A l (k (w» = I +}' J ® g(s) ds + i1rJ ® g(W) 
A k (s) - k (W) - k '(W) 

Proof With the substitution t = k (sf, the integral to be 
evaluated for A ± M ± is 

(7c) 

_ J J(k -1(t f3»!(k -1(t 13» dt. 
t \/2(1 - f3)(t - [(l + zS)/z ]f3)k '(k -I(t» = A (k (w» ± itrJ ® g(w) 

k '(w) 

where + and - refer to nontangential approach of z to the 
contour from the right and left, respectively. 

The continuity of s----+k (s) - (J assures that the integration 
may be restricted to a compact set. Then the Plemelj formu· 
las may be applied by virtue of the required HOlder continu
ity, and (7b) follows. The computation of A ± is similar. 

Using Lemma 5, we may compute 

At(k(w»M+( 1 )-Ar;-(k(w»M-( 1 ) 
k(w)-g k(w)-g 

- 21TiJ(w }f(w )(k (w) - g) 
= ----~-=~~~~~ 

k'(w) 

= A (k (W»{M+( k (W; _ s ) - M-( k (W; _ g)} + 1Ti J :,~) [M+( k (W; _ s ) + M-( k (w; _ g)] 

Taking the inner product of Eqs. (8) with J (w), denoting 

J(w )-J(w) = P(w), 

and using the identity J.J ® gM = J2 g·M, we find 

few) + k (w; _ 5 g(WH[ M+( k (W~ _ g) + M-( k (W; - g) J 

= __ 1 k'(w) 1 J(W)'A(k(W»[M+( 1 )-M-( 1 )J. 
2m'P(w)k(w)-g k(w)-g k(w)-s 

Further, we may compute the difference in boundary values of M from Lemma 5. 

Utilizing 

A +(ztl ± A -(zt l = A -(ztl( A -(z) ± A +(z) JA +(zyl, 

we obtain 

X 21Ti (k (w) - 5) J(w )f(w). 
k '(w) 

We will now integrate the resolvent of Sr; on a contour r about its spectrum, 

!(w) = _1_.1 (zI-Sr;)-1(w)dz+ _1_.1 (zI-Sr;Y1(w)dz. 
2m jr(Q) 2m jr(Nr ) 

Denoting the two integrals by f,(w), ;;(w), respectively, we have 

1 ~ 1 f,(w)=!(w) + -g(w)- M(z)dz 
21T"i r(Q) z(k (w) - g) - 1 

x g(W)'[ M+( (k (W; _ 5) ) + M-( (k ew; - 5) )], 

where R = Rank and we have utilized the analyticity and Holder continuity of M(z). Using Eq. (9), this becomes 
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J.(w) = _1 g(w). i" 1 [M+( _1_) _ M+( _1_)] dx __ 1 . _k '(_w) _1_ 
21Ti J R (x - O(x - k (w» x - s x - S 2m P(w) (k (w) - s) 

Let us define 

~x(w) = p g(w) _ k '(w) 8(x _ k (w»."l t(x)J(w), xER, wEA (Ila) 
x - k (w) pew) 

A(x) = - A -ext' J ® g(k -I(X» A +(x)-i J(x)f(s) ds - A -(xni (x).A +(x)-IJ(k -I(x»f(k -1(x»/k '(k -I(X», (lIb) 
k '(k -I(X» A x - k (s) 

where t indicates the transpose. We have proved 

Theorem 6: Suppose K satisfies the hypothesis of Lemma 5, andfEYl is Holder continuous with compact support. Then 

J.(w) = i ~x(w)·A(x) dx, (llc) 

where <Px and A are defined by Eqs. (IIa) and (lIb). 

IV. POINT SPECTRUM 

The contributions to f(w) of zeroes of 

n (z) = detA (~ + s ) 
is a routine exercise in residue theory. We shall write 

No = !ZEC I n (z) = 0, ziQ j, NQ = lzEC I fl(z) = O,ZEQ I· 
We will for simplicity assume that the zeroes in No have multiplicity one, although for later applications, zeroes in N Q of 
multiplicity one and two will be considered. MUltiplicity of any order can be computed simply by using the residue formula for 
higher order poles. Finally, we assume 

_I_gEYl, for az=k(~ +s), zENQ. (12) 
k-az Z 

Theorem 7: If K satisfies the hypothesis of Lemma 5 and Eq. (12), and/EYl, then/lw) is a sum of contributions, 

f,(w) = I f~(w), (13) 
ZEiV"uN(/ 

where 

(i) if zENo (multiplicity one), 

new) = - 1 g(w).( dfl (Z») - 'A c( ~ + s) X r J(s)f(s) ds , 
z(k (w) - s) - 1 dz z L z(k (s) - 5) - 1 

(l4a) 

(ii) if zEN Q (multiplicity one), 

f~(w)=~ 1 g(W).{[(dfl+ (Z»)-'A/(~ +s)+(dfl- (Z»)-'Ac-(~ +s)]f J(s)f(s)ds 
z(k (w) - 5) - 1 dz z dz z z(k (s) - s) - 1 

+ 1Ti( ( d~ + )(ztIA / ( ~ + s) - ( d~- (Z») - 'A c- (~ + s ) ]J(W)(W) (k~~-:/) }, (l4b) 

(iii) if zEN Q (multiplicity two) 

/~(w)= _I_!!.-( I g(w).A +(~ +s)(f J(s)f(s)ds + 1TiJ(W)(W)(k(W)-s»)] 
fl"(z)'dz z(k(w)-s)-l c z Az(k(s)-5)-1 k'(w) 

+ _1_!!.- [ 1 g(w).A - (~ + s)( ( J(s)f(s) ds _ 1Ti J(w)(w)(k (w) - s) )] 
fl "(z) dz z(k(w) -5) - 1 C Z JA z(k(s) - 5) - 1 k '(w) 
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2 fJ/"(Z) 1 {[A +( 1 ) A -( 1 )] [ J(s)f(s)ds 
-"3 (fJ "(z»)2 z(k (w) --=- 5") - 1 g(w)· c -; + 5" + c -; + 5" J A z(k (S) - 5") _ 1 

In these formulas, Ac indicates the cofactor matrix, A -I = fJAc' 

v. CONSTRUCTION OF SOLUTIONS 

In this section, we wish to establish a norm on qj which 
will enable Eqs. (11) to be extended to the full Banach space. 
Because of certain technical difficulties in treating the prob
lem when there are eigenvalues imbedded in the continuous 
spectrum, we will consider two cases. 

Case (a): deW (z)*o for zCR C R. 

Let us define F: qj __ qj / by 

F(f)(x) = A(x), 

where A(x) is given by Eq. (lIb). We wish to choose spaces 
qj and qj / such that F will be an invertible bounded trans
formation. We shall consider separately the terms 

FI(f)(x) = A -(xt l J ® g(k -I(X» A +(X)-I.{ J (s)f(s) ds 
k '(k -I(X» J A X - k (s) 

(ISa) 

and 

Flf)(x) = A -(X)-I,;l (x)A +(xtIJ(k -I(x»f(k -1(1». (ISb) 

The Lp estimates of the contributions to A(x) due to the 
zeros of fJ are trivial [by virtue of assumption (a) above] and 
are omitted. 

Supposefis Holder continuous with compact support. 
Then, as a function ofx = xfl, x - W - (3)FI(f)(xf3 ) is Holder 
continuous, and may be estimated in Lix) norm 111iL,'(x) by 

Ilx - (1 -- f3)!2FI(f)(xf3 )Ik,(x) 

.;;;: II"A -(xf3 t
I
J ® g(k -1(x

f3
»A +(x(3 tt11 11 

k '(k -1(Xf3» eX' 

II 
J(k -1(tf3»f(k -1(t f3 » II 

.Cp k'(k- l (t f3 »t(l-(3)12 L{~(tfl) 

where Cp depends upon p only, and 

IIA(x)IIL~(X)= {itl JIA'(X)IPdx},IP, 

IIA (x)11 00 = sup sup I Aij(X) I· 
xCR liJI 

Similarly, x - (I - f3)12F,(J)(xf3 ) may be estimated by 

IIX - (I - f3)12F,(f)(xf3 )11 L ;(x) 

.;;;: IIA -(Xf3yl,;l (fP)A +(Xf3 )-IX(l - f3)k '(k -1(x(3»11 00 

II J(k -1(fP»)f(k - l(fP» II 
. k '(k -1(Xf3 »X(1 - f3)/2 L {~(x)· 
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(16a) 

(16b) 

(l4c) 

Let qj be the Banach space of real-valued measurable 
functionsf on A such that 

= II J(k -1(fP»f(k- l(fP» II 
IVII.>,! k '(k -1(fP» ~(I - f3)/2 v < 00, X L~(x) 

and qj / the Banach space of real-valued measurable func
tions A on R such that 

IIA 11.>1' IIx-(1 -f3)12A(fP)IIL;;(X)< 00. 

Call the triple f k,g,J J smooth if 

JJ J ® g(k -1(Sf3» 
A -(.~~ )-1 , 

k '(k -1(sf3» 

A +(fltl, and the functions A ± (fltlfsl - f3k '(k -I(fl» J a, 

a = ± 1, are bounded as s-- 00 • 

Lemma 8: If f k,g,J J is smooth of transport type, then, 
F: &J --+qj / extends to a bounded linear transformation. 

Likewise, we define 

F;(A)(w) = g(W).J A(x)dx (17a) 

d 
x - k (w) 

an 

F;(A )(w) = - _1_A t(k(w»J(w).A(k(w». (17b) 
J'(w) 

Let k (w) = t f3 and x = xf3. Then 

F ;(A )(k -let (3»J(k -l(t f3» 

k / (k -l(t f3»t (I f3)12 

= J(k -l(t f3»g(k -I(t (3» . J A(xf3 )dx 
k '(k -l(t f3 » (x - t)x(l -{3)/2 

and 

IIF '(A )11 .;;;: 1111J(k -l(t(3» ® g(k -1(t
f3

»1111 IIA II.>'J" 
\/, k/(k-1(tf3» 00 

The second term may be estimated by 

IIF'(A)II.;;;:IIIIJ(k-l(tf3».,;lt(tf3)J(k-'(tf3»1I11 IIA Il.fIJ'· 
2 .'11 J'(k-1(tf3»t(1-(3)k/(k-1(tf3» 00 

Lemma 9: If l k,g,J J is smooth of transport type, then 
F /: ,q] / --+qj extends to a bounded linear transformation and 
F' =F-1

• 

We may now obtain a resolution of the identity corre
sponding to K. For A.ER let us define 

E (A. )few) = f~ 00 Cl»x(w)·A(x) dx, (18) 

where A and CI» are given by Eqs. (11). To obtain the discrete 
eigenprojections, we note that AcCl/z + 5) may be written 
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Ac( ~ + s) = Yz® «z' 
for zENp' where 

A (~ +s )Yz=O. 

Thenf~(w) may be expanded as 

f~(w) = <Piw)Az, 

with 

g(w)·yz 
<Piw) = ----......:...:.-

z(k(w) - s) - 1 

an eigenvector of K, and 

A = - _1_«. f J(s)f(s)ds . 
Z fl'(z) z z(k(s)-S)-I 

Defining E (A ) for l/(A - S) = zENp by 

E(A }few) = <Pz(w)Az' 

(19) 

(20a) 

(20b) 

(20e) 

(21) 

we may follow Ref. 3 to prove that the family of projections 
E (A ) is a resolution of the identity, and 

K = LA dE (A ) + L AE(A). (22) 
(I/(..i - t)ENp 

We state this as 

Theorem 10: The family E (A ) is a resolution ofthe iden
tity for K. The solution ofEq. (1) satisfying the boundedness 
condition limx_ oo 11¢(x)II,,; = 0 is given by 

+ L eX(I-..i)E(A)q. (23) 
1/(..i _. s }EN" 

Case (b): detfl(z) = 0 for zER. 

When there are eigenvalues imbedded in the continuous 
spectrum, the L p estimates of the previous paragraphs are 
not valid. It is nevertheless possible to verify that the expres
sion in Theorem 10 is indeed the solution of the boundary 
value problem. To see this we may rederive the eigenfunction 
expression, Eq. (1 Ic), for Sf, with/E.qg Holder continuous, 
obtaining 

S/ = f _1_ CIlx(w).Aix ) dx + L' 
x-S Sf 

(24a) 

where Afis used to denote the transform A given by Eq. 
(lIb), and l:sfdenotes the discrete terms, Eq. (13). Now let 
us choose hEfiJ(S-l), whence 

h = f CIlx(w)·Ah(x) dx + L = Sf, 
g 

(24b) 

and therefore 
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(25) 

We have used a Liouville theorem argument to go from Eqs. 
(24) to Eq. (25). For analogous use of this argument, see 
Refs. 12 and 13. 

Thus, we may write 

S-lh = f (x - S)CIlx(w)·Ah(x) dx + foh -lh' (26) 

We have then immediately Kh, and we may substitute the 
expression in Theorem 10 into Eq. (1) to obtain 

Corollary 11: The solution ofEq. (11) satisfying the 
boundedness conditions Iimx~oo 1I¢(x)IL",; = Ois given by Eq. 
(23). 

VI. HALF RANGE 

The eigenfunction expansion developed in the previous 
three sections can be used to solve so called "full range" 
problems involving Eq. (1). The terminology "full range" 
means we are interested in solutions for xER, i.e., infinite 
media problems. Of more practical interest is the case xER+, 
i.e., half-space problems; typically one needs an eigenfunc
tion expansion on the so-called "half-range," /.lEA + 

= !/.lEA 1/.l>O J. (A detailed discussion of this point may be 
found in Ref. I, for one-speed neutron transport.) 

The idea, as introduced in Ref. I, is to define a map E 
with certain properties which guarantee that the "half
range" expansion of/is given by the full range expansion of 
Ef We define E: D (E )-D (K), with 

D (E) = !/ELp(A +,0) 1/ is Holder continuous with 

compact support I 
as 

E(f)(P) =/(P), /.lEA + 

= g(P).X-l(p) i Y-l( - s)J(s)/(s) ds 
A' k (s) - z 

/.lEA -. (27) 

Here the matrices X and Yare supposed to provide the Wie
ner-Hopf factorization of the matrix A, i.e., 

A (z) = Y( - z)X(z), 

where X and Yare analytic in z for Rez + Irnz < 0 and 
limlzl~oO Y ( - z) and limlzl~oOX (z) exist. The sufficient con
ditions that such a factorization exist have been discussed by 
Mullikin l' and Victoryt5 (see also Ref. 4, Sec. V and VI). The 
existence of such factorization is crucial to the analysis of the 
present section. (For a slightly different approach, see Ref. 
16.) 

We now state 

Theorem 12: Let E be defined by Eq. (25). Then 
(Ss - z/)-lE/ is analytic in z for Rez + Irnz < O. 

Proof: Writing 
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(zI - SS)-lEj 

_ k (Jl) - 5 (El'f") g{Jl) G(Z») 
- z(k (Jl) - 5) - 1 '.I ~ - k (Jl) - 5 . , 

where G is given by 

G(z) = A -1(5 + ~) f J(s)Ej(x) ds 
z JA 1 -z(k(s) - 5) 

we demand 

g{Jl) G+( 1 ) _ g{Jl) 
k{Jl)-5 k{Jl)-5 k{Jl)-5 

for /-lEA -. In fact, let us assume 

G+( k{Jl; _ 5) - G-( k{Jl; - 5 ) 
onA; whence 

Define 

Then 

_ f Y-l( - k (s»J(s)j(s) ds 

L· 1 - z(k (s) - 5 ) 

Q +( v ~ 5 ) - Q -( v ~ 5 ) 

for VER- by virtue ofEq. (28), and on R+ by a direct computa
tion. Since Q is bounded near Np and Q (t)-o at infinity, we 
conclude 

Y( _ 5 _ ~) f Y- 1
( - k (s»J(s)j(s) ds 

z JA' l-z(k(s)-5) 

f J(s) Ej(s) ds 
- JA 1 - z(k (s) - s> . 

By evaluating at limits at z = l/[k (Jl) - 51, taking a scalar 
product with J(z), and computing Y+ - Y- = (A + - A -)X-l, 
this implies that 

Ej{Jl) 

g{Jl) .X-l(k (Jl» f Y- 1
( - k (s»J(s)j(s) ds , 

k{Jl)-5 L,I-(k(s)-5)/(k{Jl)-5) 
/-lEA -, 

Finally, a straightforward computation gives 

EN,,) - g{Jl) .G ( 1 ) 
'.I~ k{Jl)-5 k{Jl)-5 
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For wEA ., the half range expansion ofjEL p is given by 

j(w) = f «l>x(w)·Ax dx + i, (29a) 
JR' f 

where «l>x is defined by Eq. (11a), and 

xi Y( - k(s»J(s)j(s)ds 
A' x-k(x) 

(29b) 

(Note this is a "half range expansion", as the negative spec
trum does not enter.) 

The contribution of isolated eigenvalues "1./ from the 
appropriate half space is carried out as in Sec. IV . We omit 
details. 

VII. ANISOTROPIC NEUTRON TRANSPORT 

In this section we present a quick illustration of the full 
and half-range expansions obtained above. The illustration 
that we have in mind is the neutron transport equation with 
anisotropic scattering. In particular, if we assume the scat
tering function can be expanded as a finite series of Legendre 
polynomials, we obtain the triple (k,g,J) as indicated in ex
ample 4 of Sec. I. 

Therefore, from Eq. (4), we can write 

We ~lave then, from Eq. (11), 

j.(w) = f+11 «l>/w)-A(y)dy, 

where for this problem, 

(e/2)(21 + l)yj?/(w) 
[«l>y(w)L = p------

y-w 

+~I 
n 

and 

1 (I)-Ie [A (Y)L = - - I A I; - - (2k + 1) 
Y I".k,m Y 2 
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However let us note the identityl7 

A (1!w)h(w) = il (1!w)P(w), 

where 

J + I K (w,x) 
il (1!w) = detA (1!w) = 1 + w _ I X _ w dx. 

Here 

and 

[h(w)]n = hiw), 

where the polynomials hn(w) are defined recursively byl9 

(n + l)hn + I(W) + nhn _ I(W) = w[(2n + 1) - cfn]hiw), 

ho(w) = 1, h1(w) = (1 - c)w. 

Use ofthis identity and a modest amount of algebra allows us 
to write 

A - h/(y) j+ I s K(y,s)f(s) ds 
[ (Y)]/- il +(1!y)il -(lly) - I y - S 

+X (y)f(y), 

where 

X (y) = ![il +(1!y) + il -(lly)]. 

Using this result and Eqs. (11) we obtain 

f-+II Cl»/w).A(y)dy = f-+II rp/w)~(y) dy, 

where 

and 

rp/w) = Pyk(w,y) +X(y)8(y-w) 
y-w 

(30a) 

This is the same result obtained by Mika using the singular 
eigenfunction technique. 19 

For half-range problems it is necessary to use the 
factorization 

A (1!z) = Y( - 1!z)X(1!x). 

For the problem under consideration, this factorization has 
been shown by Mullikin20 for those cases when c < 1. More 
precisely, the matrices X (l/w) and Y(1!w) can be written in 
the form 20 

[Y(l/W)]nk = 8
nk 

+ ~ t (2k + l)fklflk(s)Pn(s) ds, 
2 Jo s + w 

(3Ia) 

and 
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X (01 _(2_k_+_I_)J;_k lfI_k_(S_)_P_n(s_) ds, 

Jo s + w 
(3Ib) 

where the functions IfIk satisfy the nonlinear equations 

1fI/(s)=P/(s)+ cs i (-I/+k(2k+IYk 
2 k=O 

(3Ic) 

plus certain analyticity constraints. Mullikin has shown the 
existence of the solution to Eqs. (31) and recent results indi
cate that Eq. (3Ic) or a variant of it is a likely candidate for 
solution by iteration. 

Using the same techniques as in the full-range we find 
from Eq. (29b) that 

[A(y)] = h/(y) [I sG(y,s)f(s) ds 
I il +(1!y)il -(lly») 0 y - s 

+ X (YY(y), 

where 

Substituting this into Eq. (29a), we will obtain the contribu
tion to the half-range expansion from the continuum to be 

~(w)= fCl»y(W)'A(Y)dY = f rp/w)£/(y)dy, 

where rp/w) is given by Eq. (30) and 

£/(y) = [yil +(1!y)il -(lly)]-l ,I sy G (y,s)f(s) ds 
)0 y-s 

+ X (y)f(y). 

The contribution to the expansion from the discrete 
roots can be easily, iflaboriously, worked out, using Theo
rem 7(i). Again, Mika's results l9 are reproduced. (RecalPl 
that for the subcritical case considered here the discrete 
roots fall on the real line outside [ - 1,1].) The singular 
eigenfunction method has the advantage that the matrix A 
need not be factored; the method presented here however, is 
somewhat simpler, granted the matrix factorization known, 
and gives the results in somewhat simpler form. In any event, 
this section has been included as an illustration of our tech
nique and to connect our results with the (seemingly) differ
ent formulas in the literature, rather than to obtain new re
sults on this particular application. 
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The off-shell Jost functions are studied for a potential which is the sum of the Coulomb potential and an 
arbitrary local short-range central potential. We derive their singular on-shell behavior and their 
connection with the pure Coulomb off-shell Jost functions. For the latter we derive a large variety of 
interesting explicit analytic expressions which are useful for various purposes. 

1. INTRODUCTION 

In this paper we investigate the off-shell Jost functions 
ie, (k,q) for the Coulomb potential and the off-shell Jost func
tionsiJ(k,q) for a Coulomb plus short-range potential, 
V = Vc + Vs' where Vs is assumed to be local and central. As 
is now well known, these off-shell Jost functions are particu
larly interesting in connection with the transition matrices. 

In Sec. 2 we show that!eI(k,q) is a basic constituent of 
iJ(k,q). In particular, we prove thatiJ(k,q) has exactly the 
same singularity in q = k as ie, (k,q). In order to obtain the 
most convenient formula foriel (k,q), a regrouping of certain 
hypergeometric function expressions has to be performed. 
By doing this we supply the supplementary proof of the sim
ple formula for 1:.., (k,q) that we have given before. 1 This for
mula contains Jacobi polynomials and certain polynomials 
of two variables, A, . 

In Sec. 3 we derive a large number of interesting expres
sions for these polynomials A,. Each of these is useful for 
different purposes, as is clearly illustrated at the end of Sec. 
3. We shall use the notation of Ref. 1. 

2. THE OFF-SHELL JOST FUNCTIONS 

In this section we will express the off-shell Jost function 
iJ(k,q) for a Coulomb like potential in terms of the Coulomb 
off-shell Jost function ie, (k,q). By using this expression the 
on-shell behavior at q = k is easily obtained. Further, we 
shall sketch the derivation of a simple closed expression for 
ie,(k,q). 

We start by noting that2 

iJ(k,q) = 1 + !1T"q(qlk)'i;(k) o<ql!1 V, Ikl +). (2.1) 

HereiJ(k) is the Jost function and Ikl + ) the "outgoing" 
scattering state, with energy k 2, for the potential 
V, = Vel + Vsl . We use the Coulomb analog ofEq. (2.1) and 
apply the two-potential formalism. In this way we get the 
convenient expression, 

fl-I(k)ft(k,q) =fci \k)fcl(k,q) + c<kl-I VsP, IX,). 
(2.2) 

Here G, is the partial-wave Green operator for VI' and IX,) 
is defined by 

IX,)=!1T"kG oi l [(qlk)'+llqlt)o- Iklt)o]. 

By inserting 

<Plqlt)o = 2(1T"qtl(Plq)I(p2 _ q2) - I, 

we obtain a simple expression for IX,) in the momentum 
representation, 

(2.3) 

Equation (2.2) is very interesting, since it clearly shows that 
iJ(k,q) has exactly the same singularity in q = k asiel(k,q). 
As a matter offact, by using Eq. (2.3) we have 

limw IXI ) = 0, k> 0, 
q~k 

and therefore, 

IimwiJ(k,q) = iJ(k), k> 0. 
q~k 

(2.4) 

Here 

_(q - k)iY erryI2 ieo(k) 
w= q + k r(1 + ir) = ieo(k,q)' 

Now we are going to summarily derive explicit expres
sions foriel(k,q) [cf. Eqs. (4) and (7) of Ref. 1]. In order to 
evaluate o<qlll Vcllkl + )c, which occurs in 

iel(k,q) = I + !1T"q(q/k )'fcl(k) o<q/! I Vcllkl + )c, 

we use the well-known expressions, 

o<qlllr) = (211T")1I2i - 'h ~ + )(qr), 

and 

<rlkl + >c = (211T")1I21![J:.,(k )(21 + I)!] - 1(2ikr)'e - ikr 

X IFl(1 + 1 - ir;21 + 2;2ikr). 

By using Ref. 3, p. 278, one obtains 

o<q/! I Vel Ikl + )c = 2irl![ 1T"qt;Ak )(21 + I)!] - 1 , 
X I (m + IMklq)mz'+ I-m 

m~O 

X 2Fl(l + 1 + ir,! + 1 - m;21 + 2;z), (2.5) 

where z = 2k I(q + k). The important step now is to sepa
rate off that part which contains the branch-point singular
ity in q = k. To this end we apply two transformations to the 
hypergeometric function 2Fl on the right-hand side of Eq. 
(2.5) and find (Ref. 3, p. 47), 

2F l(l + 1 + ir,! - m + 1;21 + 2;z) 

=(1_z)m-iY( r(2/+2)F(ir-m) )Z-21-1 
r(1 + 1 - m)r(l + 1 + ir) 
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X2FI(m -I, - iy-I;1 + m - iy;l-z) 

+ ( r (21 + 2)r (m - iy) ) z - 21 -- 1 

r(l + 1 + m)r(1 + 1 - iy) 

X2FI( - m -I,iy -1;1 - m + iy;1 - z). 

The hypergeometric series for the 2FI'S on the right-hand 
side break off. Therefore, these 2FI'S can be rewritten in terms 
of Jacobi polynomials. One has, with z = 2/(1 + x), 

p~i~ --;,. m,- iy - m) (x) 

( I + iY) - m - I F ( I ' I l' 1) = 1+ m z 2 1 - m - ,ly - ; + ly - m; - z , 

and so 

p~=;;;+ m,iy + m) (x) 

(
I - iY ) m - I ( I . I l' 1) = Z 2FI m - ,- ly - ; - ly + m; - z . 
I-m 

When we insert all this in Eq. (2.5) we get a complicated 
expression. In order to simplify this expression we introduce 
the polynomials A I' 

AI(q2/k 2;y2) 

- m to (' ~ m)( - )m( ! y -m p V~ --;,. m, - iy - m)( ! ). 
Furthermore, we shall now prove that 

± (I + m)( k 2 - q2)m p~",- --;,.iy,m + iY)(!L) 
m =0 I 4kq k 

= p ~ - iy,;y) ( q2
2
:: 2 ). 

For this proof we use 

p~a,(3)g) 

(2,6) 

(2.7) 

(n + a) (3'1 .1 If·) = n 2F1( - n,n + I + a + , + a'2 - 2~ , 

(2,8) 
and the well-known integral representation, 

,F1(a,b;c;0 = (r(b )~~? _ b») 

xft b - 1(1 - ty- b - \1 - to -adt, (2,9) 

The left-hand side of Eq. (2,7) then becomes 

r(l + I - iy)[r( - iy -l)r2(l + 1)] - 1 

X ftl(1-t)-iY-I-I[I-~t(1-q/k)]1 

X ± (I) [t -I _ HI _ q/k)] - m( k' - q2)m dt. 
m =0 m 4kq 

By performing the summation and using again Eqs. (2.8) and 
(2.9) we obtain the desired expression, i.e., 

('~iY)2F{ -1,/+ I;I-iy; -(!k~k)') 

= p ~ - iy,iy) ( q' 2:; , ). 
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This completes the proof of Eq. (2.7). 

By inserting the above expressions in Eq. (2.5) and us
ing Eqs. (2.6) and (2.7) we obtain 

o<ql! I Vcllkl + >c 
= 2clA 1Tq h:tCk )] - 1 [ - x -IAI(X2;y2) 

+h{)(k,q)P~-iY';Y)(U)], (2.10) 

cf. Eq. (7) of Ref. I. Here x = q/k, u = (q' + k ')/(2kq), 

fco(k,q) = (: ~ ~r, 
and 

_r'(1 + 1)r(1 + iy)r(1 - iy) 
c,y . 

r (l + I + iy)r (I + I - iy) 
(2.11 ) 

In Sec. 3 we will derive a large number of useful expressions 
for the polynomials A,. 

3. THE TWO-VARIABLE POLYNOMIALS AI 

In this section we shall derive a number of interesting 
explicit expressions for the polynomials A, that occur in the 
formula (2.10) for the Coulomb off-shell Jost functions 
h., (k,q). 

To start with, we have 

A,==A,(x';y')= ± (/~n)(_rxl-np~i~~,n'-iY-n)(X) 
n ,--"""",,- 0 

(3.1) 

[Eq. (2.6)], where x = q/k. Substitution of 

p~i~--;. n, - iy - n) (x) 

= r(l + I + iy)[r(l + n + l)r(l- n + I)r(iy _/)]-1 

X (t' n(1 - t)'Y - 1- 1 [1 - ~t (1 - x)] '+ndt 
Jo 

yields 

A, = r(l + I + iy)[r'(1 + I)r(iy -I)] - 1 

X ntJJ f( -tx) - n[ I - ~t(1 - x)ntx)' 

X [I - ~t (1 - x)]' (1 - t) + i1' - ,- Idt. 

The summation is easily carried out. We then get 

A, = 4 liyc,; If(1 - ty1'-'- 1[(2 - t)' - x't']'dt, 

(3.2a) 

where c 11' is given by Eq. (2.11). The polynomials A, can also 
be expressed in terms of Gegenbauer polynomials C n- ,. In
deed, by introducing 7 = 1 - t we get from Eq. (3.2a), 

(
I-X')' ( . A,= -4- iYC,;I

Jo 
7'1'--'-1 

(
X' + 1)1 X 1 +7'-27-- d7. 
x' - 1 

(3.2b) 

It is well known that 

(1 - 27; + 7')'" = f C n- "g)7n
, 171 < 1, ,1*0. 

n=O 
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Because of 

C n-I=O, n = 21 + 1,21 + 2,.··, 

we can apply the above expansion to Eq. (3.2b), the result 
being, 

(
I-X2)1. _1

21 1 _1(X2+1) Al = -- lYClr I . C n --. (3.3a) 
4 n = 0 n - I + ly x 2 

- 1 

By using 

CI-=-ln(;)=Ci~~/n(;)' -I<n</, 

we recast the above sum in the more convenient form, 

21 1 C _1(X
l + 1) 

n ~ 0 n - 1 + iy n Xl - 1 

I Cn I (Xl + 1) 
= -iy '" --CI~n --. 

n~on2+y2 - x 2-1 

Here cn is the Neumann symbol, 

{
I, n = 0, 

C = 
n 2, n = 1,2,3,. ... 

In this way we obtain from Eq. (3.3a), 

A - -x C-12 __ n_C-1 _x __ 
( 

1 1 )1 I C ( 2 + 1 ) 
I - --4- II' Y n ~ On2 + y2 I ± n X 2 _ 1 . 

(3.3b) 
This expression can be rewritten in terms of the Jacobi poly
nomials p~n. - n). By using 

C A(X2 + 1) 
n X2 _ 1 

(X + l)n ( (X - 1 )2) = (A )n(n!) - 1 x-I 2FJ A, - n;1 - A - n; x + 1 ' 

= (A )n(n!) -I(~ ~ ~r 2F{A' - n;1 -A - n;C ~ ~y). 
we derive the interesting relation, 

( 1 ~~ X2 ) - I C 1-_1 n(~: ~ ~ ) 
_ rl(/+l) (l-x)n 

r(1 + n + l)r(l- n + 1) 1 + x 

By inserting this in (3.3b) we get 

A I - 1 2 f Cn rl(1 + 1) 
I=XCI Y.t...---

y n=onl+ylr(/+n+l)r(l-n+l) 

X (1 - x)np<n. - n)( Ix + IX-J). 
l+x I 2 2 

(3.4a) 

Further, we have 

p~n. - n)(z) = (/ + IMz + 1)nI2(z - 1) - nI2~1- n(z), 

where ~I- n is Legendre's function of the first kind. Substitu
tion of this expression yields 
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When x > 1 the Legendre function here has to be multiplied 
by(_)n. 

From Eq. (3.2a) one can find an expression containing 
either 2FJ("';!) or 2FJ("'; - 1) or lFJ( .. ·;2). It turns out that 
the formula with 2FJ( ... ;2) is the more convenient one. We 
obtain this formula by using the binomial expansion, which 
yields 

AI= 4-liycl; 11'0- tyr- I - I 

X m t 0 (~)(2 - t )2m( - x 2t 2)' - m. 

By again using the binomial expansion, 

(2 - t)2m = ,,~J2:)2n( _ t)2m-n, 

the integration can be performed, with the result, 

l' (l - t )ir - 1- 1 t 21 - ndt 

= r(2/- n + 1)r(iy -/)/ruy + 1- n + 1). 

In this way we get 

AI = 4- liycl; 1(2/)![r(iy -/)/r(l + 1 + iy)] 

The sum l:n is a terminating hypergeometric series for 
which we write 2FJ( - 2m, - 1 - iy; - 2/;2). One should be 
careful here, since the third parameter, - 2/, is a nonposi-
ive integer. By using expression (2.11) for clr we obtain 

AI = 4-IC)mtJ~)( - )mx 21-2m 

X 2FJ( - 2m, - 1- iy; - 2/;2). 

We note that A I is a function of y2 rather than of y, as can be 
seen from Eq. (3.3b). So we have, by replacing m by 1- n, 

AI=4-1(~)ntJJ( - )1-nx2n 

X 2FJ(2n - 2/, - 1 ± iy; - 2/;2). (3.5a) 

The hypergeometric function lFJ( .. ·;2) can be expressed in 
terms of a Jacobi polynomial with argument O. By using Ref. 
3, p. 212, we have 

AI = ( - )' ± (2n)! (2/- 2n)! (_ ax2)" 
l! n = 0 n! (1- n)! 

X P W~ ... 2~ + ir.2n - 1- 11') (0), 

H. van Haeringen 
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or in (3.6c) and introducing the new summation variable 
v = n - m, we have 

I" I 1- m 

I I ... = I I···· 
n-=Om=O m=Ov=O 

XP~,,- 2n + ir,l- 2" - ir) (0) . (3.Sc) It turns out that the sum Lv is a ,Fl· .. ; 1), and thus we obtain 

Now we come to the derivation of the most elegant for
mula for AI' i.e., a generalized hypergeometric function 3F, 
with argument 1 - x'. From Eq. (3.2a) we have 

Al = iycl:; 1 f (1 - tyr- I
-

1 [1 - t +!(1 -x')t,]ldt. 

After substitution of 

[1 - t + !(1 - x')t ,]1 = ± (I) (1 - t i - nt 2n2 - 2n 
,,=0 n 

we can perform the integration, the result being 

f (1 - t)iy
- 1 - n t 2ndt = r(iy - n)F(2n + 1)/ 

r(iy + n + 1). 

In this way we obtain 

A - - 1 ~ (2n)! ( -1)" 2 - 2"(1 _ ')" 
I-CI L.. -- x . 

y ,,= 0 n! (1 + iY)n(1 - iy)" 
(3.6a) 

By using the doubling formula for the gamma function we 
have 

(2n)! = (!)n22"n!, 

and so 

AI = CI:; 1 3F,( -1,i,!;1 + iy,1 - iy;1 - x'). 

An alternative expression is 

~ T(l+I+iy) T(I+l-iy) 
AI= L.. 

" = 0 r (n + 1 + iy) r (n + 1 - iy) 

x (!),,(x' - 1)" , 

T(l+ 1)F(l+ I-n) 

(3.6b) 

(3.6c) 

where we have inserted Eq. (2.11). Furthermore, we have the 
terminating hypergeometric series, 

(!)I, I I (iy - 1),,( - iy - I)" (1 _ x') - n 

AI=-/I (x -1) I (I-I) n! 
. n=O 2" 

(3.6d) 

From Eq. (3.6c) one can derive an expression involving 
a ,F, with argument 1. By inserting 

(x' - 1)" = i (;) x2m( _ )"- m 

frl =0 
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I x2n(1) 
AI= I 2" 

,,= 0 r(l + 1)F(1 + 1 - n) 

x r (I + 1 + iy)F (I + 1 - iy) 

r (n + 1 + iy)F (n + 1 - iy) 

X,F,(n -I,n + l,n + !;n + 1 + iy,n + 1 - iy;I). 

(3.7) 
We transform this ,F, into a,F, with different parameters by 
applying a generalization of Dixon's theorem, see Slater 
(Ref. 4, p. 52), 

,F,(n --I,n + 1,n + !;n + 1 + iy,n + 1 - iy;l) 

= r [I - n ;-!, n + 1 + iy, n + 1 - iY ] 
2' 1+1, n + 1 

x ,F,(iy, - iy,l- n + !;!J + 1;1). 

Then we have from (3.7), 

A _ r (l + 1 + iy)F (l + 1 - iy) 
1- T'(l + 1) 

x ± ~2n m"r (l- n + !) 
11=0 n! T(!)F(/-n+l) 

X,F,(iy. - iy,l- n + !;!,l + 1;1). C3.8a) 

Note that the hypergeometric series for this ,F, breaks off 
when iy = 0, - 1, - 2, .. ·. The case iy = 0 corresponds to no 
Coulomb interaction at all. On the other hand, 
iy = -- I, - 2, - 3, .. · occurs for the Coulomb bound states. 

It is not difficult to derive from Eq. (3.8a) the corre
sponding series with decreasing powers of x. This expression 
has almost exactly the same form as (3.8a), namely, 

A
_TC/+l+iY)F(l+I-iy) I X21-2n 

I-
1- T'(l + 1) n = () n! 

m"r(l- n +!) 
X-------

T(!)F(l- n + 1) 

X,F,(iy, - iy,n + !;!J + 1;1). (3.8b) 

By comparing this expression with Eq. (3.Sc) we get the 
interesting equality 

.F,(iy, - iy,n + !;!J + 1;1) 

( - 4)"(1 - n)!l !n! p \1,,-- 2" + iy.1 - 2" - iy) (0). 
r (I + 1 + iy)F (l + 1 - iy) • 

In the particular case when I = 2n this expression can be 
simplified. By using (e.g., Ref. 3, p. 167) 
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= r(1 + !fL)r(~ +!fL) 
x [r(1 + !fL + ~v)r(~ + !fL - ~V)]-l, 

we get 

p ~h' - iy) (0) 

= 22nr(~ + ~iy + n)[r(! + ~iy - n)r(2n + 1)] - 1 

= ( - tn! (n - ~ + ~iY) (n - ~ - ~iY), 
(!)n n n 

and so 

Jliy, - iy,n + ~;~,2n + 1;1) 

1Tr2(n + 1) 

(3,Sc) 

= r(~ + ~iy)r(~ - ~iy)r(n + 1 + ~iy)r(n + 1 - ~iy)' 
cf. Eqs, (2,3) and (3.13) of Ref. 4. 

One can see from Eq. (3,6c) in particular that the degree 
of the polynomial Al Al (X2;y2) is I, both in x 2 and in i, 

I 
Al = I X 2/ - 2nD ~)(y2), 

n=O 

I 
Al = I r ' - 2nF~)(x2) . 

n=O 

(3.9a) 

(3.9b) 

Here D ~:) and F~) are certain polynomials of degree n. It 
turns out that Eq. (3.9b) is less suitable for practical applica
tions, so we shall mainly restrict ourselves to the expansion 
in the D ~)'s. One can also write Al as 

(3.10) 

Here the coefficients a~~ are real positive numbers, as can be 
proven with the help of Eq. (3.S). 

It is of interest to discuss a number of special cases. In 
the first place we consider the zero-energy case, k = O. Re
calling x q/k and y - s/k, we have from Eq. (3.6c), 

Ap==-r/(/!) - 2 Jo( -1,1,~; - X2/y2), k-O, 

and so 

limy- 21AI = (ll) - 2 Jo( -I,q; _ q2js2). 
k~O 

(3,11) 

On the other hand, for k_ 00 we have x-o and y-O. In 
this case we get from Eq. (3.S), 

A (0'0) = a(l) = (~)I = 4 - 1(2'). (3.12) 
I, 1,0 I! I 

For x = lone easily derives from Eq. (3.6b) 

AI(1;y2) = CI-;: 1 = (' ~ iY)(1 ~ iY). (3.13) 

The numbers a~,~ (n,m = 0,1, ... ,/) can be considered as 
a matrix, which is triangular because of 

a~,~ = 0, n <m. 

The matrix elements on the principal axis are given by 

a(/)=4
n

-
/
(2/-2n)! (3.14) 

n,n lln!(/- n)! . 
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In particular for n = lone has 

a(/) - F(/) - (II) - 2 
1,/ - a -. . (3.15) 

Equation (3.14) is obtained by considering 

D ~ )(y2) = i rma~,~ 

and 

D~)(y2) 

m=O 

= (_ )"4n -I (2n)!(2/- 2n)! P~n- 2n + iy,/- 2n - iy) (0) 
/!n!(l- n)! 

= (-)"4 -/(~')C) 2Fl( - 2n, -I ± iy; - 2/;2). (3.16) 

It is interesting to note the connection of D~) with cer
tain known polynomials, namely Krawtchouk's polynomi
als k n (z), which depend in addition on a positive variable 
p < 1 and a positive integer N. These polynomials are associ
ated with the binomial distribution in probability theory. 
According to Refs. 5 and 6 one has, with p = ! and N = 2/, 

k2nUy + I) 

= 4 - nCY2: ') 2Fl( - 2n,iy -1;1 + 1+ iy - 2n; - 1) 

= P~n- 2n ± iy,/ - 2n"Fiy) (0). (3.17) 

Since kn (z) is defined for an integer variablez only, D~) may 
be considered as a generalization of k2n . 

For y = 0 we get from Eqs. (3.4a) and (3.6b), 

AI(X2;0) = Xlpl(~X + ~X-l) 

= 2Fl( -1,~;I;I-x2). (3.1S) 

By using these expressions we obtain 

a(l)=a(l) =D(/)(O) = 4_/(2n)(21-2n). (3.19) n,O 1- n,O n n I _ n 

Further we derive from Eqs. (3.Sc) and (3.15), 

(3.20) 

which again shows the dependence on y2 rather than on y. 
For x = 0 we have from Eq. (3.15), 

A 1(0;y2) = D V)(y2) = ( _ )1 (~')P ~ir - I, - iy - I) (0). 

(3.21) 

In order to obtain explicit expressions for A o, A h"', Eq, 
(3.6) is very useful. We first recast Eq. (3.6c) in a more ex
plicit form, 

(
I + iY)(1 - iY) I ( - I) (1) A I = I n 2 n (1 - x2t 

I I n = a {l + iY)n(1 - iY)n 

(3.22) 

Therefore, we have 
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[ 

II (m2 + y2). 
m=n+l 

In particular, (3.23) 

D (/) _ r (l + !) 
o - l!r(!) , 

D(/)= r(l-!) (y2+1/) 
1 l!r(!) 2' 

3 r(/- -) 

(3.24) 

D(I) = 2 l[v' + y2(3/_ 2) + 3./(1- 1)] 
2 l!r (!) 2 r 4' 

r(/-~) [ 
D(/)= 2 ~ Y;+r'(~/-1O) 

3 l!rm 6 2 

+ !y2(45f2 - 1051 + 46) + 1: 1 (l- 1)(1- 2) l 
Finally, we give the first four polynomialsA[ in explicit 
form, 

Ao = 1, 

AI = !(x2 + 1 + 2y2), 

A2 = U3x' + 2x2(1 + y2) + 3 + 8y2 + 2r'], 
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(3.25) 
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Petrov type N vacuum spaces which admit an expanding and/or twisting principal null congruence and a 
homothetic motion are considered. It is shown that there are no such spaces which admit two Killing 
vectors. or one Killing vector of special type. If there are no Killing vectors present. the form of the 
homothetic Killing vector is restricted to one possibility. 

1. INTRODUCTION 

A conformal molion of a ~pace with metric tensor g 
is defi~ed by Lxg=<p(x)g where L is the lie derivative in 
the direction of the conformal Killing veclor X (infinitesi
mal generator of the motion) and .p is a function of the 
local coordinates (x). If .p = nonzero constant, the 
motion is hOlllOfhetic and X is a homo/helic Killing 
vector (HKV). If cp = 0, the motion is isometric and X 
is a Killing' l'cctor (KV). An important result is that 
any space admits at most one independent HKV. 1 

Petrov type N solutions of Einstein's vacuum field 
equations are among the most interesting, physically 
and mathematically, of all empty-space metrics. For 
example, Collinson2 proved that the only curvature col
lineations3 admitted by a vacuum space-time not of 
Petrov type N are conformal motions, but that type N 
vacuum spaces do admit curvature collineations which 
are not conformal motions (i. e., they admit more 
general types of symmetry). Collinson and French4 

proved that a conformal motion of nonflat empty space
time must be homothetic unless the space-time is 
Petrov type N with hypersurface-orthogonal geodesic 
rays. The only type N vacuum fields which admit 
(proper) conformal motions are the pp waves. 5 McIntosh" 
has given an example of a fifi wave admitting a particular 
homothetic Killing vector. 

In this paper we are concerned with Petrov type N 
vacuum spaces with expanding and/or tWisting principal 
ray congruences (i. e., not pp waves). Such spaces may 
have no symmetries. If there are any isometries pre
sent, they depend upon whether the congruence is (i) 
twisting, or (ii) twist-free. In case (i) COllinson7 has 
shown that there exists at most one KV in the space. 
An example with one KV is the metric found by Hauser. 8 

In case (ii) Held9 proved that the space admits at most 
two KVs. Our interest centers on type N vacuum 
metrics which admit a homothetic Killing vector and 
possibly one or two KVs. 

2. VACUUM SPACES WITH TWO KILLING VECTORS 

In another paper, 10 referred to as Paper I, we 
listed all nonflat algebraically special vacuum metrics 
with nonzero complex divergence which admit a HKV 
and 2,3, or 4 KVs. None of these were of Petrov type 
N. Hence we have 

Theorem 1: There are no Petrov type N vacuum 
spaces with nonzero expansion and/or twist which 
admit 2 KVs and one HKVo 

3. VACUUM SPACES WITH ONE KILLING VECTOR 

In order to obtain our next results we use the for
malism developed by Debney, Kerr, and Schild and by 
Kerr and Debney, 11 extended in Paper I. In the 

(t, [,11, v) coordinate system the space is type N when 

D3.lXl, = 0 = /1-, 

and the only surviving field equation is 

DDDr? =DDDIT, 

(1) 

(2) 

where the bar denotes complex conjugation, the opera
tor D is defined by 

D=oe-r?c., 

and r? =r?(t, r, u). The "complex mass" function /1-
vanishes for type N vacuum. 

If there is one Killing vector K it assumes one of the 
canonical forms 

(i) K =F(t, 1,')0., (ii) K =: a~ + (le-. 

Kerr and Debneyll showed that if K takes the form (0, 
then ti == 0 (dots denote differentiation with respect to 
11). This implies r?==uf(t,r)+g(t,D so that ilu0.nr?=O. 
Coupled with (1) this implies flat space. Hence we have 

Theorem 2: There are no Petrov type N vacuum 
spaces with nonzero expansion and/or twist which admit 
a KV of the form 

K =:F(t, [)ou' 

In Paper I we showed that the general form of a HKV 
admitted by an algebraically special vacuum space with 
nonzero complex divergence is (in these coordinates) 

H == e/ ce + ii 2~ + Re(a e)(uo u -. l'il) + Rilu + a(uG u + vOv), 

where a == ty(1;), R ==R(t, D =: R, a is a nonzero real 
constant, and a e '= ac~. If H is to be in the space along 
with the KV 

(3) 

we must determine the form of H more precisely from 
the commutation relation 

LK, H] == AK, A real constant. 

This requires e/ =: At + e, R == R (y), where A and e are 
constants, with e complex. We can simplify the form 
of H by means of a coordinate transformation 

t-t'=:A&+e'=4>(t), u-u'==u+S(y), 
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and by using the appropriate transformations on tI' and 
R (see Paper I): 

R -R' = I <pellR - (Re(tI'e) +a)S +HS], 

where 5=5«(" f) =5. By solving HS- (X + a)S - R = Owe 
send R to zero and so put H into the form 

H = i:i'le + rar+ (a + 1)1Io u + (a - l)vo v 

=xo x + Yay + (a + l)uo u + (a - 1)v2 v , (4) 

where we have dropped the primes on the new variables 
and absorbed the constant X into H in the process. 
These transformations do not alter the form of the 
Killing vector K. 

The nontrivial Killing equations and homothetic Kil
ling equations and their first order integrability con
ditions (see Paper I) reduce to 

K(n -url) = 0, 

Kn=O, 

K(15n) = 0, 

Kf::>. = 0, 

Kn=O, 

with K in form (3), and 

(H - a) ($1 - un) = 0, 

(H + 1)&1 =0, 

(H+2)(15n) =0, 

(H+1-a)f::>.=0, 

(H +2 + a)n =0, 

with H in form (4L Equations (5) and (6) imply 

$1 = n(y, u), 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

and this with Eqs. (10) and (11) gives two possibilities: 

(i)a=-l, n=y·lf (u), (16) 

(ii) a*-l, n=u·j (·+l),.!;(ya+l/u ). (17) 

The functions I and,.!; are to be determined from Eqs. 
(1) and (2). In both cases the integrability conditions 
(7), (9), (12), and (14) are satisfied identically. The 
function 6 =f::>.(x, y, u) is defined by 

f::>. =iIm(15n). 

Substituting this expression into (8) and (13) places an 
additional constraint on n. The space is twist-free if 
and only if f::>. = 0. 

Case (0: Substituting (16) into (1) and (2) gives 

(18) 

and 

3E - E(2i! - E) = 3E + E(2if + E), (19) 

where 

E(u) = if - 2/i, 

and the dot denotes differentiation with respect to u. 
The complexity of this set of equations is such that so 
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far we have .. fClund no solutions I(u) for which the space 
is nonflat (E * ° for type N). A possibility is that the 
LHS of Eq. (19) is a real constant k, when (18) and (19) 
give 

ZZ3 Z- + Z2 Z·2 - 3zz· 3 = 0, (20) 

where z =E + k. Equation (20) has the solution 

Az =jJ - Cp3f2, Au + B =3Cp1l2 -logp, (21) 

expressed parametrically, where p is the parameter 
and A, B, C are arbitrary constants. Having found z 
and therefore E, Eq. (18) must be satisfied for values 
of I(u) determined from E. 

Case (ii): The substitution of (17) into Eqs. (1) and 
(2) yields complex equations which have defied any 
attempts at obtaining solutions so far. 

Hauser's solution: The twisting type N solution of 
Hauser8 admits one KV of the form (3) and also admits 
a HKV of the form (4). In Hauser's coordinates these 
vectors are 

It remains to extract his solution from Eqso (1), (2), 
and (15). 

4. VACUUM SPACES WITH NO ISOMETRIES 

In case the space admits just one HKV (and no KVs) 
we shall consider each of the canonical forms 

The nontrivial homothetic Killing equations and their 
first order integrability conditions reduce to 

(H -1)($1 - u~) =0, (22) 

HQ. =0, (23) 

H(15t1,) = 0, (24) 

(H -1)f::>. =0, (25) 

(H + l)[i =0. (26) 

Case (i): Equations (22) and (23) with H in the form 
(i) imply n=uh«(" f). Then 0u0,pn=o, and this together 
with (1) ensures that the space is flat. Hence we have 

Theorem 3: There are no Petrov type N vacuum 
spaces with nonzero expansion and/or twist which admit 
only an HKV of the form 

H =uou+ vOv' 

Case (ii): It is possible that type N spaces of the kind 
under consideration exist which admit just one HKV, 

H = oe + o{ + uOu + vOv' 

However, the complexity of the high order nonlinear 
partial differential equation coming from (1) and (2) is 
such that no solutions have yet been obtained. 
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Circular motion for a time-asymmetric relativistic two-body 
problem 
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The Pennsylvania State University, Altoona, Pennsylvania 16603 
(Received 9 October 1978) 

A formalism developed in a previous paper yields necessary and sufficient conditions and 
a solution for the circular motion case of the time-asymmetric relativistic two-body 
problem in which one particle responds to the retarded Lienard-Wiechert field of a 
second, while the second responds to the advanced field of the first. The necessary 
conditions contradict Kiinzle's exceptional circular motion solution with zero angular 
momentum; consequently, zero angular momentum implies one-dimensional motion. The 
limit in which the mass of one of the particles becomes infinite commutes with the 
nonrelativistic limit and reduces the solution properly to the circular motion solution of 
the relativistic one-body Coulomb problem. 

INTRODUCTION 

This paper discusses the circular motion case of a rela
tivistic action-at-a-distance two-body problem due to 
Fokker l

: one spinless electrically charged particle responds 
without self-action to the retarded Lienard-Wiechert field 
of a second, while the second responds similarly to the ad
vanced field of the first. 

In her study of the problem, Bruhns2 showed that circu
lar motion solutions exist similar to those found by Schild3 

for the Wheeler-Feynman time-symmetric problem. Kiin
zle4 found explicit solutions for the equal mass case, numeri
cal solutions for arbitrary mass ratios, and an exceptional 
solution with zero total angular momentum. The existence 
of this exceptional solution prevented him from concluding 
that zero total angular momentum implies one-dimensional 
motion. Kiinzle's reduction of his circular motion equations 
in the limit where one of the masses becomes infinite did not 
produce the circular motion relations appropriate for the 
one-body relativistic Coulomb problem, and he found that 
this limit does not commute with the nonrelativistic limit. 

The present paper uses a previously developed formal
ism,s which is reviewed in the first section, to establish neces
sary and sufficient conditions for circular motion and to ob
tain the general circular motion solution. That Kiinzle's 
exceptional solution does not satisfy the necessary condi
tions leads to proofs that zero angular momentum implies 
one-dimensional motion and that a possible singularity 
pointed out by Bruhns does not occur. Finally, the m2- 00 

limit of the circular motion solution does produce the circu
lar motion relations of the Coulomb problem, and this limit 
does commute with the nonrelativistic limit. 

REVIEW 

The symbol x/' (n = 1,2) represents the Minkowski 
space coordinates of particle n, 7 n represents its proper time, 
and vnl' dxnl'/d1'n represents its proper velocity obeying 

vnl'vnl' = - c2. The metric tensor isgii = - gOO = 1, gJ1v = ° 
for f1=1=v. 

A previous paper,' which should be read for the details 
of this brief outline, establishes the existence of a center of 
motion frame where the conserved total 4-momentum PI' 

(assumed timelike and future pointing), the center of motion 
xl', and the conserved total angular momentum JI'V have 
zero components except for po = mc> 0, XO = C1' x' and 
J 12 = - J21 J 3 J)O. In this frame the center of mass z 1', 

which is distinct from the center of motion, moves in a circle 
of radius J fmc about the origin: 

:t' = XO = C1'x ' Z = Jxr/mcr, (1) 

where the separation between the particles rl' XII' - x 21' 

obeys the constraint r'lr'l = 0, r Irl > 0, and J i !Eijk -0k' 
In terms of zl' and rl' the particle positions are 

(2) 

where the particle label! = 2 when n = 1 and vice versa, mn 

is the rest mass particle n, g is the coupling constant in Gaus-
sian units, Pn - - v/rl'!c > 0, and Px - vxl'rl'/c. In the 
center of motion framepx reduces to r, the particles move in 
the plane perpendicular to J, and r passes through the center 
of mass perpendicular to z as shown in Fig. 1. 

Assuming r' > ° for definiteness in the constraint 

rl'rl' = ° yields 

(7 c7"p1 = c7¥J2 > 0, (3) 

where a dot above a variable indicates differentiation with 

respect to an arbitrary scalar s such that x/xnl' < ° and 
xn 0 > 0. It is natural and convenient to choose s = 1'x ' which 
determines (7 to be 

(7 = mc2/(m lcPI- 1 + m2cp2- I). 

The p's are related by 
mcpx = mlcpl + m2cp2 + 2g, 

m 2c2J2/1J = m 2c2 - mcpAmlcPI- 1 + m2cP2-1), 

(4) 

(5) 

(6) 
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FIG. I. Geometry of the time-asymmetric problem in the center of motion 
frame: z = J Imc, a 1 = (m,cp, + g)lmc, a, = (m1cp, + g)!mc. 

and 

m2c2J2lrl = fJl f Jllu 2 = 2¢ - PI- 2 - P2- 2;;'0, (7) 

where 1] = m lcp lm2cp2 - g2 and ¢ - vtv2Jl1p{hC2 > o. 

and 

The problem now reduces to solving 

mlqjJu = mlclpl - mlcpl¢ - glp22, 

m2C{hlu = - m2clp2 + m2cp2¢ + glp/, 

(8) 

(9) 

(10) 

where e is the angle between z and the x axis in the center of 
motion frame. 

CONDITIONS FOR CIRCULAR MOTION 

Circular motion in the center of motion frame requires 
that IXII and IX21 be constant. But (1) and (2) yield 

IXnl2 = Izl2 + (mf cPf+g)2Im2c2, 

which shows that the Pn must be constant: 

PI =P2 = o. 

(11) 

(12) 

Using (12) in the derivatives of the time-components of 
(1) and (2) implies 

(13) 

Hence, (3) yields 

Yn (l - I dXnldtn 12/c2) - 112 = dtnld7n = cPn1u, (14) 

and (4) yields 

m = mlYI-1 + m2Y2- 1 < m l + m2, (15) 

since Y n > 1. Equation (13) also shows that f Jl is spacelike for 
circular motion: 

(16) 
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Multiplying (8) by m2cp2 and (9) by mlcpl, adding and 
subtracting the resulting equations, and using (7) and (12) 
yield 

(17) 

and 

mlCPlm2cpiJlfJl = - gu2(m lcPI- I + m2cp2- I). (18) 

Equations (16) and (18) show that circular motion requires 

g<O. (19) 

Equation (17) implies that if mlcpl + g<O, then 
m2cp2 + g<O. Equation (5) would then give mcpx <0, which 
is contrary to the assumptionspx > 0 and m > O. This contra
diction shows that 

mncPn +g>O. (20) 

Equations (19) and (20) give 

1]> 0; (21) 

hence e is positive as well as constant. 

Kiinzle's4 exceptional circular motion solution with 
J = 0, 1] = 0, and g > 0 fails to satisfy either (19) or (21); this 
has an important implication for the J = 0 case. Although 
(10) shows that one-dimensional motion along a straight line 
through the origin of the center of motion frame requires 
J = 0, Kiinzle4 found that the converse has difficulties: Set
ting J = 0 in (10) requires only that either e = 0 or 1] = O. 
However, if J = 0 and e7'=O at any time, (10) and the con
tinuity of e imply that 1] = 0 for an extended period of time. 
This restriction with (5), (6), and (7) forces PI and P2 to be 
constants, and the motion must be circular. But circular mo
tion requires condition (21), which contradicts 1] = O. Hence 
J = 0 implies one-dimensional motion. This discussion also 
completes the answer to Bruhns' question about the possibil
ity that 1] = 0 for nonlinear motion2

: If J = 0, the motion is 
one-dimensional. If J > 0, then (7) requires 1]7'=0. 

Sufficient conditions for circular motion are simply 
PI = P2 = 0 initially and g < O. These conditions require by 
virtually the same arguments as before that (17), (18), (20), 
and (21) be true initially . Using (21) in (6) yields 1] > J2 > 0 
initially and, therefore, always. Hence there are no singulari
ties in the pair of coupled ordinary differential equations 
resulting from using (7) to eliminate ¢ from (8) and (9): 

. I 1 (- 2 - 2 2 2J 2 -2) - 2 mlcpl u = "2mICPI PI - P2 - m C 1] - gP2 

and 

. I 1 (-- 2 - 2 2 2J2 -2) + - 2 m2cp2 u = "2m2CP2 PI - P2 - m C 1] gPI' 

where u is given by (4). The solution of these equations for 
the given initial conditions requires PI = P2 = 0 always. 
Since g < 0, the particles cannot be at rest and must move in 
circles in the center of motion frame. 

CIRCULAR MOTION SOLUTION 

For arbitrary given values ofm!> m2> andg < 0, the most 
convenient parameter for expressing the circular motion so
lution of the time-asymmetric problem is one ofthepn 's, say 
Pl' Any value of PI such that mlcpl + g>O determines via 
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(17) a single value of P, satisfying m,cp, + g> 0: 

P, = - g/2m,c + fg'/4m,'c' + PI(PI + g/m IC)] 11'. (22) 

Using (22) in (5) gives the valueofmcpx' Solving (6), (7), and 
(18) first for m'c' and then for J' yields their values in terms 
of those already found: 

m'c' = (mcpx - g17/m,cp,m,cp,) (mlcPI- 1+ m,cp2- I) 

(23) 
and 

J' = - g17'(m,cPI~- I + m,cp2- I )/m'c'mlcplm,cp,. 
(24) 

These values obey the inequalities 0 < m < (m, + m,) and 
o <J2 < 17/2. 

Values forpx' a, Yn' I xn I, tn' Tn' and Bnow follow imme
diately from (22)-(24) and the equations in the preceding 
two sections. Finally, the angle a between XI and X, in the 
center of motion frame follows from 

cosa = XI·x,/lxlllx,1 
= [J' - (mlcpl + g)(m,cp, + g)]/m'c'lxd Ix,!, (25) 

THE ONE-BODY LIMIT 
In the m,_ 00 limit the time-asymmetric relativistic 

two-body problem should reduce to the relativistic Coulomb 
problem in which particle I responds to the static Coulomb 
field due to particle 2 at rest at the origin of the center of 
motion frame. Kiinzle4 has already examined this limit for 
the circular motion case; but he does not obtain the expected 
Coulomb problem relations, and his m,- 00 limit does not 
commute with the nonrelativistic limit. His results may be 
obtained in the present context by holding m l, g, and m1{J, 
fixed as the limit is taken, but this forces p,-O and 
pI--g/mlc. 

Holding m l , g, andp, fixed in the results of the last 
section as m,- 00 leaves the size of the orbits independent of 
the limit and produces the Coulomb problem relations: 
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Px = p, = (PI' + gptlm lc)II', (26) 

E/c_mc - m,c = Hm ,c(pJ/12- 1 +P1{JI-I) +gP2- 1
], 

(27) 

J2 = - gmlcp" (28) 

B = J /mJ/1J/1" (29) 

(30) 

(31) 

Furthermore, this limit does not commute with the nonrela
tivistic limit. 

DISCUSSION 

This paper has given necessary and sufficient condi
tions and a general solution for the circular motion case of 
the time-asymmetric relativistic two-body problem. The so
lution reduces properly to the circular motion solution of the 
Kepler problem in the nonrelativistic limit and to that of the 
one-body relativistic Coulomb problem in the limit where 
one of the masses becomes infinite. One consequence of the 
necessary conditions is that zero total angular momentum 
implies one-dimensional motion along a line through the ori
gin of the center of motion frame. 

The circular motion solution in effect inverts the equa
tions found by Bruhns' so that the masses of the two particles 
may be considered part of the given information. The simi
larity of her equations to Schild's3 equations for the time
symmetric problem suggests that an inversion of the latter 
may be possible. 

'A.D. Fokker, Physica 9,33 (1929). 
'B. Bruhns, Phys. Rev. D 8, 2370 (1973). 
'A. Schild, Phys. Rev. 131,2762 (1963). 
'H.P. Kiinzle, Int. J. Theor. Phys. 11,395 (1974). 
'D.E. Fahnline, J. Math. Phys. 18, 1006 (1977). 
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We ~xtend the theory of time delay to N -body scattering. The known results relating time delay to the S 
matnx In the two-body and three-body problem suggest that these relationships are universal. Within the 
context of two-Hilbert space N :body scattering theory an abstract definition of time delay is provided. 
For all scatterIng processes InItIated by the collision of two clusters a simple proof is constructed 
establishIng the connectIOn of lime delay to the on-shell S matrix and its energy derivatives. The 
defiOlllon of lime delay and method of proof given here are compared with earlier approaches used in the 
three-body problem. 

I. INTRODUCTION 

This paper gives a derivation of the relation between 
time delay and the S matrix for the N-body scattering prob
lem. Roughly speaking, time delay is the total spatial retar
dation of a scattering state induced by the collision process. 
This concept is defined by placing the center of a 3(N - 1)
dimensional sphere of radius r about the N-body center-of
mass position. The duration time the asymptotic wavepacket 
(evolving without the inclusion of the intercluster interac
tions that cause multichannel scattering) resides in the 
sphere is subtracted from the corresponding time for the 
fully interacting wavepacket. Then the radius r is taken into 
00. The resulting difference is the time delay. It is a function 
of the initial scattering channel, the incident asymptotic wa
vepacket, and all the interactions present in the N-body sys
tem. The basic problem in this theory is to find a universally 
valid definition of time delay and to relate this observable to 
the S matrix. 

Although time delay and its relation to the S matrix has 
been extensively studied in the two-body problem l

-' only re
cently has the theory been developed for the three-body 
problem. 6

.? The derivation given here extends the theory to 
N-body collisions for systems of particles interacting 
through short-range (non-Coulomb) forces. This derivation 
is simpler and at the same time more complete than the one 
used in the three-body case. 

Our proof is carried out in the two-Hilbert space for
malism appropriate for nonrelativistic N-body scattering.8

-
11 

It provides us with a simple and rigorous description of the 
N-body problem. The notation we adopt for the two-Hilbert
space theory is given in Sec. II. The definition oftime delay is 
found in Sec. III. The basic result of this section is the trans
formation of the statement of the problem into a form in 

a)Work supported in part by a grant from the National Research Council of 
Canada, and by a NATO Research Grant. 

b)One of the authors (D.B.) dedicates this paper to Professor L.P. Bouck
aer! on the occasion of his seventieth birthday. 

clBevoegdverklaard Navorser N.F. W.O., Belgium. 

which the exact wavefunctions are replaced by asymptotic 
forms. The argument given here is a generalization of the one 
found by MartinS for the two-body case. This is a major sim
plification because the complicated exact N-body wavefunc
tion has been taken out of the problem, leaving only simple 
asymptotic wavepackets. Section IV uses the generalized 
function properties of the momentum space matrix elements 
of the sphere to complete the derivation. This method is tak
en over from our earlier work on the three-body problem. 6 

Section V contains our conclusions and the Appendix in
cludes proofs of Fourier transform properties of the sphere 
that our derivation requires. 

II. N-BODY SCATTERING THEORY 

In this section we define the two-Hilbert space multi
channel theory that describes the scattering solutions of the 
N-body problem. The basic two-Hilbert space theory out
lined here is the same as found in the work of Chandler and 
Gibson. 11 However, we must alter their notation in order to 
exhibit explicitly the individual asymptotic channels. These 
channel spaces and their associated matrix elements are re
quired for the argument given in Sec. IV. The basic reason 
for employing the two-Hilbert space theory is that it gives us 
a general framework to describe on an equal footing both 
time-independent and time-dependent phenomena. In this 
framework one has simple and rigorous statements of prob
ability conservation, channel orthogonality, and complete
ness. The associated operational calculus that accompanies 
this description of scattering is easy to use, carries an obvious 
physical content, and makes the ensuing proof possible. This 
theory is adequate for all collision processes not involving 
long-range (Coulomb-like) forces. 

The N-body problem we discuss is that of N distinguish
able spinless particles which interact through pairwise po
tentials. We have ignored all spin and isospin labels. These 
degrees of freedom do not impose any difficulties in scatter
ing theory. The physical behavior of the system is deter
mined by its Hamiltonian. Let Ho be the N-body kinetic ener
gy operator in the center-of-mass frame and V. the 
interaction between particles i and). The ful1 H/~miltonian is 
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(11.1 ) 

This self-adjoint operator lO acts on the Hilbert space, JV, of 
square integrable functions in R )(N - 1). Here and in the fol
lowing we systematically remove the total center-of-mass 
motion from the problem. 

Each distinct asymptotic channel will be labeled by a, 
and J:Y will represent the collection of all channels a. The 
symbol a denotes both a partition, A, of the N particles into 
N a clusters and the specification of the eigenfunction of each 
cluster. Set A = ! al : I = 1 ,N a ]. Here al is the set containing 
the labels of the nl particles in the I th cluster of partition A. 
The internal cluster wavefunctions are taken to be f/I~/' 
These bound state wavefunctions are normalized to unity. 
Consider cluster al. Let ho(al) denote the internal kinetic 
energy and v(a/) the total internal potential. The cluster Ha
miltonian is 

h (al) = ho(al) + v(al), 

and its eigenfunction f/I ~I satisfies 

h (al ) f/I ~I = - E~,f/I ~'l' 

(11.2) 

(11.3) 

The cluster binding energy is E~/' The total binding energy of 
all clusters in channel a is the sum 

(11.4) 

where the index at runs over aU clusters in A. 

In terms of these cluster properties let us construct the 
channel space 5Y'" and its associated channel Hamiltonian 
H". Consider each cluster to be a point particle and let Ho[A ] 
denote the relative motion kinetic energy operator for these 
No: bodies. Then H" is given by 

(II.5) 

This Hamiltonian gives the energy available to the Na clus
ters when they are mutually outside of each others force 
fields and freely moving. The space Ha acts in is denoted by 

'}Y"a = L 2(R )(N" - I). Since Ha is just the kinetic energy op
erator displaced by a fixed energy it will only have a continu
ous spectrum. The label a = 0 is reserved for the channel 
where all particles are free. Clearly, Ho = Ho and c" = O. 

The last preliminary definition needed is that of the in
jection operator Ja which maps 'W'a into JY'. Let!a be any 
function in ,}y'a' Set Fa to be 

then J a is defined as 

FC( = Ja!a' 

(11.6) 

(II. 7) 

Operator J a is called the identification operator for channel 
a. If a = 0, then Jo is the identity on JY'o. 

The basic object in multichannel scattering theory is the 
wave operator that maps :;r a into :;r by 

a ~ ±) = s-lim eiHtJa exp( - iHat). (11.8) 
t __ =F 00 

The wave operators possess four basic properties. The first of 
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these is 

(11.9) 

Property (11.8) and (II.9) are somewhat redundant, since 
(11.9) implies (11.8). The second property is channel otho
gonality for wave operators with the same boundary 
condition, 

a ( Tlt a ( + ) = D T 
(l {3 a/~o:' (11.10) 

Here la is the identity on ,W" and the dagger indicates the 
adjoint. Furthermore the range of any a ~ ± ) is orthogonal to 
all bounds state eigenfunctions of H. Energy conservation 
becomes the intertwining relation 

Ha(·!.) =a(t)jj 
(t (l 0' (11.11 ) 

The last wave operator property is completeness. This 
statement has two possible forms. First, define R :,± ) 
= a ~ .L ) a ~ 1 )t. Property (11.10) implies R ~ ± ) is a projec

tion operator onto the range of a~,± ). It also teUs us that for 
different a and /3, then R ~:r ) and R ~:l: ) are orthogonal. 
Weak asymptotic completeness is the statement that 

(11.12) 
a 

This feature clearly is an underlying reflection of time rever
sal invariance. Now let B denote the projection operator 
onto the subspace of bound state eigenfunctions of H. Then 
strong asymptotic completeness states that 

(II. 13) 

where 1 is the identity on .r. Clearly (11.13) implies (11.12). 

The form oftwo-Hilbert space theory outlined here has 
gradually been developed from the time-dependent multi
channel scattering theory set up by Jauch. s The existence 
and channel orthogonality properties have been proven by 
Hack' and Hunziker lo for short-range potentials V,)' that are 
multiplication operators in coordinate space by L 2 func
tions.12 The intertwining property is an immediate conse
quence ofEq. (11.8). The difficult statements to prove are the 
completeness properties (11.12) and (11.13). For N = 3, Fad
deev ll has proved strong completeness. Recently, several 
new proofs were found for the three-body case. 14 For N> 4 
completeness has not yet been proven. Note however, the 
different status of (11.12) and (11.13). The weak complete
ness seems to be required by any physically reasonable the
ory-or time reversal invariance will be violated. The strong 
completeness is far more difficult to establish since it implies 
that H has no essentially singular spectrum. In the deriva
tion of our time-delay results in Secs. III and IV, we require 
only the weak completeness. For the duration of the paper 
we take it as an hypothesis that (II. 9)-(11.12) are valid for all 
N. We shall also assume that the total number of channels in 
sf is finite. Even though we have no long-range Coulomb 
interaction it is possible to have an infinite number of chan
nels. One mechanism that can generate an infinite number of 
independent bound states for a cluster is the Efimov effect. II 
If we have a pair potential Vij with a zero energy bound state 
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in the two-body system, then the Efimov result predicts that 
there must be an infinite number of three-body bound states, 
and thus an infinite number of channels. 

We conclude this section by a few comments on the 
many-body S matrix. Channel components of the s matrix 
are operators from 7t" (3 to 7t" a defined by 

Sa(3=n~-)tn1+). (11.14) 

From Eq. (11.14) and the intertwining property (11.11) one 
finds 

(11.15) 

This means S a(3 conserves energy. U nitarity of the S matrix is 

(11.16) 
y y 

It is not difficult to show that this is valid if and only if weak 
asymptotic completeness holds. II 

III. THE S MATRIX TRANSFORMATION 

The purpose of this section is to give a universally valid 
definition of N-body time delay for an arbitrary two-cluster 
incident channel. This definition is then transformed so that 
the problem may be stated exclusively in terms of asymptotic 
wavefunctions. 

Let/aE7t"a be the wavepacket specifying the incoming 
wave in channel a. The time evolution of this asymptotic 
state is 

(/J a(t) = Jae - lii"Ja' (111.1 ) 

The corresponding exact tJI(t), satisfying 

i atJI (t) = HtJI (t ), 
at 

(111.2) 

that converges to (/J aCt ) as t----. - 00 is 

tJI (t ) = f} ~ + )e - lii"Ja' (111.3) 

In this notation the wave-operator property (11.9) reads 

[00 dt /ltJI(t) - (/Ja(t)/I < 00. (111.4) 

The state tJI (t ) may be equally well characterized by the 
outgoing waves (/J b(t) that approximate tJI (t) for large posi
tive times. These outgoing waves are given by 

(/J b(t) = J pe - liiliJb, (111.5) 

where 

(111.6) 

The convergence criteria for (/J p(t) may be conveniently 
stated as 

L" dt IIR 1- ltJI (t) - (/J p(t)11 < 00. 

This is equivalent to Eq. (11.9) because 

/lR ~ -)tJI (t) - (/J b(t)/I 

(111.7) 

= /Ie - iHtf) 1-)n 1- )tn ~ + '>fa - Jpe - iiiplS(3u/a/l 

= II(n1-)-eiHtJpe-iiipl)/p/l. (111.8) 

1123 J. Math. Phys., Vol. 20, No.6, June 1979 

One constructs the definition of time delay in terms of 
tJI (t) and the asymptotic waves (/J a(t) and (/J b(t). First we 
denote by P (r) a projection operator in 7t" onto functions 
with support inside a 3(N - 1 )-dimensional sphere of radius 
r. Represent by m,and r, the mass and position ofparticleiin 
the center-of-mass frame. The radius r is defined by 

N 
..2 M-' '" -2 r= £,.mir i , (111.9) 

whereM is the total mass ofallN particles. The effect of per) 
on a function/in ,:i¥' is multiplication by one if the vector 
argument of/is inside the sphere and zero otherwise. 

The scattering processes of greatest interest in particle 
and nuclear physics are those initiated by the collision oftwo 
fragments. We will restrict our definition and analysis to 
these channels. One possible definition of time delay for a 
two-fragment channel a is 

T~(ja;r) = J~ 00 dt [/lP(r)tJI(t)W -IIP(r)(/Ja(t)II']· 

(111.10) 

Clearly for finite r the integrals have the interpretation of the 
total sojourn time tJI (t ) is inside the sphere P (r) minus the 
time the asymptotic wave (/J a(t ) is in the sphere. 

We note that the time integrals in (111.10) will exist, 
since for all ttheintegrand is bounded by 21Vall' and for large 
t the wavepackets disperse out of the finite volume of the 
sphere P (r). For example, let f3 be any channel with n + 1 
free clusters and asymptotic Hamiltonian Ho[A ]. Take the 
Jacobian coordinate variables describing the relative cluster 
positions to be x = (X I,X2,. .. ,xn J. The Hamiltonian is Ho[A ] 
= - fz2"J.,i2J-ljt'v], where J-lj are reduced masses. Thus the 

coordinate space representation of this free time evolution 
operator is '6 

exp( - iHo[A ]t)f(x) 

( 
m )3n12 f n 

= ~ dx i II exp[iJ-lixj - xj)'/2t ]f(x'). 
2mt j=1 

(111.11) 

Here m(3 is a function of J-l/ Let A(r) be the volume of the 
sphere in 3(N - 1) dimensions. Then Eq. (III. I I) implies 

_ I m 1

3n 

IIP(r)J(3exp( - iHpt)f(3I1'< ~ A (r)IV(3I1~· 
21'Tt 

(III. 12) 

Here /I /(3/1i denotes the L I norm ofj(3(x(3)' When estimate 
(111.12) is combined with the appropriate form of bound 
(11.9), it is easy to see that the integral (111.10) is convergent 
for finite r. 

However the exact wave tJI(t) is as closely associated 
with the outgoing wave (/J b (t) as it is with the incoming 
waves (/J a(t). Thus an equally reasonable definition of time 
delay is 

T~UVa;r) 

= J~ 00 dt [/lp(r)tJI(t)1I' - t /lP(r)(/J p(t)II'). 

(III. 13) 
The time delay we shall study in detail is one that is fully 
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symmetric with respect to the asymptotic states that con
verge to IJI (t ) for t---.. ± 00. This symmetric definition is 

Ta(fa;r) = HT~'(fa;r) + T~UVa;r)]. (III. 14) 

The sensitive issue concerning these three definitions of 
time delay is whether or not the r---..oo limit exists and is 
finite. Our analysis shows that only Ta(fa;r) does have a fin
ite limit. We note that in the two-body scattering case, where 
there are several rigorous treatments3

-
5 of time delay, all 

these definitions have limits when r_ 00 and are equivalent. 
We discuss this point in greater detail in Sec. V. 

From here on we assume that the incoming wavepacket 
fa belong to the space Y that is defined as the set of all 
functions in momentum space with compact support and 
with continuous derivatives of all orders. Of course, Y is a 
subset of the asymptotic space JY'a(Qa)' Furthermore, as we 
will discuss later on in detail, we assume that the S matrix 
preserves the space Y. 

The first simplication is to find an equivalent form for 
Ta(fa;r) in which the exact waves IJI (t) are systematically 
replaced by the asymptotic waves 4> a(t ) and 4> ;'(t). The 
identities given in the following lemma allow this 
simplication. 

Lemma 1: For any faEY let lJI(t), 4> a(t), and 4> ;'(t) be 
defined as above. Assume that IJI~/ and IJI~/ are bounded 
almost everywhere in momentum space. Set.j ± (fa;r) to be 

.j Va;r) = 1" dt [IIP(r)1JI (t )112 - t liP (r)4> ;,(t)W], 

(111.15) 

.j -(fa;r) = [00 dt [IIP(r)lJI(t)112 -IIP(r)4>a(t)W], 

(111.16) 

then 

lim .j ± (fa;r) = O. (III. 17) 
r--+ co 

Proof Consider.j +(fa;r) first. Ifwe note that IJI (t) only 
has values in the !.rfi ~ - ) subspace of JY', we can split up the 
integrand of Eq. (111.15) in a sum of direct terms and cross 
terms, viz., 

[t IIP(r)R~-)IJI(t)112 - t IIP(r)4>;'(t)112] 

+ (L R ~ - )1JI(t ),P(r) L R ~- )1JI(t »). 
. f3 #f3 

(111.18) 

Because the sum over /3 is finite it suffices to consider only 
one term in the integrand of (111.15). For each /3 we have the 
following bound for the direct term 

I liP (r)R ~ -)IJI (t)W - liP (r)4> ;'(t )11 21 

..;; [IIR ~- )1JI(t)11 + 114> ;'(t)ll] [IIR ~ - )1JI(t) - 4> ;'(t)ll] 
";;2llfallllR ~ -)IJI (t) - 4> ;'(t )11. (111.19) 

The first inequality follows from adding and subtracting 
(R ~ - ) IJI (t ),P (r)4> ;'(t» to the difference on the left-hand 
side. The second inequality is implied by the isometric prop
erty of the wave operators. Inequalities (111.19) and (III. 7) 
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give an r independent absolutely integrable bound for the 
direct terms of.j +(fa,r). 

Next, we have to show that also the cross term 
(R ~ -)IJI (t ),P (r)R ~ -)IJI (t» has an r independent absolute
ly integrable bound. Again by adding and subtracting 
(R ~ _. )IJI (t ),P (r)4> ~(t» and using inequality (11.9), we see 
that it is sufficient to show that (4) ;'(t ),P(r)4> ~(t» is L '(t) 
uniformly in r. Since our proof of this statement depends on 
the properties of the projection operator P (r), we postpone it 
till the Appendix. There we show that if the asymptotic wa
vepackets belong to.7 and if the internal cluster wavefunc
tions are bounded almost everywhere in momentum space, 
then the cross term (4) ;'(t ),P (r)4> ~(t »EL ' (t;;;. 1) uniformly 
in r (Lemma AI). The restriction t;;;. 1 is not essential for our 
argument since the norms appearing in Eq. (111.15) have 
values between 0 and 1. 

So the Lebesgue dominated convergence theorem 17 al
lows us to interchange the r limit and the t integration. How
ever the integrand is now zero since 

(111.20) 

The last equality in (111.20) is a consequence of the unitarity 
property (11.16) of the S matrix and the orthogonality of the 
Rf3' Thus (111.17) is established for.j Va;r). A similar but 
simpler argument applies to .j -(fa,r). In this case the cross 
terms are absent and one does not need the unitarity of Sf3a' 

The eliminatation of IJI (t ) from the problem is accom
plished by employing Lemma 1. First define T .t (fa;r) by 

T+(fa;r) = ~ f" dt [ ~ liP (r)4> ;'(t )112 - liP (r)4> a(t )11 2
], 

(111.21 ) 

T-(fa;r) = ~ [ x dt [liP (r)4> a(t)W - ~ liP (r)4> ;,(t)W], 

(111.22) 

Then the symmetric definition of time delay Eq. (111.14) can 
be written 

Ta(fa;r) = r(fa;r) + T-(fa;r) +.j +(fa;r) + .j -(fa;r). 
(I1I.23) 

In this form T ± (fa;r) contain only the asymptotic channel 
operators Jf3, ilf3' and Sf3a' The exact waves are restricted to 
the terms L1 ± (fa;r) which vanish in the r-oo limit. 

Finally, let us display explicitly the S matrix form of 
T ± (fa;r). Define the channel "projection" operator 

Pf3(r) = JjJ1(r)Jf3. (111.24) 
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This operator Pp(r) converges strongly to Ip as r_oo, but is 
not technically a projection since it is not idempotent. In 
terms of Pp(r) we can write 

L liP (r)<P p(t)UZ 
p 

- t -L ifa,exp(iHat)S p~p(r)Spa exp( - iHat }fa)' 
p 

(111.25) 

In Eq. (111.25) we used Eq. (11.15) to intertwine the order of 
the operators. The second term in the integrand of T ± (fa;r) 
may be expressed in a form similar to Eq. (111.25), 

liP (r)<Pa(t)112 = (fa' exp(iHat )Pa(r) exp( - iHat }fa>. 

(111.26) 

Combining Eqs. (111.21), (111.22), (111.25), and (III.26) gives 
the final result. Let 

(111.27) 

then, 

T+(t;,;r) 

= ! Lx) dt ifa,exp(iHat )Ka(r) exp( - iHat }fa)' 

(111.28) 

TVa;r) 

= -! [~ dt ifa,exp(iHat )Ka(r) exp( - iHat }fa>. 

(111.29) 

It will be the task of the next section to obtain explicit values 
for the integrals (111.28) and (111.29). 

IV. THE TIME DELAY RELATION 

In this section we complete the proof of the connection 
between time delay and the on-shell S matrix and its energy 
derivatives by calculating the limit r-oo of Ta(fa;r). 

First, let us briefly describe the coordinate systems we 
employ. The initial channel is restricted to the collision of 
two fragments. The relative momentum of these two clusters 
is described by the three-dimensional vector Qa . The kinetic 
energy associated with this motion is Q~ = Q ~/2ma where 
ma is a reduced mass that can be written down as a function 
of the particle masses mi' The outgoing channel is character
ized by the 3(N p - 1) = n-dimensional vector Qp describing 
the relative motion of the Np clusters; Np = 2,3, ... ,N. Again, 
the kinetic energy associated with this motion is 
Q p2 = Q 'i I2mp with mp the appropriate reduced mass. Ob
serve that the Np = 2 channel is the elastic (f3 = a) or rear
rangement (f3=1=a) channel; the Np = N channel represents 
total breakup. 

Secondly, we state the conditions on the S matrices nec
essary for our derivation. We know from Eq. (11.15) that the 
S matrix conserves energy. We explicitly want to take out 
that energy conserving l) function by defining reduced S ma
trices in the following way 
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(QpISpaIQa) 
"" "" = 8(Ep - Ea)(mpQ P - 2maQat'l2 (Qpl spa(Ea) 1 Qa)' 

(IV. I) 

w!tere Ea = ~ - ex and Ep = Q~ -I". The kernel 
(Q/31 s/3a(Ea 1 Qa) represents an operator that will map "" 
square il}.!egrable fun9"tions with respect to the measure dQa' 
i.e., L 2(Qa) into L 2(Q/3)' The energy dependence indicated 
on the right of Eq. (IV. 1 ) means that for such S/3a operator 
we have a one-parameter family of operators s/3a(Ea). The 
momentum and reduced mass factors are chosen such that 
the operator relations S obeys (unitarity, time-reversal in
variance,.··) are also valid for s(E) on the reduced angular 
space. We furthermore assume that the S matrices preserve 
the space Y. Specifically, we suppose that any incoming 
wavepacketfa in Y will be mapped by S/3a into an infinitely 
differentiable function of compact support/po We also re
strict/a to have no support in the intermediate neighborhood 
of the thresholds for thef;l channel. To get an idea how phys
ical this condition is, we will work out a typical realization, 
in terms of the reduced s-matrices, that will be useful in the 
course of the derivation. We know that if/aE.Y, then/aEL '. 
Employing Eq. (III. 6) and Holder's inequality, it is straight
forward to verify that/PEL' if 

IIT/3a(E)II~s = f d n - 1 QpdQa 1 <Q/31 T/3a(E) 1 Q,) 12 < C < 00, 

(IV.2) 

for all E, in any finite interval of energy. Here T /3a(E) is the 
reduced t operator defined by the following matrix elements 

/'.. A. /".. A. A. "'" 

(Q/31 T/3a(E) 1 Qcr) = (Q/3l s/3a(E) 1 Qa) - 8/3a8(Q/3 - Qa)' 
(IV.3) 

Except for simple kinematical factors, liT /3a(E )11 ~s is propor
tional to the cross section for scattering from channel a to f;l. 
So restriction (IV.2) is nothing more than the requirement 
that the physical cross sections be finite. At this point, it is 
worthwhile to note that, since the incoming channel a is 
restricted to be a two-cluster channel, the scattering pro
cesses we consider are free of disconnected channels (e.g., 
the three-to-three scattering channel in the three-body prob
lem). A third condition we then impose on the reduced s 
matrices is that they are once differentiable with respect to 
Ea for fixed angles. 

We now have all the necessary information to carry out 
the first step in our derivation of the time delay relation, 
namely the introduction of the Abel limit to do the t
integration. 

Lemma 2: Let/aEY. Assume that the reduced s matri
ces satisfy condition (IV.2), then 

Ta(fa;r) 

=ifdlQ'A1Q '*(Q') <Q~IKa(r)IQa) '(Q) 
au aI a a Q ~2 _ Q; J a a 

(IV.4) 

where the integral is defined as a principal-value integral. 
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Proof Consider TVa;r) given by Eq. (III.28) or equiv
alently by Eq. (III.21). Using the estimate (111.12) for the a
and ,B-channel term, and the additional fact that the total 
integran<!Js bounded by 21lfJ2 for all t, we have that 
(fa,exp(iHat )Ka(r) exp( - iHat )f)EL I(t). the dominated 
convergence theorem then allows us to intorduce the Abel 
limit form of T+(fa;r), viz., 

TVa;r) 

= ! lim (00 dt e -- EI (fa,exp(iiiat )Ka(r) exp( - iiiat )fa). 
E "-0 + )0 

(IV.5) 

We next want to prove that the momentum space integrals 
on the right side ofEq. (IV.5) exists absolutely. To do this we 
write out the scalar product in momentum space and consid
er the first term, viz., 

lim (00 dt If d nQp l/p*(Qp) 
E-+O + )0 f3 

Xexp[i(Qi - Q1)t - Et 1 (Qp I Pf3(r) I Qf3)/p(Qf3) I . 
(IV.6) 

Since (Qp I P {3 (r) I Q{3) is uniformly bounded, as shown in 
Lemma A2 in the Appendix, and since/pEL I(Qp) by condi
tion (IV.2) we immediately have that the first term is L I. A 
parallel argument gives us that the second term in Eq. (IV.5) 
is L I. Since also the t-integration exists absolutely, we can 
change the order of integration by Fubini's theorem l7 and do 
the integral over t first. A completely analogous argument 
can be built up for T-(fa;r). Thus 

T ± (fa;r) 

= ~fd3Q' d 3Qaf*(Q') (Q~IKa(r)IQa) J,(Q). 
2 a a a Q'2_Q2+iO a a 

a a-

(lV.7) 

Taking the symmetric combination of T+ and T- completes 
the proof of the lemma. 

The second step in our proof of the time delay relation is 
to calculate the principal-value integral appearing in Eq. 

(IV.4) in the limit r-+oo, using Fourier transform properties 
of the sphere. 

A. Lemma ~ Let/a(Qa)EY. Assume furthermore that 
(Q{3 I s{3a(E) I Qa) satisfies the three conditions stated in Eqs. 
(lV.I)-(lV.3). Then 

(IV.8) 

Proof Consider Eq. (IV.4) and write out the kernel 
(Q~ I Ka(r) I Qa) using Eq. (111.27). This gives 

Ta(fa; (0) 

= lim i d 3Q' d3Q /*(Q') a f 2m 
r-+oo a a a a Q~2_Q; 

x (Qp I P{3(r) I Q{3) (Qa I S{3a I Qa) 

- (Q~ iP a(r) I Qa) Ya(Qa). (lV.9) 

We now want to apply the properties of the projection opera
tors P (r). Lemma A4, proved in the Appendix, can immedi
ately be used to calculate the limit r-+oo of the second term 
in Eq. (lV.9). The result is 

2mai f d 3Q:J:(Q~) d d (Q~ /a(QaQ ~: ) .' (IV. 10) 
Qa Q a Qa + Q a Q" = Q" 

In the first term ofEq. (IV.9) we first have to remove the energy conserving 8 functions appearing in thes matrices. We realize 
this by introducing the reduced s matrices defined in Eq. (IV. I) and integrating over Qa and Q~. We get then 

Next, we use Lemma A4 to calculate this limit (IV. I I). We split up the result in two parts. The first part, containing the 
derivative of the wavepacket and the kinematical factors, will be shown to cancel the contribution (IV. 10). This is exactly what 
we expect physically, since otherwise time delay would depend on the shape of the incoming wavepacket. The second part, 
containing the derivative of the s matrix only, will give us the final answer Eq. (IV.8). 

Let us consider the first part of the limit (IV. 11 ) which, after some algebra, can be written as 
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(IV.l2) 

- 2mai t f d3Q~dQadn - IQpf:(Q~)<Qp ISPa(E ~)IQ~)* 

A. A. (1 A. 1 d "'- ) 
x (Q p ISpa(E~) 1 Qa) 4Q ~2 fa(Q ~Qa) + 2Q ~ dQ fa(Q ~Qa) . (IV. 13) 

Using unitarity for the reduced S matrices, we see that this contribution (IV. B) cancels expression (IV. 10). 

Let us finally consider the second part of the limit (IV .11), viz., 

f
A. A. m [2m (Q-,2 - ~ + C')]112 "'--it dQ~dQadnQp a a ;;;_1 f:([2ma(Q;l-~+C')]1I2Q~) 

X(Qplspa(Ep)IQ~>* Qp d~ (QpISpa(Ep)IQa>i 
mp p E/,=E;, 

Xfa( [2ma(Q i - ~ + C» ] 1I2Qa). (IV. 14) 

Making again the change of variables Q p ---+ [2ma(Q p2 - ~ + E")] 1I2=Q ~, we easily see, after some algebra, that (IV. 14) 
becomes equal to the right-hand side of Eq. (IV. B). This completes the proof of Lemma 3. 

To conclude, we want to discuss the results of Lemma 3 
in more detail. From formula (IV. B), we know that Tifa; 00) 
contains an energy conserving () function. Furthermore, if 
we go back to the definition of Talfa;r) for finite r, given by 
Eqs. (111.12), (111.13), and (111.14), and write out both terms 
in the t-integrand, it is straightforward to show that the fac
tor exp[i(Q;; - Q~t ] also leads to this energy conserving 8 
function. Therefore, we are justified in defining a reduced 
time delay qa(Ea;r) by the following formula 

Talfa;r) 

f 8(E E') 
= d 3Q~d 3Qa a Q a f:(Q~) 

ma a 

(IV. 15) 

The results of Lemma 3 can then be written as 

qa(E)= w-lim qa(E;r) = - i Ls1a(E) ~spa(E), 
r-oo p dE 

(IV. 16) 

whe~ qa(E) is an operator acting on the reduced space 
L 2(Qa). 

V. CONCLUSIONS 

The analysis given in Sec. IV extends the theory of time 
delay to the N-body collision problem. Furthermore, the 
method of proof is substantially simpler than the approach 
we employed earlier in the three-body prob1em. 6 The reason 
for this rests with the fact that our first approach depended 
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I 
on evaluating matrix elements of the exact wave operator 
fl ~ ± ). The singularity structure of fl ~ ± ) is much more com
plicated then that of the S matrix. In addition the results 
found here are somewhat different than we originally antici
pated. In the two-body problem it is a simple exercise to 
show that the free reference transit time is independent of the 
choice of incoming or outgoing anymptotic channel, viz., 

f_+ooOO dt IlP(r)<Pin(t)1I2- f_+oooo 

= o (r- I
). 

dt liP (r)<P ~ut(t)W 

(V.I) 

In a general N-body scattering situation,the transit time for 
the Np freely evolving clusters is computed in lemma A5. 
Specialized to the single channel two body case, the result 
reads 

f-+ 00

00 

dt liP (r)<Pin(t)W 

= 2r f dp V-Ilhn(P) 12 + 0 (rl), (V.2) 

where Vis the radial velocity Iplml. This integral in turn 
may be written as the inner product 2rlf:n,(2mHo)-II'l:n). Let 
f~ut = Shn be the outgoing wavepacket, then intertwining 
and unitarity of the S matrix give 

lf~ut,(2mHo)-I/2f~ut) = (f;n,(2mHo)-1I'l:n)' (V.3) 

which shows the validity of the statement (V. I). In the N
body case one might think that an appropriate generaliza
tion of property (V. I ), viz., 
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f tx~ dt IIP(r)cP,,(t)II' - f'x
co 

dt t \lP(r)cP(1(t)W 

= 0 (r- I
), (V.4) 

still holds. The integral on the left is the transit time of the 
incident asymptotic wave cP a(t) through the sphere P (r). 
The integral on the right is the transit time of all the outgoing 
asymptotic states. The general formula for this difference 
(V.4) is given by the <5 function part of Eq. (IV.7). Equation 
(V.4) would obviously imply that T ± (l;x;r) and T(1(1;x;r) all 
lead to the same result in the r- 00 limit. Let us look at the 
results of Lemma AS in this case, viz., 

f \~'X dt liP (r)cP,,(t )11' 

= 2r( :,: yl2 f dQ"V(; 'If,,(Q,,W + o (rl), (V.S) 

where Va = I Q,/m" I. We remark that both formula (V.2) 
and (V.S) have an obvious classical interpretation. The tran
sit time is proportional to the diameter of the sphere divided 
by the radial velocity. Using this result (V .S) in Eq. (V.4) we 
find that the left-hand side of the latter has a term which is 
linear in r. This introduces a linear divergence as r--+ 00 in 
both T ± if,,;r). For this reason they are not acceptable defi
nitions of time delay in N-body scattering except in the limit
ed energy sector in which only elastic two-cluster scattering 
occurs (e.g., elastic collisions below the rearrangement 
threshold). Then obviously argument (V.3) applies to show 
(V.4) is valid. However, in the situation of several open chan
nels, where c"*cf1, property (VA) does not hold. This is the 
reason why the conclusions here differ from the ones made in 
our earlier three-particle work. Indeed, there we employed 
T~'(l;,;r) as definition of time delay, which gives the same 
r-. 00 limit as T (; ifa;r) because of Lemma 1. But that analy
sis also depended upon an ansatz [Eq. (A.30) of Ref. 6] that is 
equivalent to Eq. (V.4). 

The derivation given in Sees. III and IV establishes that 
T,,(f;,;r) is the meaningful definition of time delay in the 
r_ 00 limit. It is interesting to note that this definition is 
essentially the same as the definition Smith originally gave in 
the time-independent statement of the problem [Eqs. (38) 
and (39) of Smith's paper in Ref. I]. To see how this comes 
about write out the sum of the asymptotic transit times in a 
reduced operator form in analogy with Eg. (IV. IS) 

(V.6) 

If we use Eg. (V.S) to express T~,ymifa;r) in terms of the S 
matrices and take out the energy <5 functions, we are led to 
the reduced form 
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+ L s;,,(E) mJf2 S(3a(E») + 0 (~). 
(3 Q(3 r 

(V.7) 

Employing these results and the definitions (III.3), (III. 10), 
(III. 13), and (111.14), we can easily derive the following 
time-independent representation for the kernel of the time
delay operator q(l(E;r) entering Eg. (IV. is) 

(Q;,lqa(E;r) 1 Q,,) 

= 21Tm"Q" ( dXo(Xolfl<+'IQ"Q:,)* 
J1X,I. 

(V.8) 

Except for some mass factors and wavefunction normaliza
tions, Eq. (V.8) is the starting point for Smith's study of time 
delay. One cannot expect to find exactly the same mathemat
ical formulas as Smith gives in his Eg. (38) and (39) since 
they are based upon idealized and approximate forms for the 
N-body wavefunctions (Xo I fl ~ , ) 1 Q,,). 

To conclude this section, we indicate several reasons 
why the theory of time delay is of interest. It represents an 
observable that is a residual consequence of the detailed 
time-dependent dynamical evolution of the N-body scatter
ing system. For two-particle systems considered in a specific 
partial wave the time delay is proportional to the energy 
derivative of the phase shift. Thus the general theory of time 
delay provides a method of defining a universal phase shift
like functional that is a characteristic of the scattering pro
cess. So far the applications of time delay have exploited this 
analogy with the phase shift. The theory has been used to 
derive an extended Levinson's theorem" in the two-body 
problem and to study the role of the collision process in sta
tistical mechanics. 19

-
21 It has been particularly useful in the 

determination of the density expansion of the equation of 
state for a chemically reacting quantum gas." The multispe
cies virial coefficients that enter this expansion all turn out to 
be Laplace transforms in the energy variable of the trace of 
the time delay operator q,,(E). Thus the equation of state is 
sensitive only to the time delay of the collision process. 

APPENDIX 

This Appendix studies the nature of projection opera
tors on a n-dimensional space. Particularly, we investigate 
the behavior of the projection operators when acting on the 
types of generalized functions encountered in this problem. 

We assume that our operators act on the set of functions 
.'7. We are interested in the r-oo limit of the projection 
operators Prier) for all,B. For a limit of this kind we establish 
convergence of our results in the weak sense. 

Since Pfj(r) converges to the identity in the strong sense, 
we immediately have 

lim ifb ,P(3iri) = iffi ./(3)' (Ai) 
r --. 00 
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wherefb andfp are any functions in Y. We now want to 
express the left-hand side of Eq. (A. I) in momentum space. 
Therefore, we first introduce some further notation. Let the 
3(N - 1) = no dimensional vector Qo, describing the relative 
motion of N free particles, be split up into a 3(Np - 1) = n 
dimensional vector Qp describing the relative motion of Nf3 
clusters and a (no - n)-dimensional vector Qf1 representing 
the internal coordinates of the clusters. We will call the con
jugate coordinates related to these momenta, respectively 
Xo, X{3> and Yf3. Then, the left-hand side ofEq. (AI) can be 
written as 

ifb,Pf3 (r)fp) 

= f dnQbdnQf3f';(Qf3)(QbIPf3(r)IQf3)J{;(Qf3)' 

(A2) 

where according to Eqs. (11.6), (11.7), and (1II.24) 

(QbI Pf3(r)I Qf3) 

= f d",,·nQbd n,. nQf1( U 1[/~1)(Q'P)* 

and 

(A3) 

F(Qo)-Ff3{! Qf1,Qf3 j) = ( U I[/~l )(Qf1)ff3(Q~). (A4) 

The kernel for per) given in formula (A3) is 

(Q61 per) 1 Qo) 

I {d""xexp[i(Qo-Q6)'X]' (AS) 
= (217')'" J I x I 

Introducing a no-dimensional spherical coordinate system, a 
straightforward computation gives 

(Q(JIP(r)IQo) = ( r, )",I2J,,/z{rIQo-Q()I), 
217'1 Qo - Qol 

(A6) 

wher J is the Bessel function of the first kind. 

We now want to prove a series oflemma's used in Secs. 
III and IV. 

Lemma A l: Let!rJ(Qf3)E.7(QfJ) andfy(Qy)E.7(Qy)' 
Let (flbll[/~;l )(Qf1) and (flcll[/ r, )(Q)j be bounded almost ev
erywhere. Set I f3/r,t) to be 

I f3/r,t) = (<Pf3 (t),P(r)<Pr(t», fJ*y, (A7) 

then 

(A8) 

where C is a constant independent of r. 

Proof Using the expression (111.5) for the outgoing 
waves, the coordinate space representation ofthe time evolu
tion operator (111.11) and the coordinate space equivalent of 
Eq. (A3), we can write Eq. (A 7) in the following way, 
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I f3y(r,t) 

= M f dXbdYbdX~Y~X;;f;(Xb) 

X (21Tit) .,. ,,;,/2 exp [ - i(cf3 - 6)')t ] 

X exp [ - i(Xb - X;)2 I 4t ] e (r2 _ X ;;2)(21Tit ) - n /2 

x ( II 1[/ ;:,)(Y),)D(Y;: - Yy)f/X y)' 
cI 

(A9) 

where all the reduced mass factors are put into the constant 
M and where nf3 = 3(Nf3 - 1), ny = 3(Ny - 1). 

We first assume that we are in a breakup scattering situ
ation and take N)' > N f3' We then introduce the notation 

Xl' = I Xfi' Y(] " r l· Integrating out the X; part of Eq. (A9), 
using Eqs. (AS) and (A6), we get 

l(l),(r,t) 

= M, f d X;# Xfti Y f3. yd Y;;J~(Xb) 

1 , /I /2( I X/'., _R X('] I )"1'/2 Xexp[i(Xi3- X ;/)/4tjt J 

xJ" /2( ~ I XI; - Xfi I) exp [i(Y;; )' - Yfi J'/4t J ,. 2t I 

(A 10) 

where R ' = ,.' - Yi;". Next, we consider the Xl1 and Xb inte
gral part in Eq. (A 10), Introducing the variable 

z = ~ (X;; - Xli)' 
2t 

that part can be written as 

t ("11- "y)/2 f d Xf3 dz dif ;( Xf3 + 2t ; ) 

xexpi i[X~ - (XfJ + 2tziR )']/4t l 
xz"11/

2 
- IJn"I2(Z)f/[ XI" Yf3 - yD· 

(All) 

(AI2) 

Sinceff3 is infinitely differentiable we may integrate (AI2) m 
times by parts employing the identity 
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~~[Z-II/2+1J (z)] = -Z-II12J (Z) (A 13) 
Z dz 1112 - 1 1112 • 

It is a straightforward exercise to show that all the surface 
terms vanish due to our conditions on thef's. The result 
reads then 

m d
l 

[( z ) X I a/-
l 
f; X/3+ 2t-

I=() dz R 

X exp[ i[X~ - (Xy + 2tziR )2]/4t l Jry([ X/3'Y /3 - yl), 
(A14) 

w here the a I are constants obtained from sequence of partial 
integrations. Since it is not necessary to know what they are 
we do not bother to write them out. 

We then have to consider the cases of n/3 even and n/3 
odd separately. Start with n/3 odd. Here take m = n/3/2 - !. 
Then if we set u = 2tzl R and if we work out the I th deriva
tive in Eq. (A14), we arrive at 

II/3/r,t) I 

<M21 t I (II" - lIy)12 f d X/3 d Y /3 _ y du d V;; 

X lIolI1I2 ± [Ill ul- 110 d 1- "'f~~~ + u) 

1=0 m = 0 r = 0 du 

( 
i )m - rl X - t [(X/3+u).u]m-2r 

(AlS) 

The condition on the internal cluster wavefunction 1JI~1 and 
1JI;:lensures that the V;; integral in Eq. (AlS) exists. Ifwe 
furthermore restrict t;;, 1 and introduce again Xb = u + X/3' 
we get 

I I/~r<r,t) I 

<M,t (II" - lIy)!2 f dXb d X/3d Y(l- y I 
l,m,r 

(A16) 

Splitting up this integral in a I Xb - X(l I ;;, I part and a 
I Xb - X(l I < 1 part and using the condition on thef's, we 
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can finally show that 

I I (r t ) I <:.M t (II" - 11)12 
(ly' '" • , (AI7) 

where M. is finite and independent of r. A parallel argument 
works for n/3 even. 

In the beginning of the proof we have assumed that 
Ny> N/3' It is clear that the case Ny < N/3 can be discussed in 
exactly the same way if we interchange the role of the r andp 
indices. Only when Ny = N/3' which describes rearrangement 
scattering, the analysis seems to break down. In this case, we 
still have to consider two different situations. First, if we 
have total rearrangement such that all of the initial internal 
particle coordinates are a complete set, then there are no 
intermediate integrations over Xf{ in Eq. (A9) because of the 
8 functions. In that case we can derive directly from this 
expression (A9) that 

I I(l/r,t ) I 

<Milt I- (11,,+11,.)/2 f dXbdYbdXydYylf/3(Xb)1 

which immediately leads to 

II (l/r,t ) I <M21 t I - (11,1 + 11,)/2. (AI9) 

Secondly, if we are in a partial rearrangement situation, we 
still have to do the intermediate integrations over some of the 
xg coordinates, say X;;y> in Eq. (A9). We can then repeat the 
breakup discussion, where n/3 is now replaced by the dimen
sion of X;;y' 

So we have proved in general that 

(A20) 

where M' is a finite constant independent of r and where 

Ip I ;;,~. Integration over t of this result completes the proof 
2 

of the lemma. 

Lemma A 2: For nbllJl~t=L 2(R II" -- II) we have that 

where 

C(r) = rll( mm/3o )1112 ______ _ 

211 - 11T"/2 r(n/2) 

(A21) 

(A22) 

Proof it is convenient to carry out the proof in coordi
nate space. So we write 

(Qb I P/3(r) I Q/3) 

= -l-fdIlX' d"X 
(21T)" /3 /3 

X exp[i(Q(l' X/3 - Qb' Xb)] (Xb I P/3(r) I X/3)' 

(A23) 
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Using the coordinate space equivalent of Eq. (A3), we can write formula (A23) as 

(Qb I Pf3 (r) I Qf3) 

= _1_ f d nXrfi (2m or - X~) exp[i(Qf3 - Qp),Xf3] f d no - nYrfi (2m or - x~ - y~) 1 (IT 1f/~/)(Yf3») 12
, (A24) 

(217)" bl 

whereX~ = 2mr7~and y~ = 2J.lf3Y~' The second integral on the right is bounded by IIrrbllf/~/1I2. So, taking the absolute value 
of Eq. (A24) completes the proof of the lemma. 

Lemma A 3: For F' and FEY(Qo), the following property holds 

lim fdnoQfIl"oQoP'*(Qb) (Qb~~(r)I~o) F(Qo) 
r~oo Qf3 - Qf3 

= - f d"oQlf'*(Qb) dd [( Q~ r-I)/2FOQ'f3,Q~pj)] : 
Qf3 Q f3 Qf3 + Q f3 QfJ = Q (J 

where the integral on the left is defined as a principal-value integral. 

Proof Introducing the variables 

z = r(Qo - Qb), x = r(Qf3 - Qb), y = r(~ - Q,f3), 

where x and yare respectively n- and (no - n)-dimensional vectors, one has 

z = (X2 + yl)'I2, Qi - Q~ = - : ( : + 2Qpcose,). 

where e, is the angle between Qfi and x. So we have, using Eq. (A6), 

f 
d nOQfIl lIoQoF'*(Q') (QbIP(r) I Qo} F(Qo) 

o Q,2 Q2 f3 - f3 

= _ fdn"QbdnozF'*(Qo) 'nonCz) F({Qfi+ x/ r,Q'f3+ y/ r j). 
(21Tzyo/2 x/r(x/r + 2Q p cose,) 

(A2S) 

(A26) 

To evaluate the right-hand side ofEq. (A26) we introduce a n-dimensional spherical coordinate system [xlr,e"e2, ••• ,e 11- 1 J 
to describe the vector xl r. We note that if we perform the integration over dx first the denominator vanishes only when the e, 
integration is carried out. The integration over y causes no special problems. If we furthermore note that zlr--O if and only if 
x/r-D andy/r-+O, then we are motivated to write the right-hand side ofEq. (A26) as 

- fd ""Q' d "x d II" - " yF'*(Q') 'n"li
z
) G r(Q' ,Q,f3 + y/r), (A27) 

o 0 (21TZro/2 xl f3 

where 

(A28) 

(A29) 

and 

x _ ( Z2 y2 )1/2 
-- - - - . 
r r r2 

Examination of these formulas indicate that Gxlr is the average value of the function 

F({Qp + : ,Q,/3 + ~ })<Q p _ Q p2)-, 

summed over the surface of a sphere centered at Qp with radius 

(~ _ ~ y12. 
The function Fxlr(Qp,cose"Q'f3 + y I r) is the nonsingular part of the average and integral (A2S) is the integral over the singular 
part. 
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The next step in our proof is to show that Gxlr(Qp,Q,{3 + ylr) is continuous inzlr. Since we know that Gxlr is integrable 
with respect to d nz because ofEq. (A29) and the fact that F(! Qp + xlr,Q,{3 + y/rJ) is integrable, we shall then be justified in 
using the weak convergence of P (r) to conclude that 

_ I d noQ' d nx d no - nyF'*(Q') Jno12(Z) G (Q' ,Q,{3 + y/r) 
o 0 (21Tztol2 xlr (3 lim 

r--oo 

= - I d noQlf'*(Qb)Go(Qp,Q'{3 + 0). (A30) 

So, let us investigate the behavior of 

( 
Y 

) 
Z (x2 + y2)lI2 

Gxlr Qp,Q,{3 + -; as; = r -0. 

Ifwe define 

X x 2 

W= -cose l +-- (A31) 
r 2Qpr 

then Eq. (A28) becomes 

Gxlr( Qp,Q,{3 + ~) 

= -- dw 1 - -- - -- + - F Q{3>w,Q + - -. r IXlr + x'I2Q;1"' ( x 2 rw2 w )(n - 3)12_(, ,(3 Y) 1 
4Q,ax- xlr+ x'/2Q;,r' 4Q pr x 2 Q p r w 

(A32) 

This is a principal-value integral of the form 

_l_fb dw h(w)= _l_fb dwh(w)-h(O) + h(O) fb dw 
b 

' a>O, b>O, 
+a --aW b+a -a W b+a -aW 

(A33) 

where h is a differentiable function. We need to find the value ofEq. (A33) when a~O and b~O. Since the integrand of the first 
integral on the left ofEq. (A33) is continuous, we may use the mean value theorem to write 

_l_fb dw h (w) = [ h (WI) - h (0) ] + h (0) In!!..-, (A34) 
b + a - a W WI b + a a 

where WI is some point in the interval (b, - a). As the interval size goes to zerO the factor in the square brackets becomes the 
derivative of hat w = O. The second factor is just a constant times h (0). Ifwe apply formula (A34)to Eq. (A32), we obtain in the 
limit zlr~O. 

Substituting this result into Eq. (A30) completes the proof of Lemma A3. 

Lemma A 4: For/pand/rfo.7(Q{3) we have 

!~ I d nQp* d nQr/p*(Qp) 

X (Qp I Pf3(r) I Q(3) J; (Q ) = _ J d nQ,p*(Q') ~ [( Q{3 )(n - 1)/2 f(3(Q,Q p) ] . 

Q ,2 Q2 (3 {3 fJlf3 {3 dQ Q' Q +Q' 
(3 - (3 f3 (3 (3 f3 Q/I= Q;, 

Proof This result follows immediately from Lemma A3 and the Eqs. (A3) and (A4). 

Lemma A 5: For/bJrfo.'T(Q(3) we have 

for all p. 
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Proof The left-hand side ofEq. (A37) can be written as 

J d nQp d nQp d n, - nyp d n, - nYpl';(Qp)D(Q~ - Q i) ( ij I[I~J )(Yp)*(Qp Yp IP(r) I Qp Yp >( ij I[I~J )(Yp}fp(Qp). 

(A38) 

The mixed matrix element of P (r) can be calculated in a straightforward way so that we get for the expression (A38) 

(A39) 

where 

_ ( mo )1/2 ( f-Lp Y~ )112 R-- rl--- . 
mp mo r 

(A40) 

Introducing the variable 

z = R / Qrdp - Qp/ = Y2QpR (1- COS()II2, (A41) 
A A 

where () is the angle between Qp and Q P' and introducing a n-dimensional spherical coordinate system 

{Qp,arccos(1 _ Z2 ),() ;, ••• ,() ~ _ I} 
2Q1R 2 

to describe the vector Qp, we obtain for the momentum integrals in Eg. (A40) 

(A42) 

In this expression 1'; is the average of 1'; over the angles ();""'()~ _ l' and en is a coefficient depending on the dimension. In the 
following we will take n odd, then en = (n - 2)1l[2nI2r(nI2)(n - 3)!!]-1. 

Next, we use the method of Lemma A 1 and do a number of partial integrations m, employing the identity (A 13), in order to 
lower the index of the Bessel function in Eq. (A42). It is straightforward to see that the surface terms do not contribute due to 
the vanishing of the factor 1 - (1 - z2/2Q ifi. ')2 at the endpoints. We then arrive at the following expression 

d {[ ( Z2 )2](n -3)/2_( ( 
X dz 1 - 1 - 2Q 1R 2 1'; Q{3>arccos 1-

(A43) 

Taking m = (n - 3)/2, we get after some algebra 

where we have not explicitly written out the following terms because they still contain the factor 1 - (1 - z'I2Q 1R ')' to a 
certain power different from zero, such that they will not contribute to the final result, as we will see immediately. 

Indeed, to obtain Eq. (A37) we have to do one more partial integration. Ifwe then takez = Rx, it is easy to check that all 
the integral terms disappear in the limit r_ 00 because of the Riemann-Lebesgue lemma. Also the upper limits x = 2Qp of all 
surface terms vanish for the same reason. The lower limits x = 0 of the surface terms disappear if they contain the factor 
1 - (1 - x 2/2Q ~)2 = O. So, only the lower limit of the surface terms derived from the first term in Eq. (A44) gives a contribu-
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(A45) 

Looking back at Eq. (A40) for R and expanding the square root in powers of 1/r, it is clear that only the first term (molm{3)1I2r 
survives in the limit r-+ 00 • In that limit, we can finally use orthonormality of the internal cluster wavefunctions to complete the 
proof of the lemma. 
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Constructive methods based on analytic characterizations 
and their application to nonlinear elliptic and parabolic 
differential equations 
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We consider functional equations F(</>.y) = O. in general nonlinear. whose physically meaningful solution 
</>[y] depends on a real or complex parameter y. We suppose that positivity plays an important role in the 
equation: for example. the physical solution </>[y] may be forcedly positive for all y in some range because 
it describes a density or a temperature. Furthermore. F may involve operators which themselves possess 
positivity properties: in particular we think of energy and diffusion operators of the Laplace type. This 
paper describes and illustrates how such positivity properties can lead one to discover the analytic nature 
of </>[y]. and shows how in many cases knowledge of this analytic characterization provides a method for 
reconstructing </>[y] starting from the functional equation itself. First. it is shown how positivity can 
generate analytic characterizations with the aid of Bernsteins' theorems. Equipped with this knowledge. 
we describe methods for :lltacking the formal perturbation series associated with F(</>.y) = 0 to yield 
monotone. convergent sequences of bounds on </>[y]. Finally two classes of nonlinear problems are 
considered: one involves a general uniform elliptic operator while the other involves a parabolic operator; 
both involve a quadratic nonlinearity. In each case the key positivity properties of the operators involved 
are provided. and it is shown how the analyticity "character analysis" of the physically relevant solution 

</>[y] is effected. In the case of the quadratically nonlinear elliptic problem a bifurcation phenomenon is 
associated with the solution: Here the positivity analysis enables us to describe completely the behavior of 
the solution when the bifurcation parameter passes through its critical value. 

1. INTRODUCTION 

Since the review l by Baker in 1965 of the theory ofPade 
approximants, in which it was shown how the classical theo
rems supply a key approach to the approximation of certain 
wide classes offunctions occurring in mathematical physics, 
a variety of interesting developments have been made. 2 In 
particular we note that the Pade approximant method has 
led to good numerical results and a helpful point of view in 
the case of functions which can be represented by a series of 
Stieltjes, and that the recognition of new applications has 
been based to some extent on the following observation. A 
function which is representable by a series of Stieltjes can 
always be characterized in the form) 

F(z) = (h,¢/z), ZEC, (1.1 ) 

where (-.. ) denotes the inner product in a Hilbert space JY, 
hEdY is given, and ¢/ is the solution of an equation of the form 

(1.2) 

where Hand Vare, for example, positive self-adjoint linear 
mappings from ,)7" into itself. The point is that problems 
with the underlying structure (1.2) often occur in mathemat
ical physics (Fredholm integral equation, first order Ray
leigh-Schrodinger perturbation equations in quantum me
chanics, and in fact in almost any situation where the model 
is basically linear), and it is not infrequent that one is con
cerned with a linear functional of the solution such as (1.1), 
which may be a parameter dependent diffusion constant,4 a 
linear response function such as the dynamical polarizabili
ty,' the tangent of a phase shift,. etc. 

In all such cases one can use Pade approximants to 
bound or simply to approximate the expectation value 

F(z) = (h,¢/z) = (h,[H +zV]-lh) (1.3) 

of the "resolvant" operator [H + z V]-l. In this sense the 
Stieltjes character of the approximated function has no lia
son with the detailed nature of the problem (1.2), resting 
instead on its Hilbert space realization together with such 
almost heuristic or formal properties as the self-adjointness 
of the operators involved. 

It is among the aims of this paper to show that in many 
cases, it is possible to analyze the solution ¢/z of the underly
ing problem itself with the aid of generalized Pade approxi
mants, and to try and pinpoint the type of problem amenable 
to such analysis. Certain work has already been carried out 
in this direction, studying for example the L 2 convergence of 
the Pade approximant trial vector' to r/lz' but again the results 
rely on and are concerned with the Hilbert space description 
of the quantities involved, and not with more explicit details 
such as the pointwise values of ¢/z when it is treated, say, as a 
continuous function embedded in some Sobolev space. 

To make the above description more concrete, consider 
the following simple illustration. Let ¢/z be the unique solu
tion in the Hilbert space L 2[0,1] of the problem 

d 2 

- r/lix) + zV(x)¢/ix) = h (x), 
dx2 

r/lzC0) = ¢/z(l) = 0, 

(1.4) 

with hE£. 2[0,1], V(x) a continuous positive function for 
xE[O,I], and z a real positive parameter. Then the spectral 
theoremS applied to the self-adjoint linear operator which is 
naturally associated with the left-hand side of (1.4) and the 
boundary conditions provides the fact that 
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F(z) = f h (x)(Pix)dx (1.5) 

can be reexpressed as the Stieltjes integral 

F(z)= roc df.l(S) , 
Jo (1 + sz) 

(1.6) 

where f.l(s) is a bounded monotone nondecreasing function 
on o<;s < 00. That is, F (z) can be represented by a series of 
Stieltjes and bounds for it can be obtained with the aid of 
Pade approximants. However in this problem one can also 
ask about the analytic structure in z of the function ifJz itself, 
because ifJz(x) actually belongs to the Sobolev space 
W~2) [0,1], consisting of functions on the interval XE[O, 1] 
which are square integrable, as are their first and second 
derivatives; and therefore it has a unique continuous repre
sentation. In fact, if h (x»O for almost all XE[O, 1], it can be 
shown'5 that 

ifJix) = L" exp( - tz)dv x(t), x fixed in [0, I], 

(1.7) 

where vx(t) is a bounded monotone non decreasing function 
on O<;t < 00. Thus ifJ/x) is the Laplace transform of a positive 
measure in the variable z for each fixed x and is amenable to 
approximation and bounding procedures based upon gener
alized Pade approximants. 

The existence of the two representations (1.6) and (1.7) 
are consequences of distinct positivity properties of the dif
ferential operator in (1.4). (1.6) follows essentially from the 
fact that the operator in (1.4) is positive according to 

t t/J(X)( - !!.:..... + ZV(X»)t/J(X)dX>O, z>O (1.8) Jo dx' 

for all t/J(x) which have square integrable second derivative 
and for which t/J(O) = t/J(I) = 0. This is the positivity of the 
operator in the Hilbert space sense. On the other hand, as we 
shall see, (1.7) is a consequence of the positivity implication 

(- d' 
- t/J(x) + zV(x)t/J(x»O 
dx' 

for all XE [0, I ], and t/J(O) = t/J(1) = ° ) 
~t/J(x»O for all XE [0, I] (1.9) 

when t/J(x) possesses a continuous second derivative on [0, I]. 

In fact, we will show in Secs. 4 and 5 that the representa
tion (1.7) remains valid in far more general circumstances. 
We cite the following two instances. In Sec. 4 we show for 
example that the problem 

d' 
-, (Pix) + zV(x)¢lz(x)' = h (x), 
dx" 

(1.10) 

ifJiO) = ifJzC1) = 0, 

possesses precisely one solution ifJz(x) which both belongs to 
wi2l [0,1] and which is positive for ° < x < I; and this solu
tion admits a representation of the form (1. 7). In Sec. 5 we 
show for example that the problem 
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a' a 
- - ifJzCx,t) + - ¢lz(x,t) + zV(x)¢lix)' = h (x), ax' at 

ifJiO,f) = ifJi1 ,f) = ° for all f> 0, (1.11) 

ifJix,O) = ifJ,,(x) > 0, 

has only one smooth solution ifJz(x,t); this solution can also 
be expressed in the form (1. 7). The problems (1.10) and 
(1.11) are merely to illustrate the kinds of results described in 
Secs. 4 and 5-the actual results obtained there are far more 
general. 

In Sec. 2 we recall how positivity properties are related 
to analyticity properties and in particular to the character
ization of functions as transforms of positive measures. 

In Sec. 3 we describe how various types of functions can 
be bounded and in principle often reconstructed on the basis 
of information in the form of coefficients occurring in either 
a Taylor series or some other purely formal expansion of the 
function. We concentrate on those classes of functions 
whose analytic nature may be discovered from positivity 
considerations. 

In Sec. 4 we consider a particular class of nonlinear 
elliptic boundary value problems and layout the fundamen
tal theorems which can be used to explore the positivity 
properties of the solutions of such equations. We then illus
trate, first with an algebraic analogy, and then by means ofa 
sequence of theorems whose proofs are briefly sketched, how 
the positivity analysis can in practice be carried out. The 
result is a novel method for constructing monotonically con
verging upper and lower bounds upon the solution of the 
problem considered, together with a detailed understanding 
of the nature of this solution. However, we stress that the 
method is far more general than the particular application 
and can be applied in many other cases. The reader will see 
how he himself could readily derive the representation (1.7) 
associated with the problem (1.4), for example. 

In Sec. 5 we indicate how the kind of analysis described 
above also applies to nonlinear uniformly parabolic 
problems. 

2. POSITIVITY AND ANALYTICITY 
We begin by recalling how positivity properties offunc

tions of a real variable can generate analyticity properties, by 
giving the simplest results of Bernstein." 

A. Totally convex functions 

Suppose that for some E > Owe havef(x)EC'" (O,E) [i.e., 
f(x) is infinitely differentiable for ° <x < E] and moreover 

( - Wf(2/.: \x»O for all XE(O,E) and k = 0,1,2, .. ·. 

Thenf(x) can be analytically continued throughout the com
plex plane to produce an entire function of order at most I 
and of type at most 1Tic That is,J(z) is holomorphic at all 
finite points ZEC and there exists a constant c> ° such that 

If(z) I <celZiJTlc for all ZEc' 
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B. Completely monotone functions 

Suppose thatf(x}EC''''(O, ao} and moreover 

(- 1)"!(k)(x);;;.O for all XE(O,oo) and k = 0,1,2, .... 

Thenf(x) can be analytically continued throughout the re
gion C· = ! ZEC I Rez> ° J, being expressible as the conver
gent integral 

fez) = 1'" e - ztda(t ) for all ZEC" 

where aCt ) is a monotone nondecreasing function for 
0< t < 00 [i.e.,da(t )isa positive measure]. Conversely, iff(z) 
can be expressed in the latter form, then it obeys the former 
differential inequalities. 

C. Absolutely monotone functions 

Suppose that for some E> ° we havef(x)EC 00 (O,E) and 
moreover 

j<2k)(X);;;'O for all XE(O,E) and k = 0,1,2,. ... 

Thenf(x} can be analytically continued to a function which 
is holomorphic in the disk! ZEC I Iz - El21 < El2). 

D. Stieltjes functions 

Suppose thatf(x}EC 00(0,00), thatf(x};;;'O, and that 

( _ l}k - I [xkf(x)] (2k - 1);:;.0 

for all XE(O, oo) and k = 1,2,3, .... 

Thenf(x) can be analytically continued throughout the re
gion C' = ! zECjzi( - 00 ,0) J, being expressible as the con
vergent integral 

fez) = P + -- for all ZEC " LOO da(t) 

o (z + t) 

where aCt ) is a monotone nondecreasing function for 
0< t < 00, andPisa nonnegative constant. Conversely, iff(z) 
can be expressed in the latter form, then it obeys the former 
differential inequalities, and in fact more generally 

(-I),,+k[x"!(x)](n);;;.o for all XE(O,+ 00) and n;:;.k 

where k = 0,1,2, .. ·. 

These relations can be recast in a more suitable form, by 
introducing the quantities 

fbm)(X) = d m f(x) 
dxm 

and 

xf~m_ ~ 1)(X) f(m) ( ) 
f~m)(x) = 1 + n - I X , 

m+ 
then the necessary and sufficient condition forf(x) to be a 
Stieltjes function is 

( - 1 )"1~m)(x);;;.O for all XE(O, + 00) 

and all m,n = 0,1,2, .... 

3. POSITIVITY AND BOUNDS 

We consider any functional equation 
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F(<p,y) = ° (3.1) 

from which it is possible to extract a formal series expansion 
in powers of y for the solution of interest 

<P (y) = <po + Y<Pl + ... + r"<Pn + .... (3.2) 

For simplicity we suppose that <P is real valued, but one can 
extend the following to the case where <P is complex, or even 
an element of a noncom mutative algebra; see for example, 
Refs. 10 and 11. 

Five cases can occur: 

(i) The series (3.2) is rapidly convergent for the value of 
y of interest. One can then consider that (3.2) resolves the 
problem. 

(ii) The series (3.2) is convergent but the rate of conver
gence is too slow to be useful. Thus (3.2) as it stands fails to 
resolve the problem. 

(iii) The series (3.2) is divergent for all y but possesses 
asymptotic properties [see for example, Ref. 12]. If Y is in the 
asymptotic region, then (3.2) may again resolve the problem 
because the "effective convergence" can be extremely good. 

(iv) The series (3.2) is divergent for all y and has no 
asymptotic convergence property: The series is useless as it 
stands. 

(v) Some or all the coefficients <Po, <PI' <P"oo, are infinite 
but they possess finite regularizations <Po(E), <PI(E), <plE), .. · in 
terms of a parameter E, see Ref. 6, such that 

<Pk(E)-+<Pk as E-+O.. (3.3) 

This case occurs frequently for singular problems. 

In dealing with problems which occur in mathematical 
physics, one often finds oneself in one of the situations (ii), 
(iv), or (v). For cases (ii) and (iv) one can often apply a con
vergence acceleration technique based on the use of Pade 
approximants and their generalizations. Such an approach 
may be placed on a firm mathematical foundation provided 
that one has some knowledge of the analytic sturcture of 
<p(y). Our thesis is that such knowledge can often itself be 
derived from positivity properties which may be discovered 
directly from the original equation (3.1). We give some ex
amples of this process in Sees. 4 and 5. The point is that one 
can often expect positivity properties to be built into physical 
problems: probabilities, temperatures, pressures, densities, 
etc., are naturally positive and therefore provide possible 
candidates. 

In case (v) one can sometimes apply a convergence ac
celeration technique to the regulated series 
! <Pk(E) : k = 0,1,2,00' J followed by the exploitation ofvari
ational properties of the accelerated result in the parameter 
E, see below. 

For the moment we return to the case where the <Pi exist 
and pose the following problem: Given that <p(y) belongs to a 
precise class of functions and given a finite number 
<PO,<PI"oo,<P N of coefficients occurring in the development 
(3.2), find the "best" lower and upper bounds for <p(y): 

(3.4) 
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Since J1.N and B N must lie on the boundary of the range of 
values of all functions belonging to the class and possessing 
the coefficients ¢o, ¢It ... ,¢ N it follows that they must form 
monotonic sequences: 

l!.1 <l!.2 < ... <J1.N< ... <J1. 00 < ¢ <Boo < ... <B N< ... <B2 <Blt 
(3.5) 

where Boo is the limit of B N as N-+ 00 • When the two limits 
are equal the problem is determinate,13 otherwise it is inde
terminate. In the latter case the limits may be nonetheless so 
close that one can say (3.5) resolves the problem. In fact, 
because of the presence of noise, one always finds oneself in 
the indeterminate case-"optimization over a class with 
noise." We note that the existence of B N has no relation to 
the convergence or otherwise of the original series (3.2), 
which may very well diverge for all y. The problem is better 
understood if it is posed in terms of information theory: Giv
en the class to which ¢(y) belongs and given a finite number 
of derivatives of ¢ at the origin, find the best possible bounds 
for ¢(y) at y = Yo. 

We now consider a number of cases for which one can 
explcitly construct the B N'S by supposing that ¢ admits a 
representation 

¢ [y] = 100 

K (xy) df1(x) (3.6) 

where df1(x) is a positive measure and K (xy) is a kernel 
which is completely monotone in the variable xy. For 
example, 

K (xy) = e··· xY, the Laplace kernel; 

K (xy) = (1 + xytl, the Cauchy kernel; (3.7) 

K (xy) = (1 + xy)- P, p > 0, the Hilbert kernel. 

In all cases we associate the problem with an auxiliary 
Stieltjes function, 

S(z) = (00 df1(x) , 
Jo (1 + xz) 

which has the formal development 

(3.8) 

S (z) = /I~O ( - Znl/1 with f1n = 100 

Xn df1(x). (3.9) 

Knowing a finite number of the f1/1'S one constructs the cor
responding Pade approximants [P - 1/ P ](z) and [P I P ](z). 
They are written 

P Wi 
[P-1/P](z) = L--

i~ 1 (Xi + z) 
and P W 

[PIP](z)= L _ I +wo. 
i~1 (xj+i) 

(3.10) 

Here the x/s, x/s, w/s, and w/s are uniquely fixed by the set 
[f10,f1t,. .. f12Pj according to the equations l

• 

P L wlx;)·- (n + I) = f1n for n = 0, 1, ... ,2P - 1, 
i= I 

p 

Wo + L wlx;tl =f10, (3.11) 
i= I 

p 
'" -I-)--(n+I)_ 
4.. Wi\X j - f1" for n = 1,2, ... ,2P. 

i -= 1 
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The requisite f1n's are obtained from the ¢n's by noting that 

¢ (y) = 100 
K (xy) df1(x) 

(3.12) 

where the completely monotone kernel K (u) has been 
expanded, 

K (u) = f (- I)"K"u", (3.13) 
n=O 

so that 

(3.14) 

We now have the following result: For the completely mono
tone kernel K (xy), 

p 

BN(y;¢O,¢h""¢N) = woK (0) + L wjK(yxj) (3.15) 
j= 1 

and 
p 

l!.N(y;¢O,¢h···'¢N) = L Wi K (yx;), (3.16) 
j~ 1 

where P is the integer part of N /2. We remark that the 
bounds are none other than Gaussian quadratures which use 
the set of zeros (the x/s and x/s) associated with the ortho
gonal polynomials constructed with respect to the measure 
df1(x). Generalization of this problem is treated in Ref. 15. 
For the simpler case discussed here, see Ref. 16, 

It is important to realize that these methods supply a 
mechanism for analytic continuation of exceptional quality. 
In some cases, on being given only a few coefficients occur
ring in the expansion, one is able to obtain precise bounds on 
the function out to five or ten times the radius of convergence 
of the expansion. Even more remarkable is the case where 
the series has zero radius of convergence. 

We now come to case (v) and suppose that ¢(y) admits a 
regularization ¢E(y) which can be expressed in the form 
(3.6), and which possesses a formal development 

dJ E(y) = f ¢ ~ y. 
P . () 

Then if we suppose that 

¢ t(y) <dJO(y) = ¢(y), 

we must have 

l!. ~(y;¢ ~,¢ ~, ... ,¢ ~ )<¢ E(y)<cP (y), 

whence 
B ~p = sup B ~(y;¢ ~,¢ ~, .. ·,cP ~ )<¢ (y). 

- E-

(3.17) 

(3 . .18) 

(3.19) 

(3.20) 

Albeit that the regularized Taylor series coefficients tend to 
infinity as t tends to zero, the functional B ~ has a maximum 
for a certain t = t(N,y) which is the optimal choice on the 
basis of the given information at order N. In Fig. 1 we repre
sent both ¢ «y) and the l!. ~ as functions of t for fixed y. One 
sees that l!. ~uP, l!. ~"P, ···form a monotone increasing sequence 
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FIG. I. The functions <p '(y) and li ~ at fixed Y.li lUP, li ~uP" •• forms a mono
tone increasing sequence oflower bounds for <p(y). 

oflower bounds to ¢;, the sequence being necessarily conver

gent with limit 1!.- :P<¢; where the equality is attained if the 
moment problem associated with ¢; E(y) is determinate for 
each E> O. The method described here is used extensively in 
Ref. 6. 

A reason for particular interest in the methods de
scribed above is that B N(y;¢;O,¢;.,""¢; N) can have an analytic 
sturcture kindred to that of the exact solution, so that over 
and above its bounding properties B N(y;¢;O,¢;h""¢; N) is a sen
sible approximation to ¢;(y). For example, the analytic char
acter of ¢;(y) in (3.6) is to some extent carried through to the 
approximants (3.15) and (3.16) via the kernel. Furthermore, 
in the case where regularization is used as described above, 
even when the kernels belonging to the regularized problem 
possesses no singularities in y, the optimized functions 
1!.. ~P(y) may themselves have singularities which mimic 
those occurring in the true ¢;(y). Lastly, in the case of differ
ential equations where the boundary conditions are of Neu
mann-Dirichlet type, say, 

Y(¢;,y) = 0 over some region D, 

YJ ¢; = 0 on the boundary aD of D, 

where 

(3.21) 

YJ¢; a(x)¢; (x,y) + i /3,{x) a¢; (x,y) , xEaD, 
i~1 ax; 

one has the remarkable property that 

YJ B N(npO,"'¢; N ) = o. 

(3.22) 

(3.23) 

That is to say that the approximations B N automatically sat
isfy the boundary conditions. The reason is that the B N 's, 
while they may be complicated functions of the ¢;n's, are 
nonetheless homogeneous of first degree in (¢;O,¢;h"'¢; N)' It is 
well known that the conditions YJ ¢;j = 0 (i = 0,1,2, ... ) imply 
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that YJ ~(r/>o,r/>I> ... r/>N) = 0 when ~is homogeneous of first 
degree in the r/>;. 

4. CONSIDERATION OF A CLASS OF 
NONLINEAR ELLIPTIC EQUATIONS 

As an illustration of how with the aid of positivity prop
erties one can discover the analytic character of the physical 
solution of a parameter dependent functional equation, we 
consider the problem 

Lr/> -lip¢; + yqr/>2 =finD, 

Br/> = 0 on aD, liER, yER •. (4.1) 

D is a bounded open region in R n with boundary aD and 
closure 15. The boundary is assumed to be C 2 + a for some 
o < a < 1; that is, aD can be mapped locally one-to-one onto 
an (n - 1 )-dimensional hyperplane by means of C 2 + a map
pings. ByC m + a(G ) we mean the class offunctions with con
tinuous derivatives of all orders up to m on the set G and 
whose m th derivatives are uniformly Holder continuous 
with exponent a. 

L is a uniformly elliptic differential operator, 

Lr/> - i ay(x) a
2
r/> (x) 

iJ~ 1 aX,axj 

+ i ak(x) ar/> (x) + a(x)r/> (x), (4.2) 
k ~ 1 aXk 

where aij(x)EC 2 + a(i5), akEC 1 + a(D), and aECa(D). The 
matrix //ay(x)1I is uniformly positive definite. Also a(x) > ° for 
all xEii;p, q, and fall belong to Ca(D);p(x) > 0, q(x) > 0, 
andf(x»O for all xEii withf:i:O. 

B is one or other of the boundary operators 

Br/> r/> (x) on aD, 

B¢; /3 (x)r/> (x) + a¢; (x) on aD, 
av 

where a /av denotes the conormal derivative on aD. 

(4.3) 

(4.4) 

/3 (X)EC I + a(aD) and is nonnegative. a(x) and /3 (x) do not 
both vanish identically. 

The problem is to discover the analyticity properties in 
y of the positive solution 17 of the problem (4.1) according to 
different values of Ii, and thus to find out how the solution 
can be reconstructed for all y> ° starting from the formal 
series expansion obtained for small y. Before giving the eS
sential general results for this problem we study a special 
case which sheds light on the question. 

A. The algebraic case 

Suppose/1 (x)=o,p = q= 1, and that both a(x) andf(x) 
are independent of x; then the solution to the problem is 
r/> = const in x, where r/> satisfies 

(a - ). )¢> + yr/> 2 = f 
The positive solution is thus 
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CUT Ys 

y - plane 

\ 
The pole at the origin, 

initiaUy hidden on the 

second sheet. is revealil!d 
on the first sheet as A 
passes through a . 

FIG. 2. The analytic structure of r/J in (4.6). As A increases, y, advances to 
the origin and then recedes, leaving a pole behind it. 

A. = - (a - A ) + [(a - A )2 + 4/r] tl2 
'I' -~~~~----=~"":---':=-.!....!.-, r> O. (4.6) 

2r 
Analytic structure: tP has a branch point of order two at 

r, = - (a - A )2/4/ and also one at infinity. We define the 
first sheet of the Riemann surface of tP(r) by cutting the com· 
plex r plane from - 00 to rs' see Fig. 2. ¢; has a pole at r = 0 
with residue [la - AI - (a - A )]12. When A <a this residue 
is zero while when A > a it is la - A I. 

Noting that the second sheet of the Riemann surface is 
obtained simply by changing the sign of the square root in 
(4.6), we thus see that the pole remains hidden on the second 
sheet when A < a (subcritical regime) and that it appears on 
the first sheet only when A > a (supercritical regime). As A 
progresses from minus infinity towards a the mobile sigular
ity rs advances towards the origin, reaching it exactly when 
A = a. The hidden pole is then uncovered and as A continues 
towards plus infinity the sigularity rs now retreats back to· 
wards minus infinity, having achieved its task of revealing 
the pole. 

Positivity properties a/the solution: It is not hard to see 
that ImtP < 0 when Imr> 0 and that tP (y) behaves like 

V / /r as r tends to infinity, from which it follows that ¢; (r) 
is analytic in the cut complex plane, is a real Herglotz func
tion, and thus can be represented 

tP (r) = ('" df.L( r) , 
Jo 1 + rr 

(4.7) 

where df.L(r) is a positive measure. 

We have two cases: 

(i) Subcritical case (A < a): tP (r) is holomorphic around 
r = 0 and possesses an expansion 

tP (r) = tPo + rtP, + ... + Y'tPn + .... (4.8) 

In particular 

tPo = 1'" df.L(r) < 00, (4.9) 

so that the measure in (4.7) is bounded: Starting from the 
expansion (4.8) one can reconstruct the solution with the aid 
of Pade approximants as was explained in Sec. 3, 

[P-l/P](r)<:tP(r)<:[P/P](r) for all r>O. (4.10) 
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Note that the radius of convergence of the series (4.8) tends 
to zero when A approaches a, while the bounds (4.10) remain 
valid for r as large as one likes. 

(ii) Supercritical case (A> a): It is clear that the solution 
which is holomorphic around the origin is now the negative 
one, as one sees on noting that 

Conversely, the positive solution possesses a Laurent 
expansion 

with 

,j-I - -
tP= - +tPo+rtPt+'" r 

(a - A ),j_, + ,j 2_ 1 = 0, 

(a - A + 2,j_t),jo = f, 

(a - A + 2,j_1),j, = - ,j6, 

(4.11 ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

It is seen that, when A> a, (4.13) has a positive solution 

f-I = - (a - A) > O. (4.16) 

One has here a "critical phenomena" in the sense that the 
analytic continuation of the solution which is regular in rat 
the origin, starting from A <Ac = a, does not provide the 
correct answer. In the supercritical case it is necessary to 
start from the perturbation expansion, beginning with the 
positive solution of the associated equation given by putting 
/=Oandr= 1. 

We remark however that, for A > a, 

tP (r) = ,j-t + ('" dfi(r) , 
r Jo 1 + rr 

dfi(r) 1S a positive measure, 
(4.17) 

and that now once again Sodfi(r) < 00. Knowing 1>-1 (which 
can be determined once and for all, independently off!) one 
can now reconstruct from the perturbation series the posi
tive solution by using Pade approximants to 

1> (r) = ('" dfi(r) . 
Jo 1 + rr 

(4.18) 

Moreover we notice that the supercritical positive solution is 
the analytic continuation of the subcritical negative solution, 
and that one may be interested in studying this solution also. 
The critical phenomena appears h:!re as a simple permuta
tion of Riemann sheets. 

B. The realistic case 
In the realistic case we have not yet been able to obtain 

all ofthe analyticity and positivity properties of the algebraic 
case, but a major part of the preceding results have been 
extended to the general case. We are now going to summa
rize the essential results. 

The two fundamental principles which allow one to ap
proach the problem are: 
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(i) Amann's theorem 's : Let F(x.</J )EC'(D) for xEDbe 
such that aF / a</J exists and is continuous for xED and </JER. 
Suppose that there exists t and iECZ + a(D) such that 

Lt + F(x.t)"O. 
Lt + F(x.i»o. 

Then the problem 

L</J + F(x.</J) = O. in D. B</J = 0 on aD 

(4.19) 

(4.20) 

possesses at least one solution </JECZ + a(D) which satisfies 

(4.21) 

(ii) Positivity Lemmal9: We associate the operator (L,B) 
with the eigenvalue problem: LtP = Apt/! in D and Bt/! = 0 on 
aD. Then we recall that this operator. although it is not in 
general self-adjoint. has a purely discrete eigenvalue spec
trum. The eigenvalue Al having smallest real part is itself real 
and strictly positive, and the corresponding eigenfunction 
can always be chosen real and positive. Bearing this in mind. 
we have the following lemma. 19 

If. for some AER 

</JEC'(D). [L-Ap(X)]</J>O, B</J>O, and </J>O. (4.22) 

then A"AI• with A = Al if and only if the equality signs in 
(4.22) hold. Conversely. if 

</JEC'(D). [L -Ap(X)]</J>O, B</J>O, andA"A!> (4.23) 

then </J (x) > 0 for all xED. 

Using the above theorem and lemma we obtain the fol
lowing results. the detailed proofs of which can be found in 
Ref. 20. 

Proposition 1: The given problem (4.1) possesses exactly 
one nonnegative solution </J (X)ECZ + a(D), for all AER and 
y> O. This solution is in fact strictly positive for all xED. 

Proof Amann's theorem yields the existence of at least 
one nonnegative solution: Zero is a lower solution and a suit
ably large positive constant is an upper solution. The strict 
positivity over D of such a solution follows from the maxi
mum principle. To establish uniqueness we suppose that </J, 
and </J, are both positive solutions: Then 

[L + yq(¢> I + </J,) - AP](¢>, - ¢>,) = 0 in D 

(4.24) 

But 

[L + yq(¢> I + ¢>,) - Ap]¢>1 = f + y q¢>I¢>' > 0 in D 

while B</J, = 0 on aD. (4.25) 

The positivity lemma tells us that A <A!> where Al is the 
smallest eigenvalue belonging to the problem 

[L + yq(</JI + </J,»)tP = APtP in D with BtP = 0 on aD. (4.26) 

We conclude that </JI - </J,=O in (4.24). 

Proposition 2: About each point Yo> 0, </J(x,y), the posi
tive solution defined above, is holomorphic inside a circle of 
center Yo passing through the origin of the complex y plane, 
and 
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d
n I (-It-</J(x,y) >0, 

dyn y= Yo 

d
n I (-It-{y</J(x,y)J >0, 

dyn y= y, 
(4.27) 

for all xED. 

The full proof can be found in Ref. 20. Here we merely out
line it: Let AER and Yo> 0 be fixed, and let YEe. Then we 
consider the formal series 

(4.28) 

The p-independent functions tPn(Yo) are supposed to satisfy 
the equations obtained by equating the coefficients of the 
different powers of p when one substitutes tP for ¢> in (4.1), 
and where tPo(Yo) > O. By making repeated use of the positiv
ity lemma we show that the tPn's have alternating signs and 
that the series converges absolutely and uniformly for 
Ipi < Yo. Using the compactness theorem" we then show that 
the function to which the series converges is indeed a solu
tion of the problem. By uniqueness, tP(yo,p) is identified with 
</J(y). 

Proposition 3: By Bernstein's theorem one sees that 
there exist two measures df..lx,A (t) and dVx,A (t) which are 
positive on [0,(0) and such that 

Loo a Loo </J (y) = e - ytdf..lxA (t), - {y</J (y) J = e - ytdVxA (t). 
o ay 0 

(4.29) 

We next analyze the behavior of </J(y) in the neighborhood of 
y = O. To achieve this we need the following result: LetAe be 
the eigenvalue (necessarily real and positive) having smallest 
real part corresponding to the problem 

LtPe = AcPtPe in D with BtPc = 0 on aD. (4.30) 

Then one shows that Ae is a bifurcation point for the equation 

LB - ApB + qB' = 0 in D, BB = 0 on aD. (4.31) 

This equation possesses only one nonnegative solution when 
A <Ac' explicitly B =0, and two nonnegative solutions when 
A> Ae' The existence of a strictly positive solution B+(x) is 
established in this latter case by choosing EtPe (x) > 0, with E 
sufficiently small, as a lower solution. The uniqueness of 
B.(x) (strictly positive inside D) follows from the positivity 
lemma. 

Proposition 4: For A=;t=Ae, AER, </J(y,x) is holomorphic 
inside a circle of finite radius, I yl < r, about y = 0, with the 
exception of a simple pole at y = 0 of residue 

0, if A <Ac' 

(4.32) 

B.(x), if A> Ae' 

Proof One examines the formal development in in
creasing powers of y of the function y</J(y). By repeatedly 
using the positivity lemma, one shows that the series has 
coefficients of alternating signs and that it is absolutely and 
uniformly convergent for Iyl sufficiently small and A=;t=Ae, 
AER. The compactness theorem once again assures us that 
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this series can be identified with yt/J(y). When A <Ae one 
finds that yt/J(y)---+D as y---+D. When A> Ae one finds that 
yt/J(y)--..8.(x) as y---+D. 

Combining the results in various of the above proposi
tions, one can show that 

Proposition 5: For all A=FAe' AER, one can write the 
positive solution of the problem in the form 

t/J(y,x) = So + r"" e-yrdpxA(r) 
y Jo . (4.33) 

where the positive measure dpx.A (7) is bounded and 

if A <Ac 
{

O, 
50= 

8.(x) , 

It is now possible to apply the results of Sec. 3 in order to 
obtain upper and lower bounds on the positive solution for 
all y> 0, with the aid of the generalized Pade approximants 
BN(Y)· 

5. APPLICATION TO NONLINEAR PARABOLIC 
EQUATIONS 

A. Definitions and basic principles 

To show that similar results to those in Sec. 4 are true in 
the parabolic case we consider the problem 

!.t' <P - AP<P + yq<P 2 = /(x,t) for (x,t )EQ = D X (0, (0), 

B<P = g(x,t) for (x,t )EaQ = D X (0, (0), (5.1) 

<P (x,t = 0) = <Po(x) for xED, 

where <P is now a function of x and t, and 

(5.2) 

All quantities here are defined just as they were in Sec. 4 
except for the prolongation of L by the adjunction of alat, 
the conversion of the boundary conditions into those corre
sponding to an initial value problem, and the introduction of 
the functions/(x,t) and g(x,t) which are assumed to be 
smooth and nonnegative over their domains. The function 
<Po(x) is also supposed to be smooth and nonnegative. We 
have not introduced time dependences into the coefficients 
occurring in the first two equations on the left-hand side of 
(5.1), although much of what we say would withstand a cer
tain amount of generalization in this direction. 

Throughout this section AER is fixed, and we are con
cerned only with the analyticity properties of solutions in the 
variable y. One difference between (4.1) and (5.1) is that the 
boundary conditions in the latter are inhomogeneous; to 
make way for this additional flexibility we suppose that the 
following is true. 

Assumption (*): (5.1) possesses a classical nonnegative 
solution, denoted briefly 

<P (x,t;y) = <P (y) for each y> O. (5.3) 

For example, in Proposition 6 it is shown that this is 
certainly true wheng and <Po both vanish identically; and it is 
easy to envisage other cases. 
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Let 0 < T < 00. We use the notation QT for the region 
D X(O,T) and aQTfor the boundary aD X(O,T). 
H a + 2,a/2 + l(QT) denotes the Holder space consisting of 
functions 8 defined on (x,t )EQT possessing second deriva
tivesa28 lax,ax/iJ = 1,2, ... ,N) which are uniformly Holder 
continuous in x throughout QT with exponent a, and pos
sessing the derivative a8 I at which is uniformly Holder con
tinuous in t throughout QT with exponent a12; see Ref. 22. 
H a + 2.a/2 + '(QT) is the Holder space consisting of all 
8EH a + 2,a/2 + '(R) for each domain R with R C QT' By a 
classical function we mean any function in 
H a + 2,a/2 + i(QT) which is defined and continuous on QT' 

In the following we will use repeatedly the following 
theorem which is a modified version23 of one due to 
Sattinger. 21 

Theorem: LetF (x,t;<P ) be uniformly Holder continuous 
in x, and in t, with exponents a and a12, respectively, 
throughout QT' Let aF la(/J exist and be continuous for 
(x,t )EQr and (/JER. Suppose that there exist classical func
tion (/J and rP such that: 

Yf/!, + F(x,t;f/!, )<0 for all (x,t )EQI) 

Bf/!,<g(x,t) for all (x,t )EaQI) 

f/!, (x,t = 0)< (/Jo(x) , for xED; 

!.t'rP + F (x,t;f/!, );;;,0 for all (x,t )EQI) 

BrP;;;,g(x,t) for all (x,t )EaQI) 

rP (x,t = 0);;;, (/Jo(x), for xED; 

with f/!,<rP throughout QT' Then the problem 

Y <P + F(x,t;(/J) = 0 for (x,t )EQ.[) 

B(/J = 0 on aQp 

(/J (x,t = 0) = (/Jo, 

has a classical function (/J as solution, satisfying 

(5.4) 

(5.5) 

(5.6) 

f/!,<(/J<rP forall(x,!)EQp (5.7) 

In the above the boundary conditions are satisfied in the 
limit as (x,!) approaches the boundary, sometimes with re
strictions on the possible paths by which the approach can be 
made; see for example Ref. 22, p. 404. 

The proof of the above theorem makes important use of 
the maximum principle for parabolic operators. In its sim
plest form this consists in the fact that when a 0 the solu
tions to the problem .Y' u = 0 assume their greatest and least 
values in Ql' on the boundary. More generally we have22 

u;;;,O in Ql' Bu;;;,O on aQp and u(t = 0);;;'0, 
(5,8) 

=>U;;;,O when u is a classical function on QT' 

These results are closely related to the uniqueness theorems22 

which tell us for example that the problem 

.:/(/J + b (x,t)(/J = fin Qp 
(5.9) 

B(/J = 0 on aQl' (/J (t = 0) = 0, 

has at most one classical solution. Here b (x,t) is assumed to 
be continuous throughout QT' 
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Proposition 6: When either the functionp(x) in (4.4) is 
strictly positive for all xEiJD or g(x,t ) 0, the problem (S.I) 
possesses a unique classical solution for any AElR and all 
y> 0. This solution is nonnegative for all (x,t )EQ. In the spe
cial case where <Po(x)_O,g(x,t )=O,andf(x,t) = f(x)isinde
pendent of t, this solution converges to the positive solution 
<P[y] of (4.1) as t tends to infinity. 

Proof. It is readily seen that an upper and lower solution 
pair for (S.I) is provided by a large enough positive constant, 
and zero, respectively. The existence of a classical solution of 
(5.1) is thus ensured by Sattinger's theorem. 

Let <PI and <P2 denote two classical solutions, then 

(S.lO) 

B (<PI - <P2) = ° on JQp (rt>1 - <P2) = 0 when t = 0. 

Choosingb (x,t) = yq( <PI + <P2) - Apweidentify(S.lO)with 
(S.9). It follows that the only classical solution of (5.10) is 
<PI - <P2 = ° which establishes uniqueness. 

The last statement in the proposition is a consequence 
of Ref. 24, Theorem 4.8. The upper and lower solution pair 
in Proposition 1, associated with the time independent prob
lem, in fact provide, respectively, a decreasing and an in
creasing sequence of monotone interates, each sequence con
verging to the positive solution of the time independent 
problem.24 Theorem 4.8 provides that in such a case the solu
tion to the time dependent problem obtained by replacing L 
by 2" and introducing initial data lying between the original 
upper and lower solution pair will always lie between the 
solutions found by taking the upper and lower solutions as 
initial data, and will converge as time goes to infinity to the 
positive solution of the time independent problem. 

Q.E.D. 

Remark: Whereas (4.1) may have many solutions, 
among which there is exactly one which is positive, the time 
dependent problem has only one solution. In the case 
g(x,t) = Oandf(x,!) =/(x) we can think of the positive solu
tion of (4.1) as being special: It corresponds to the solution 
picked out by the time dependent problem, for any smooth 
positive intitial data. 

We will use the notation <P[y] for the classical solution 
of(5.1) provided by Proposition 6. In examining <P[y] we do 
not have available a result analogous to the positivity lemma 
of Sec. 4B (ii) and our central arguement is perforce more 
complicated than it was in Sec. 4. In place of the positivity 
lemma we repeatedly use Sattinger's theorem, given above. 

Let both AElR and ro> 0 be held fixed; let rEi(; be given 
and set p = (y - Yo) as before. Then we investigate the for
mal series 

(5.11) 

where the p-independent functions rPn [Yo], n = 0,1,2, ... are 
supposed to satisfy the set of equations obtained by equating 
coefficients of the different powers of p which occur in the 
formal expansion of 
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2"1JI-AplJl + (Yo + p)qlJl 2 =/in Q, 
(S.12) 

BIJI = g on JQ, IjI (x,t = 0) = <Po(x), xED. 

The equations to be satisfied by the rPn's are 

BrPo = g on JQ, rPo(x,t = 0) = <Po(x) for xED, 

2"rPn -APrPn + yoq mto (:)rPn--mrPm 

n - 1 (n - 1) . 
+nq m2:o m rPn-m--lrPm=O III Q, 

(5.13.n) 

BrPn = ° on JQ, rPnCx,t = 0) = 0 for xED, n = 1,2,3, .. ·. 

Proposition 7: The rPn's are uniquely defined classical 
functions for all r> 0. Moreover rPo = <P[Yo], and for each 
nE! 1,2,3, .. ·) we have 

( - l)nrPn(x,t );>0 and 

(- l)n-I{YOrPn(x,t)ln + rPn_I(X,t)};>O 

for all (x,t )EQ. (S.14.n) 

Proof. By assumption (*), (5.13.0) possesses exactly one 
classical solution, 

(5.15) 

The remaining equations can be rewritten 

n -2 nl 

[2" - AP + 2yoqrPo]rPn + q m2:o m!(n _ ~ _ I)! 

x (yorPm + 1 + rPm) rPn-m-1 + nqrPOrPn_1 = ° in Q, 
m + 1 

(S.16.n) 

BrPn = 0 on JQ, rPn(x,O) = 0 on D, n = 1,2,3, .... 

The nth one of these equations is linear in rPn' involving it 
only in the term [L - AP + 2yoqrPolrPn, and the inhomoge
neous part is a function of (rPo,rPU ... ,rPn _ I)' Thus the set 
(S.16.n) must be solved successively with rPo = <P [Yo]. 

Consider (5.16.1), 

(2" - AP + 2yoqrPo)rPl = - qtfo in Q, 
(5.17) 

rPI = 0 on JQ, rPl = ° on D. 

We work in QTand let Ttend to infinity, thereby providing 
results in Q. Noting that zero constitutes an upper solution 
while - rPolyo is a lower solution, we have from Sattinger's 
theorem that (5.17) has a classical solution rPl(X) which, on 
comparing (5.17) with (5.9), is unique, and moreover 

O;>rPl(X,t);> - rPo(x,t )lyo for all (x,t )EQ. (5.18) 

The latter is equivalent to the inequalities (S.14.n) when 
n=l. 

An inductive arguement can now be set up by suppos
ing that (5.13.n) has a unique classical solution rPn' and the 
inequalities (5.14.n) pertain for all nE! 1,2, ... ,K l, for some 
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integer K;;d. Then we consider the equations for t/t K + I' The 
inductive hypothesis provides that the quantity 

q Kf I ~K + I)! (Yot/tm + I + t/tm)t/tK _ m 
m~. 0 m.(K - m)! m + 1 

+ (K + l)qt/tot/tK' (5.19) 

which appears in (5.16.K + 1), has the same sign as ( - 1) K. 
Hence zero constitutes an upper or a lower solution associated 
with (5.16.K + 1), according as K is even or odd respectively. 
Now note that if (5.16.K + 1) holds then we have the 
identities 

[2" -AP+2yoqt/to]( YOt/tK+1 +t/tK) 
K + 1 

K~ I K! ( Yot/tm + I .,.) 
= -q L + 'f' 

m=om!(K-m-l)! m+l m 

X (Yot/tK-m ) 
K _ m + t/tK - m - I , 

B( YOt/tK+ I + t/tK) = 0 on aD, 
K + 1 

(
Yot/tK+1 ) --- + t/tK =0 when t=O. 
K + 1 

(5.20) 

In particular, again using the inductive hypothesis, we see 
that the right-hand side of (5.20) has the same sign as 
( - 1) K whence we deduce that - (K + 1)t/tKIYoconstitutes 
a lower or an upper solution associated with (5.16.K + 1), 
according K is even or odd respectively. 

Combining the italicized remarks above with the induc
tive assumption that t/tK has the same sign as ( - 1) K, we see 
that zero and - (K + l)t/tKlyo provide an upper and lower 
solution for t/tK + I' necessarily unique, and the inequalities 
(5.14.n) must be true for all nE! 1,2, ... ,K + I). This com-
pletes the induction. Q.E.D. 

Proposition 8: For allpECwith Ip I < Yo the series tfI [Yo,p] 
is absolutely convergent, uniformly for (x,t )EQ'l' and we 
have tfI[yo,p] = <P[y]. 

Proof Throughout this proof pEC with Ip I < Yo is fixed. 
Using the inequalities (5.14.n) we readily obtain 

IV/n(x,t) I <n! I t/to(x,t) I lyZ, 

for n = 0,1,2,.··, for all (X,t)EQp Hence 

00 1 L -I t/tn(x,t) 1·lpln< I t/to(x,t) I 1(1 - Ip I Iyo) 
n =0 n! 

(5.21) 

where tfI N [yo,p ] denotes the Nth partial sum of I/I[yo,p], and 
since t/to[yo](x,t) is continuous over Q'l' the convergence is 
uniform. 

Now let 

eN = YtflN [Yo,p] - AptflN [yo,p] + yqtflN [yo,p P - f 
(5.24) 

Then using the definitive equations (5.13.n) we find 

Hence from (5.21) 

I e(x,t) I 
2N 

(5.25) 

<yoq(x) L (Ip I IYoy(2N + 1 - n) I t/to(x,t W 
n~N+1 

2N 
+ Iplq(x) L (lpllYot(2N + 1 - n) I t/to(x,t) I 2 

n=N 

for all (X,t )EQp (5.26) 

Hence eN converges uniformly over Q T to zero as N tends to 
infinity. This means we can write 

[2" -a(x)]tflN[yo,p] =hN in Q'l' 
(5.27) 

BtflN[yo,p] =g on aQ'l' 

tflN [Yo,P j(x,t = 0) = <Po(x) on D, 

where h N converges uniformly over QT to 
f + (Ap - a)tfI[yo,p] - yqtfl[Yo,p]2 as Ntendstoinfinity. The 
argument now follows the same lines as those indicated in 
Ref. 24, p. 984: We conclude that the limiting function 
I/I[yo,p] is a classical solution of (5.1). Thus, using unique
ness, we must have I/I[yo,p] = <P[y]. 

Having identified <P[y] with I/I[yo,p], our key result is 
immediate. 

Proposition 9: For each (x,t )EQ and each 
AE( - 00, + (0), there exists nondecreasing real cumulative 
distribution functions Ilx,/(s) and vx./(s) on O<s < 00 such 
that 

<P[y](x,t)= LX> expl-ys)dllx,/(s)forallywith 

Rey> 0, 

for all (x,t )EQT (5,22) and 

and we see that the series 'P [Yo,p] is absolutely convergent. 
Similarly, 

I tfI [Yo,p ](x,t) - tfI N [Yo,p j(x,t) I 

1144 

«lpl/Yo)N+ IIt/to[Yo](x,t)I/(1- Ipl/yo), 

for all (x,t )EQ'l' 
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(5,23) 

-ly<P[y](x,t)1 = expl-ysldvx,/(s)forally a 1"" 
ay 0 

with Rey>O. 

Proof The above characterizations both follow from 
the Bernstein theorem described in Sec. 2.2. From Proposi
tion 8 we have that <P[y], and hence also y<P[y] , are infinitely 
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differentiable with respect to r for each r> 0; and, using 
(5. 14.n) together with thepositivityof¢o[rJ = <P [rJ, we have 

(- W~<P[r] =(- W¢n[r];>O 
ayn 

(5.28) 

and 

an+ 1 

(- lr-- !r<P [r] l = (-IY!rtPn+ l[r] + (n + 1) ayn+ 1 

(5.29) 

for n = 0,1,2,.·· and all r> O. 

Thus both <P[r] and a! r<P[r] liar are completely 
monotonic in r> O. Bernstein's theorem yields the represen
tations (5.26) and (5.27) valid for all r> 0, and analytic con
tinuation ensures that they remain true for all r with 
Rer> O. Q.E.D. 
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A matrix product that generalizes the Kronecker matrix product is introduced and its properties are 
documented. This product is applied to classical statistical mechanics where its trace properties lead to 
both the transfer matrix and graphical expansion methods of evaluating the partition function. 

1. INTRODUCTION 

The purpose of this paper is to increase the usefulness of 
one of the most powerful mathematical tools of a physicist, 
the matrix formalism. This is accomplished by generalizing 
the Kronecker matrix product in order to study matrices 
that have a particular structure. This generalized matrix 
product has proved to have many interesting properties; 
those which we have found most useful are documented in 
this paper. The trace of a matrix assembled with the general
ized Kronecker product is particularly interesting since it is 
a natural generalization of the trace of a matrix formed using 
Kronecker, Hadamard, or regular matrix multiplication. As 
a demonstration of the usefulness of this product, it is ap
plied to the problem of putting the partition function of clas
sical statistical mechanics into a tractable form. 

It is shown that in the special case of a Markov proceSf> 
the partition function takes a transfer matrix formulation, 
while in general a graphical series expansion can be set forth. 
Hence this matrix product provides a connection between 
the transfer matrix and the high and low temperature series 
expansion techniques for the spino! Ising model. 

2. DEFINITIONS OF MATRIX PRODUCTS 

Let us review the standard matrix products!.2 using the 
notation that for an n Xp matrix A the elements are given by 
<iIA~) 1 <J<n, 1 <J<p. For A n Xp and B p X m the regular 
matrix product, which is denoted by the juxtaposition of two 
matrices, yields a matrix C = AB which is n X m and defined 

by <iIC~) = "Lf~ l<iIAI/) <I I Blf)· The Hadamard product 
(element by element multiplication) is defined by C = A8B, 
where all matrices are n X m and the elements are 
<iIC~) = <iIA~) <iIBlf)· For An Xp and B m xqthe Kron
ecker product C = A ® B is of size nm Xpq with matrix ele
ments <ijIClkl) = <iIAlk) (jIBI/). Here the double index 
notation <ijl stands for the lexicographical ordering of the 
elements from A and B to form the matrix elements of C in 
the standard way""" 

We define a row product of two matrices where A is 
n Xp and B is n X q to be a n Xpq matrix C = [A B I with 
elements given by <iIC~k) = <iIAlf) <iIBlk). Similarly a 
column product of two matrices is defined when A is p X n 

a)Present address: Department of Physics and Astronomy, University of 
Georgia, Athens, Georgia 30602. 

and B is qXn to be apqXn matrix 

C = I:} 
with elements given by(jk ICli) = (jIAli) <k IBli). The no
tation throughout this paper will be such that parentheses 
around an array will denote a matrix in the standard form, 
while curly brackets around an array of matrices will denote 
that the matrix is to be assembled using the above row and 
column products. Also the juxtaposition of matrices inside a 
curly bracket will not denote regular matrix multiplication 
unless the matrices are grouped together using parenthesis. 
The relation between the row and column products is imme
diately seen to be given by 

{
AT}T 
BT = [A BI· (2.1) 

This relationship allows us to study the properties of one of 
the products and obtain the corresponding properties of the 
other by the transpose relationship. After studying these 
products, it was found that they had been discussed to a 
limited extent elsewhere:-' 

3. PROPERTIES OF ROW AND COLUMN 
MATRIX PRODUCTS 

Before documenting the properties of the matrix pro
ducts, it would be desirable to understand the origin of most 
of these properties. Just as the Hadamard product of two 
square matrices is a principal submatrix of the Kronecker 
product of the two matrices,>-' it is obvious that the new 
product of two matrices forms a submatrix of the Kronecker 
product of the two matrices. This means that if A is n Xp and 
B is n Xq, then [A B] = PR (A ® B), where PR is an ortho
gonal projector from an n2-dimensional vector space to a 
linear manifold of rank n. Using this fact makes the proofs of 
most of the properties of the new product trivial. Thus only 
one proof has been included (Appendix A); the others have 
been documented elsewhere. 8 To avoid explicit reference to 
the size of the matrices we shall hereafter assume that the 
sizes of the matrices in any equation is such that the matrix 
products are defined. 

Some of the obvious but useful properties of the new 
matrix products include the distributive law, 

[(A + B) CI = [A CI + [B CJ, (3.1) 

and the associative law, 

{A [B Cll = ([A BI C). (3.2) 
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The distributive law assures us that the product is well de
fined, while the associative law means that the set of all ma
trices of column degree n under the column product forms a 
noncommutative semigroup with an identity (a monoid).9 
The associative law when both the row and column products 
are considered allows us to define 

{~ ~}={{~} {~}}={:~ ~D· (3.3) 

Some simple rules for combining the conventional and new 
matrix products are 

fA BJ8{C 01 = {(A8C) (B80) 1 , (3.4) 

{A B j(C ® 0) = {(AC)(BO) j, (3.5) 

and 

I A B C) {~} ~ (AD10(BE)0(CF). (3.6) 

Another property that will be useful in the next section is 
that ifQ is a permutation matrix and 0 1, O2 are nonsingular 
diagonal matrices with 0 = 0 10 2 = 0 1802, then 

(3.7) 

A more general version of this theorem will be stated and 
proved in Appendix A. It is easily shown8 that the properties 
listed above can be extended to arrays with an arbitrary 
number of matrices. 

The constant matrix J which has all elements equal to 
unity plays a unique role in a matrix formed using the gener
alized Kronecker products. Using subscripts to avoid confu
sion about the size of the matrices, we can list the interesting 
identity 

C,xn{Jnxm Anxp Jnxq ) = {J'xm (CA),xp J'Xq)' 
(3.8) 

where either the front or back constant matrices can be ab
sent from both sides of the identity. It is of interest to note 
that since 

A®B = {~ ~} (3.9) 

the property (A ® B)(C ® 0) = (A C) ® (BO) can be derived 
by using Equations (3.3)-(3.9). In order not to obscure the 
structure of a matrix, we shall hereafter suppress the explicit 
listing of any constant matrices that enter the matrix product 
in an off-diagonal position. For example, the Kronecker 
product of three matrices will be denoted by 

J 
B 
J 

(3.9') 

The permutation matrix that interchanges vectors in a 
direct product representation also has an intuitive form us
ing the new matrix products. For example, if Ai' 1.;:;i.;;;;4 are 
n X m matrices, then 

(3.10) 

where I is the n X n identity matrix, J is the n X n constant 
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matrix, and J matrices in the off-diagonal positions are indi
cated by blanks. It is important to realize that this intuitive 
form of regular matrix multiplication in which the J matri
ces play the role of a zero element is not possible when the 
number of nonconstant matrices in each row and column of 
the matrix products to be multiplied is different from one. 

The trace properties of matrices under the new product 
is of special importance since it will be seen in the next sec
tion that the trace enters in classical statistical mechanics. It 
is interesting to note that the trace properties of the new 
product include as special cases the trace properties of Kron
ecker products 

= Tr(AI ® A2 ® AJ) = Tr(Al)Tr(A2)Tr(AJ) 

of Hadamard products 

T«A,QABA;) ~ T{C' A, ~J) 
and of regular matrix multiplication 

(3.11) 

(3.12) 

(3.13) 

where I denotes the identity matrix and the 0i are diagonal 
matrices. 

If all the matrices that enter the product in the diagonal 
position are square diagonal matrices, the matrix formed by 
the product is diagonal. This implies that 

(3.14) 

where By = Ay8AJ. Equations (3.11)-(3.14) are easily gen
eralized to include the trace of products of more than three 
matrices. In the general case it is possible to develop an ex
pansion for the trace in terms of a vector expansion of the 
matrices that enter the new product. This is done in Sec. 4B, 
and in Appendix B it will be shown how this trace can be 
done graphically on the lattice of interactions. 

4. APPLICATIONS 

In this section the formalism is applied to classical sta
tistical mechanics. In particular we shall limit ourselves to a 
system with only two-body and external field interactions, 
and will specialize to the case where each of the particles of 
the system has a countable number of energy levels. Section 
4A will deal with the transfer matrix approach, while in Sec. 
4B the method of obtaining high and low temperature ex
pansions will be illustrated. 

A. Transfer matrix method 

In classical statistical mechanics whenever the system 
has only short-range interactions the analysis of the system 
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as a Markov process yields a transfer matrix method of eval
uating the partition function. lo

•
ll The traditional method of 

obtaining the transfer matrix I2.l3 is to partition the system 
into M layers such that if J-Li denotes the configuration of 
layer i the energy of any configuration is given by 

M 

I [Elll;,J-Li + I) + ElJ-L)) 
.. ~ 1 

where usua]]y M + I = I. Here E,Vt .. ,J-L .. + \) is the interlayer 
interaction energy between layers i and i + I and E,Vt;) is the 
intralayer energy oflayer i. The transfer matrix between lay
ers i and i + I is then constructed by defining its elements to 
be Vt .. 1 p .. IJ-Li + I) exp [ - /3E,Vt ... J-Li + I) - /3E,Vti») ' where 
/3 = (kB T)-I. The partition function is then given by 
Z = Tr(PIP2· .. p M) and in order to perform the trace the 
structure of the transfer matrices Pi are studied. J 

The approach taken in the present work is to deal di
rectly with the two-particle transfer matrix Aij between par
ticles i and} and the matrix Di that describes particles inter
acting with an external field. The matrices 0 .. are diagonal 
with elements given by exp[ - /3Els)] where Ei(S) is the en
ergy of state s when particle i is in an external field. The 
elementsofAij areexp[ - /3E .. is,t)] whereEu(s,t )istheener
gy associated with particle i in state s and particle} in state t, 
while if the state described by this configuration is energeti
cally forbidden [E is,t )-+ 00] Au has a zero element in this 
position. 

For the noninteracting N particle problem the partition 
function is clearly given by the Kronecker product 

.!l' = Tr(e - f3H ) 

(4.1) 

If we now include two-body interactions some of the matri
ces in the off-diagonal positions of the product will no longer 
be constant matrices since for an interacting system some of 
the Eis,t) will no longer be zero. For a classical system the 
two-particle Hamiltonians satisfy exp[ - /3 (Hij + H kl)] 

= exp( - /3Hi)exp( - /3Hkl ), I <JJ,k,I<N, so the partition 
function is given by 

0 1 A'2 Al3 AIN 

O2 A23 A2N 

0 3 

(4.2) 

where Aij' I <i <}<N are the two-particle transfer matrices, 
some of which may be equal to J. Provided the system stud
ied is a Markov process, the transfer matrix can be derived 
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from Eq. (4.2) by choosing the numbering of the particles in 
such a way that use of the generalizations ofEq. (3.3) and 
Eq. (3.14) gives a matrix in the form generalized from Eq. 
(3.13). 

As an example consider a one-dimensional closed chain 
of identical spins that have 0 as an external field interaction 
matrix, and the two-particle transfer matrices A between 
nearest neighbors and S between next nearest neighbors. As
suming an even number of particles gives the partition 
function 

{D AD} {S } 
AS 

{D AD} {S } 
AS 

9" = Tr 

(4.3) 

Equation (4.3) demonstrates that the transfer matrix ob
tained using this method takes a very compact form. It also 
illustrates that although the size and individual elements of 
the transfer matrix depend on the details of the system, the 
underlying structure of the transfer matrix depends only on 
which particles interact. 

A partition function in the form ofEq. (4.2) also can 
facilitate the calculation of the expectation value of an ob
servable &. This is because it is possible to use the algebraic 
properties of the matrix products to simplify the calculation 
of the expectation value < &) = Tr( Oe - f3H

)/ .!l'. 

B. Lattice expansions 

This section developes an expansion for a matrix given 
by Eq. (4.2) and demonstrates that the traditional high and 
low temperature expansions of the spin-! Ising model are 
special cases of this expansion. Appendix B will show how 
the general expansion can be done graphically on the lattice 
of interactions. 

The trace of (4.2) can be written as 

(4.4) 
c 

where Xc is the unit vector along the axis c of the matrix W 
and the sum is over the orthonormal complete set of vectors 
formed by the Xc' The vector X~ represents one configura-
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tion of the system and can be written as the product of the 
vectors X~ T corresponding to particlej being in state k. This 
allows us to define 

Substituting Eq. (4.5) into Eq. (4.4) and using the theorem of 
Appendix A gives 

(4.6) 

where A;; 0; and the prime means that constant matrices 
do not have to be included in the product. Now for each Aij 
we expand the unit vectors in Eq. (4.6) using a complete set 
of expansion vectors. This gives 

"'Xi - ~ ij;:i} d X"'; T _ ~ .Ji ;til T 
k - L.,; akm}/m an k - ~ r kn'1n 

m n 

which puts Eq. (4.6) into the form 

Tr(2f) = L.IT '[I a(mrf;,n1J~m]' 
k1···k .... lj = 1 mn 

(4.7) 

where 1J~m=if~ T Aijt~. The freedom in picking the expan
sion vectors can in general be used to put the series into a 
convenient form, as will be demonstrated in Appendix B. 

As an example let us consider the zero field spin-l Ising 
model on any lattice, and let all interacting spins have the 
two-particle transfer matrix 

A = (:J_ J :: J) . 
Choosing the expansion vectors PI = ill = (D and 

P2 = il2 = (_ D gives 

1Jnm = il~AjJm = 4<5nm cosh(J)[onl + tanh(J)on2] 

and 

a kn = Ykn = 1- 0knOn2' 

Substituting these values into Eq. (4.7) yields 

!1' = cosh P(J) LIT' [1 + ( - l)(k, + k)tanh(J)], 
k, ... k N = I ij= I 

(4.8) 

where P is the total number of interacting pairs. Equation 
(4.8) is the traditional high temperature expansion I. as can 
be seen by writing out the product and doing the sum for 
each of the terms. The standard technique for deriving the 
high temperature expansion uses the identity e JK = cosh(J) 
X [1 + Ktanh(J)] which is valid for K = ± 1, and yields a 
simpler derivation of Eq. (4.8). However the present deriva
tion has the advantage that it is easily generalized to other 
systems and other temperature regions. For example, low 
temperature expansions can be extracted from Eq. (4.7) by 
choosing the expansion vectors It and iff T to project out one 
of the ground states of the system, the other expansion vec
tors being chosen in a convenient manner. 
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5. SUMMARY 

In this work a new type of matrix product has been 
introduced and some of its properties have been document
ed. We found that the trace properties were of particular 
interest since they are directly applicable to the evaluation of 
the partition function of a classical system with two-body 
interactions. This formulation led to an elegant procedure 
for deriving the transfer matrix for the partition function 
whenever the system had a Markov nature. In the general 
case the matrix trace was shown to yield a series expansion, 
and it was illustrated in Appendix B how the expansion 
could be carried out on the interaction lattice using bicolored 
bonds and vertex weight functions. This series expansion 
was seen to be quite general. 

It was shown how the high and low temperature expan
sions could be extracted from the formalism. By deriving the 
traditional expansions and the transfer matrix from one 
starting point, a connection between these two techniques in 
classical statistical mechanics was demonstrated. A subse
quent paper will use the formalism developed here to study 
the mapping between different systems in classical statistical 
mechanics. 

APPENDIX A 

Theorem: Let a be an n X m matrix with at most one 
nonzero element in each row, and let the size of A be m X I 
and B m Xp. Also let the two n X m matrices 0" O2 satisfy 
the conditions: (i) 0 = 0 1802, (ii) if 0 has a nonzero ele
ment somewhere in the row, then both 0 1 and O2 have zero 
elements in the row wherever 0 does, and (iii) if a has all 
zeros in a row, then either 0 1 or O2 has all zeros in that row. 
Then 

OIA BJ = I(OIA) (02B)J. 

Proof Let 1 <J<.n, 1 <j<.l, 1 <.q<.p, and let t be the ele
ment of row i of a which is nonzero, assuming there is such 
an element. Then using elementary steps one has: 

(iIOIA BJljq) 
m 

= I (iIOls>(sIIA BJljq) = «iIOlt»«tI!A BJliq» 
s= I 

= «iIOllt) (iI02It» «t IA~) (t IBlq» 

= (~I (iIOlls) (siAl!) )C~I(iI02Iu> (uIBlq> ) 

= (iIOIAl!) (iI02Blq) = (ill (alA) (02B) lliq)· 

If all the elements in a row of a are zero, then all the 
elements in that row of 01 A B J are zero. If one also notices 
that provided all the elements of one row of either 0 1 or O2 

are zero the elements of that row of I (OIA) (02B) J are zero, 
then the theorem is proved. 

APPENDIXB 

This Appendix documents a graphical technique of do
ing the sum in Equation (4.7). For simplicity we assume that 
all the matrices Aij are M X M. The trace is done graphically 
by following the steps below, where P is the number of inter
acting pairs. 
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(1) Draw M 2P identical directed graphs (interaction 
lattices). Each graph should have N vertices and an arrow 
from point i to j if the Aij matrix of Eq. (4.7) is not the 
constant matrix J. 

(2) Color the head and tail of each bond choosing one of 
M colors, and make the coloring of each of the M 2P graphs 
different. Each bond can be colored in M 2 ways so M 2P, the 
number of graphs, is the number of possible colorings. 

(3) Assign a numerical factor to each bond of every 
graph. This numerical factor should be the 1J~m ofEq. (4.7) 
for an arrow directed from point i to pointj with tail of color 
n and head of color m. 

(4) Assign a vertex weight PI to every vertex of each 
graph. This vertex weight is found for vertex I of any graph 
by: (i) multiplying together a r%n for each arrow directed 
from vertex I to vertexj with a tail of color n and a a%m for 
each arrow entering vertex I from vertex i with a head of 
color m (ii) summing this product over k, 1 <k<M to give the 
vertex weight Pl' 

(5) Assign a numerical factor to each of the M 2P graphs 
by multiplying together the vertex weights assigned to each 
of its N vertices and the arrow weights assigned to each of its 
Parrows. 

(6) The trace expansion ofEq. (4.7) is then equal to the 
sum of the numerical factors assigned to each of the M 2P 

graphs. 

The procedure above is seen to be correct by writing out 
the product in Eq. (4.7) (which is the sum of M 2P factors) 
and doing the summation over the k i l<i<Nto give each 
factor the value assigned to one of the M 2P graphs above. 

This graphical technique can be simplified by choosing 
the expansion vectors ofEq. (4.7) in a convenient way. The 
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choice I~ = if~ allows the graphical technique to be done 
without distinguishing the head of the arrow from the tail. 
Furthermore only bonds of a single color need to be used if 
the expansion vectors are chosen to make 1J~n ex: omn. A fur
ther reduction in the number of graphs that are assigned 
nonzero weights can be obtained by using as expansion vec
tors any eigenvectors of a two-particle transfer matrix that 
have eigenvalue zero. 
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Jost solutions and Green's functions for the three
dimensional Schrodinger equationa) 
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In an earlier paper. in which the minimal scattering data needed to reconstruct the scattering potential 
was found for the three-dimensional inverse problem. a Green\ function appeared very naturally in this 
context. We use this Green's function to construct Jost solutions for the three-dimensional problem which 
are closely analogous to those for the one-dimensional problem. The Green's function and the Jost 
solutions differ from those given by Faddeev. The completeness relations of the new Jost solutions are 
given simply in term, of the scattering amplitude. They are the same as those given in an earlier attempt 
to obtain an algorithm of the Gelfand-Levitan type for the three-dimensional problem. However. it is not 
yet clear that the Jost solutions of the present paper are the same as those of the earlier paper. since 
different methods are used to define the two sets of Jost solutions. The one-dimensional problem is 
discussed in some detail to motivate our definition of the Jost solutions for the three-dimensional problem. 
The present paper is the first of three papers which report on research arising from the three-dimensional 
inverse problem. 

1. INTRODUCTION 

This is the first of a series of papers arising from our 
search for an algorithm of the Gel'fand-Levitan type for the 
inverse problem for the three-dimensional Schrodinger 
equation. Though algorithms of the Gel'fand-Levitan type 
have been given earlier (Refs. 1-3), we have been looking for 
others, which in a certain sense are more closely analogous 
to the algorithm for the one-dimensional problem. As yet we 
have not achieved our objective. However, we have obtained 
some interesting results for possible Jost solutions and corre
sponding Green's functions, which are direct generaliza
tions for those for the one-dimensional problem and which 
fall squarely into the direct scattering problem as described 
in Ref. 4. The proposed Jost solutions differ from those used 
in Refs. 2 and 3 and have much simpler completeness rela
tions in terms of the scattering amplitudes. These complete
ness relations are, in fact, identical to those for the Jost solu
tions of Ref. 1. In contrast to the method of obtaining the 
Jost solutions by means of appropriate Green's functions as 
in the present paper, a simple triangularity condition was 
assumed for the Gel'fand-Levitan kernel and the Jost func
tion was constructed through the use of this kernel. Despite 
the agreement of the completeness relations between the Jost 
solutions of the present paper and those of Ref. 1, it is not yet 
clear to us that the two sets of Jost solutions are identical. 

In the one-dimensional case, the completeness relations 
of the Jost solutions involve the minimal scattering and 
bound state data needed to recover the potential. In the 
three-dimensional case, the completeness relations involve 
redundant data. In the one-dimensional case, the complete
ness relations of the Jost solutions are essentially equivalent 
to the Gel'fand-Levitan equation or algorithm. Hence the 
present paper leads to the possibility that the three-dimen
sional algorithm will contain redundant data as its input and 
constraints will have to be added to remove the redundancy. 
(This difficulty also appears in the algorithms of Refs. 1-3.) 

a'rhis research was supported by the Army Research Office under Grant 
Number DAAG29-78-G-0003. 

The second paper of this series will rederive a nonlinear 
method of finding thescattering potential from the minimal 
data, this method being first given in Ref. 5. The rederivation 
will use the completeness relations of the Jost solutions, in
stead of those for the outgoing wavefunctions and will be 
carried out both for the one- and three-dimensional prob
lems. The second paper is intended to add weight to our 
arguments that the three-dimensional Jost solutions of the 
present paper and the corresponding Green's function are 
particularly appropriate. 

In the third paper we shall review the process of obtain
ing the Gel'fand-Levitan kernel in terms of the Green's 
function and the scattering potential for the one-dimension
al case as a prototype of a similar calculation for the three
dimensional case. In particular, the "double Fourier trans
form" of the Green's function which gives the nature of the 
triangularity of the Gel'fand-Levitan kernel will be shown 
explicitly for three dimensions. Unlike the case for one di
mension, the double Fourier transform (essentially the influ
ence function of a homogeneous hyperbolic equation) is a 
distribution. Though formally this distribution has a simple 
appearance, it has a sufficiently formidable geometrical inte
pretation to make it difficult to write the integral equation 
for the Gel'fand-Levitan kernel in terms of the scattering 
potential. At this point we cannot yet express the scattering 
potential in terms of the Gel'fand-Levitan kernel. Hence, at 
this time, our kernel is at a distinct disadvantage with respect 
to that used in Refs. 2 and 3. Nevertheless, we believe the 
closeness of our approach to the one-dimensional analog 
makes the effort of obtaining the Gel'fand-Levitan kernel 
and its properties from our Green's function and the scatter
ing potential a worthwhile objective. 

These three papers, then, represent a status report of a 
new approach to a very difficult problem: the obtaining of 
useful algorithms for solving the inverse problem in three 
dimensions. 

We shall refer very heavily to our earlier work (Refs. 1, 
4, and 6) and, for the sake of brevity, will not repeat argu
ments which occur in these references. We shall also use a 
simpler notation where possible and relate it to the earlier 
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notation. Also in the present paper we shall assume that 
there are no bound states. 

2. THE GREEN'S FUNCTION FOR THE ONE
DIMENSIONAL PROBLEM 

We define y t (x) by 

Y j (x) = lim _1_. = ± rri8(x) + !...., (1) 
- •• + 0 X=FIE X 

where Pstands for the principal part when l/(x -- x') is used 
as the kernel of an integral operator. 

Let us consider the solutions ¢(xlp) of the one-dimen
sional Schrodinger equation 

[-- ::' + V(X»)lP(x[P)=P't,b(x[P) (- 00 <P< + (0), 

(2) 

which we shall denote by ¢ ± (xlp) which satisfy the integral 
equations 

lP T (xlp) = lPo(xlp) + J: oc Gp ± (xlx')V(x')¢ ± (x'lp) dx', 

(3) 

where t,bo(xlp) = (2rrtl/2e iPX is the eigenfunction of 
Ho = - d 2/dx' and Gp ±: (xix') Gp ± (x - x') are the out
going ( - ) and incoming ( + ) Green's function given by 

Gp J (x) = (l/2rr) J~ oc y l (P2 - k ')e
ikx 

dk. (4) 

The eigenfunctions lP t are called the outgoing and in
coming wavefunctions. 

The integral in Eq. (4) is readily carried out to give the 
well-known result 

(5) 

The Jost solutions (from the left) are defined to solutions of 
Eq. (2) which satisfy the boundary condition 

lim f(xlp) = eipx . (6) 
X· x 

These functions are readily seen to obey the integral 
equation 

f(xlp) = eipx + f"w GpAxlx')V(x')(x'[p) dx', (7) 

where GpAxlx') GpAX - x') is the Jost Green's function (J 
stands for "Jost") given by 

sinpx 
Gp.1(x) = 17(x)--. 

p 
(8) 

In Eq. (8) 17(X) is the Heaviside step function defined by 

17(x) = 1 for x > 0, 17(X) = 0 for x < O. (9) 

We should like to write GpJ as a Fourier transform of a 
distribution y(p,k) in a manner analogous to Eq. (4). We 
shall show 

GpJ(x) = (l/2rr) J: 00 y(p,k )e
ikx 

dk , (10) 
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where 

y(p,k) = 17(k)y _ (p2 - k 2) + 17( - k)y + (p2 _ k 2). 
(11) 

The relation given by Eqs. (10) and (11) seems not to be 
generally known. We first came across y(p,k ) in carrying out 
research on the inverse problem of Ref. 5 in which a non
Gel'fand-Levitan technique was used. The three-dimen
sional analog of y(p,k ) also appears in that paper. The three
dimensional analog will be used to define a Jost Green's 
function analogous to GpJ in the manner of Eq. (10). The 
three-dimensional Jost solutions will then be constructed as 
the solution of an integral equation which is the generaliza
tion of Eq. (7). 

We note that y(p,k ) is formed by projecting y_ and y+ on 
the positive and negative k axes respectively. We reverse the 
projections to obtain y(p,k): 

y(p,k) = 17( - k)y _ (p2 - k 2) + 17(k)y + (p2 _ k 2). 
(12) 

The corresp~nding Green's function GpJ(x) which is ob
tained from y(p,k) as in Eq. (10) can readily be shown to be 
given by GpJ(x) = GpA -:- x) and is used as in Eq. (7) to con
struct the Jost solutionsf(xlp) from the right. These are solu
tions of Eq. (2) which satisfy the boundary condition 

(13) 

We shall now give a simple proof that the use ofEq. (11) 
in Eq. (1) gives the Green's function GpJ(x) ofEq. (8). From 
Eqs. (1) and (11) 

y + (p2 _ k 2) = Y _ (p2 _ k 2) + 2rri8(p2 _ k 2) (14) 

so that 

y(p,k) = y _ (p2 - k 2) + 17( - k )2rri8(p2 - k 2). (15) 

But 

17( - k )8(P' - k ') = _1_17( - k )8(k + [PI). 
21pl 

(16) 

Thus on using Eq. (16) in Eq. (IS), on substituting into Eq. 
(12), and finally on using Eqs. (4) and (5), 

GpAx) = - _1_' exp( + ilpllxl) + [pi I exp( - i[plx), 

2[P1 2 (8') 

which is identical to Eq. (8). 

3. THE THREE-DIMENSIONAL GREEN'S 
FUNCTION 

For three-dimensions, the outgoing and incoming wave 
functions are solutions of 

[ - \72 + V(x)]¢(xlp) = p2¢(xlp) (p = Ipl), (17) 

which satisfy the integral equations 

¢±(xlp) = t,bo(xlp) + J Gp ± (XIX/)V(X/)¢± (x'lk) dx' (18) 

where 

t,bo(xlp) = (l/2rr)3/2 exp[i(p·x)] (18a) 
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and the Green's functions for the outgoing and incoming 
wave functions are given by 

G (xlx/) = G (x _ x') = _ (11417') exp[ "FiplX - x/I] . 
P± p± lx-x/I 

(18b) 

As is well known, Gp ± (x) can be represented as the Fourier 
transform of the y ± functions as follows: 

Gp ± (x) = (1I21T)J y ± (P2 - k 2)e'k-xd k 

(k = Ikl). (19) 

Equation (19) is the obvious analog ofEq. (9) for the one
dimensional case. It is our objective to give a G p./..x) which is 
analogous to GpJx) of the one-dimensional problem and 
thereby define a three-dimensional Jost solutionf(xlp) by 

f(xlp) = eiP'x + f Gpjx - x/)V(x'}f(x/lp)dx', (20) 

Our method for finding this Green's function is to give a 
function analogous to the function y(p,k), Eq. (11), of the 
one-dimensional problem and take its Fourier transform. 
Our choice for this function will be denoted by y(p,k ), where 
we now use optical coordinates. These coordinates are de
fined with respect to an axis, which we shall take to be the z 
axis. For any vector Y we define the optical coordinates 
which consist of an "optical radius" Y = IYI if the z compo
nent ofY is positive and Y = -IYI, ifY has a negativez 
component, and angular variables e, t/>, which give the direc
tion of Y / Y. This unit vector always points in the positive z 
direction (i.e., has a positive or zeroz component). The range 
of e and t/> are 0 < e < 17'/2 and 0 < t/> < 217'. That is, these angu
lar variables are the usual ones for spherical polar coordi
nates when they specify the unit vector's direction. Hence
forth, unless we specify otherwise, we shall mean optical 
coordinates when we use polar coordinates notation for vec
tors. Then in terms of optical coordinates we define y(p,k ) 
precisely by Eq. (11) with, however, a three-dimensional in
tepretation. Thus GpJ is given by 

GpAx) = (1I21T)J e,k'Xy(p,k) d k. (21) 

It is readily verified that 

(P2 + \l2)GpJX) = o(x), (22) 

as is required of all Green's functions. 

As is the case for the analogous Green's functions of 
Refs. 2 and 3, to evaluate the integral ofEq. (21) seems im
possible. It may be that GpJ is a distribution. 

We shall now compare this Green's function with those 
used in Refs. 2 and 3. Toward this end we note that our 
function y(p,k ) is based on the choice of a particular axis, 
namely the z axis. Actually one could pick any direction 
specified by the unit vector a. One would then obtain 
Green's functions for every a and a corresponding set of J ost 
functions, which are equivalent to those obtained previously 
obtained by choosing a to be a unit vector pointing in the 
positive z direction. Let us denote the more general distribu
tion by Ya(p,k). Then 
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Ya(p,k) = TI( a·k)y_(p2 - k 2) + TI( - a·k)y+(p2 - k 2). 
(23) 

When a points in the positive z direction, we recover y(p,k ) 
when wenoteTl(kz) = TI(k )ando( - kz) = TI( - k )inaccor
dance with our definition of optical coordinates, 

We also recover the one-dimensional case when we real
ize that in one dimension a has only two directions, namely 
in the direction of the k axis and opposite to that direction. 
The first case gives us y(p,k ) and the second y(p,k ). We shall 
now show that the Green's functions of Refs. 2 and 3 differ 
from ours and do not reduce to the one-dimensional func
tions which are known to be correct. Thus, in this sense at 
least, our Jost functions are a closer analog of those for one 
dimension. 

In Refs. 2 and 3, the distribution corresponding to Ya is 
a function of the vector p instead of only the magnitude as in 
Eq. (23). In terms of our notation their distribution Ya(p,k) is 
given by 

y u(p,k) = TI[a-(p - k)]y_(P2 - k 2) 
+ 1l[ - a·(p - k)]y+(P2 - k 2). (24) 

Clearly this distribution does not reduce to Eq. (11) in the 
one-dimensional case, as our distribution does. Indeed, the 
distribution corresponding to Eq. (24) in the one-dimension
al case appears to be undefined, being of the form ofa sum of 
undefined products of distributions. 

4. NORMALIZATION AND COMPLETENESS 
RELATIONS FOR THE ONE-DIMENSIONAL 
JOST SOLUTIONS 

We shall now develop the normaliztion and complete
ness relations for the one-dimensional Jost solutions. The 
method which we shall use will be more fundamental than 
that used in Ref. 6. Our intent is to use the one-dimensional 
treatment as a prototype of the three-dimensional one. The 
parallels are very close. 

Instead of using ¢o(xlP) andf(xlP) it will be convenient 
to define, using the notation of Refs. 4 and 6, (xIHo,Ao;E,a) 
and (xIH,A;E,a) by 

(x I Ho,Ao;E,a) = [21P1]-II2¢o(xlP), (25) 

(xIH,A;E,a) = [41Tlplr 1/:f(xlP). 

In Eqs. (25) and (26) and later 

E = p2, a = sgnp = ± 1. 

(26) 

(27) 

We shall also find it useful to define (xIH,A;E,a) ± by 

(xIH,A;E,a) ± = [21P1]-1I1¢ ± (xlP). (28) 

Then IHo,Ao;E,a) are the eigenkets of Ho having the 
eigenvalue E. The operator Ao is defined to be the operator 
(which commutes with Ho) whose eigenkets are chosen to be 
IHo,Ao;E,a) with corresponding eigenvalue a. Similarly 
IH,A;E,a) ± and IH,A;E,a) are the eigenkets of H and A 
having the eigenvalues E and a. 

In Ref. 4 wave operators U, U ± are introduced such 
that 

Harry E. Moses 1153 



                                                                                                                                    

<xIH.A;E,a) = <xl U IHo.Ao;E,a), 

<xIH.A;E,a) ± = <xlU ± IHo.Ao;E,a). (29) 

Equations (3) and (7) are equivalent to the following integral 
equations for the wave operators: 

U ± = 1+ i oo 
Y ±(E - Ho)VU ±o(E -Ho) dE, 

U = 1 + L" [OA". + ly_(E - Ho) + OAo. _ ly+(E - Ho)] 

X VUo(E - Ho)dE, 

(30) 

where the operators o(E - Ho) and 0 Ao.a are defined by 

a 

(30b) 

It should be noted that it follows from the definition of 
<xIHo.Ao;E,a) that 

L roo I Ho.Ao;E,a)dE <Ho.Ao;E,al = I (31) 
a Jo 

so that 

o(E - Ho)IHo.Ao;E',a) = o(E - E')IHo.Ao,E',a), 
(32) 

o A,,,aIHo.Ao;E,a') = oa'.aIHo.Ao;E,a'). 

In Ref. 4 it is shown that U can be expressed in terms of U ± 

as follows 

(33) 

where M_ and M+ are operators which commute with Ho and 
are generalizations of the Jost functionsf(k) andf*(k) re
spectively for the radial equation (see, e.g., Ref. 7). From the 
fact that there are no bound states 

U ut = U U t =1 - + + ' 

where the dagger means Hermitian adjoint. 

It is our intent to find the weight operator W 

W = M = 1M = It = M :;: 1M :;: It. 

We see that 

UWut=I. 

(34) 

(34') 

(35) 

In Refs. 4 and 6 it is shown that Eq. (35) is equivalent to 
the Gel'fand-Levitan equation in one dimension. It is also 
equivalent to the Gel'fand-Levitan equation in three dimen
sions, if a triangular operator K can be found such that 
U = I + K. The problem of finding such a K or defining 
what triangularity means, for that matter, is the subject of 
Refs. 1-3 and of the present series of papers. 

Returning to the one-dimensional problem, Eq. (35) 
also gives the completeness relations for the eigenfunctions 
IH.A;E,a), for Eq. (35) can be written 
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L Loo dE <xIH.A;E,a) <alwc(E)la')<H.A;E,a'lx,) 
a,a' 0 

= o(x - x'), 

where <alwc(E)la,) is defined by 

<Ho.Ao;E,al W IHo.Ao;E ',a') = o(E - E ')<alwc(E)la,). 
(36) 

From Eq. (34) 

<alwc(E)la,) = L <a III :t I(E)l al/) <al/lll:t It(E)la'), 
a' 

where 

<Ho.Ao;E,a 1M :t IIHo.Ao;E ' ,a') 

= o(E - E')<alll:t I(E)la,), 

<Ho.Ao;E,a 1M :t It IHo.Ao;E ',a') 

= o(E - E')<alll:t It(E)la,). 

(37) 

(38) 

From the definition of Hermitian adjoint it follows that 

<alll:tlt(E)\a,)= [<a'\Il:tI(E)]la)*. (39) 

From Eq. (1) 

U = 1 + 21Ti8A", _ lioo 
o(E - Ho)VUo(E - Ho) dE 

+ f'" y_(E - Ho) VUo(E - Ho) dE . (40) 

From Eq. (30a), it is readily seen that the solution ofEq. (40) 
is 

U = U _ [1 + 21TioAo. _ I fO o(E - Ho)VUo(E - Ho)dE ]. 

(41) 

On comparing with Eq. (34), we have 

M _ = [I + 21Tio A". _ 1 f" o(E - Ho) VU8(E - Ho)dE] 

= I + 21Tio A,,, _ I iT o(E - Ho) vu _ o(E - Ho)dE.·M _ 

(42) 

Thus 

[I - 21TiO A". _ 11"° o(E - Ho) VU __ o(E - Ho)dE ]M _ = 1 

(43) 

and thus 

M = I = I - 21Ti8Ao. _ lioo 

8(E - Ho)VU _8(E - Ho) dE. 

(44) 

From Ref. 4 the scattering operator S is given in terms 
of U_ by 

S = 1 - 21TiiT o(E - Ho)VU _o(E - Ho) dE. (45) 
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We now have a simple relationship between the operators 

M = landS: 

(46) 

from which, on using the fact that the scattering operator is 
unitary, we have 

M = It = S-18A" _ 1+ 8Ao, + l' (47) 

Finally, from Eq. (34) 

W = I + 8A " _ IS8Ao, + 1+ 8A " + IS t8Ao, _ l' (48) 

which is equivalent to 

(alwc(E)la')=8a,a.+8a._18a',+I(-IIS(E)1 + I) 

+ 8a, + 18a · _ 1[( - IIS(E)1 + 1)]*, 
(49) 

where (aiS (E)la'> is defined by 

(Ho,Ao;E,aIS lHo,Ao;E',a') = 8(E - E ')<aIS(E)la'>. 
(50) 

Explicitly, 

f
+OO 

<aIS(E)la') = 8a.a· - 21Ti _ 00 (Ho,Ao;E,alx) 

x V(x)(xIH,A;E,a')_ dx (51) 

The usual reflection coefficient b (P) is defined by 

b(P)=(-IIS(E)1 + I), p=EII2. (52) 

Thoughb (P) is defined only forpositivepin Eq. (52), one can 
extend the definition to negative p by analytic continuation. 
One obtains the well-known result 

b ( - p) = [b (P)]*. (53) 

On using Eqs. (49) and (53) into Eq. (36) and also using Eq. 
(26), we obtain the now familiar completeness relation 

(21T)-1 [J_+ 00'" f(x 1P'){*(x' IP )dp 

+ f-+ ","" j*(xlP)(*(x'lP)b (P)dP] = 8(x - x'). (54) 

As mentioned above, this completeness relation is 
equivalent to the Gel'fand-Levitan equation and contains 
the data needed to reconstruct the potential, namely the re
flection coefficient b (P). 

Our procedure for obtaining the weight operator Win 
this paper differs considerably from that which we used in 
our original work (Ref. 6). In Ref. 6, W was obtained by first 

finding the functions <a III = I(E)la,) by comparing the 
forms of the wavefunctionsj (x IP) and "'_(x IP) for large nega
tive x. By contrast, in the present paper, the relation of the 
Green's functions gives us the weight operator. This ap
proach is preferable in three dimensions because one does 
not want to prejudge the asymptotic forms of the wavefunc
tions. As it turns out, however, in three dimensions the as
ymptotic assumptions of Ref. 1 give the same results as the 
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Green's function approach. It is not yet clear to us whether 
the Jost solutions of the present paper are the same as those 
of Ref. 1. It seems unlikeI y, since the triangular properties of 
the Gel'fand-Levitan equation which come from the present 
series of papers are a generalization of those of Ref. 1, as will 
be seen in the third of the papers. 

It should be mentioned in Refs. 2 and 3 the weight oper
ator is also obtained by comparing the Green's function for 
the Jost function with that of the outgoing wave. However, 
because of the Green's function which they use, they obtain a 
more complicated result than we do, ours being the natural 
three-dimensional generalization of the weight operator of 
the present section. 

5. NORMALIZATION AND COMPLETENESS 
RELATIONS FOR THE THREE-DIMENSIONAL 
JOST SOLUTIONS 

It will be convenient to introduce the wavefunctions 
<xIHo,Ao;E,a,e,ifJ) and <xIH,A;E,a,e,ifJ) defined by 

(x I Ho,Ao;E,a,e,ifJ ) = E 114[(sine)l2]112"'o(xlp), 
(55) 

(xIH,A;E,a,e,ifJ) = (21Tt 312E 114[(sine )/2]1/:f(xlp). 

In Eq. (55), a is the sign of the optical radius ofp (= ± 1) 
and e, ifJ are the angular variables of the optical coordinates. 
Also E = IpI2 and Ao,A denote collectively the operators 
whose eigenvalues are a,e,ifJ. We note the completeness 
relationship 

L (00 dE (1T12 de (21T difJ 
a Jo Jo Jo 

x IHo,Ao;E,a,e,t/J > <Ho,Ao;E,a,e,ifJ I = I. (56) 

As for the one-dimensional equation we can introduce an 
operator U such that 

<xIH.A;a,e,ifJ) = <xl U IHo.Ao;E,a,e,ifJ) (57) 

and the operators U ± which can be used to construct the 
outgoing and incoming eigenfunctions of H. The procedure 
for finding the weight operator W is identical to that for the 
one-dimensional problem of the previous section; all equa
tions for the operators are identical. In particular, Eq. (48) is 
valid where the subscripts on the Kronecker 8 refer only to 
the variable a. Thus writing 

<Ho,Ao;E,a,(),ifJ I W IHo,Ao;E' ,e ',ifJ ') 

= 8(E - E ')(a,e,ifJ Iwc(E)la',() ',ifJ ') 

and 

<Ho,Ao;E,a,e,t/J IS I Ho,Ao;E ',e ',ifJ ') 

= 8(E - E ')<a,e,ifJ IS(E)la',e ',ifJ '), (58) 

using the fact that S is unitary and the relation (proved in 
Ref. 1 with a slightly different notation) 

<a,e,t/J IS (E)la',e ',t/J ') = < - a',e ',t/J 'IS(E)I - a,e,t/J), 
(59) 

we have 

<a,e,t/J IWc(E)la',e ',ifJ ') 
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= Da,a.(e - e ')D(c/J - f/J ') + Da, _ IDa'. + I 

X < - I,e,c/J IS(E)I + I,e',f/J') 

+ Da. + IDa'. _ 1[< - I,e,c/J IS (E)I + t,e ',c/J ')]*. (60) 

The completeness relation for the Jost solutions or equiv
alently the functions <xIH,A;a,e,f/J) are obviously 

('" dE L, (11'12 de 
Jo a,a Jo 

(211' 
X Jo dc/J <xIH,A;E,a,e,f/J) <H,A;E,a,e,c/J Ix') 

(00 ('T!2 (11'12 (211' 
+ Jo dE Jo de Jo de 'Jo dcfJ 

(211' 
X Jo dc/J '<xIH,A;E, - I,e,f/J) 

X< - t,e,c/J IS(E)I + t,e ',f/J ') <H,A;E, + t,e ',f/J 'Ix') 

(00 (11'/2 (11'12 (211' 
+ Jo dE Jo de Jo de ' Jo df/J 

(21T 
X Jo dc/J '<xIH,A;E, + t,e,c/J) 

x[< - t,e,c/J IS(E)I + I,e',f/J ')]*<H,A;E, - l,e',f/J 'Ix') 
= D(X - x'). (61) 

We can make this completeness relation take on a closer 
resemblance to the completeness relation for the one-dimen
sional Jost solutions [Eq. (54)] by introducing another form 
for the Jost solutions. Let us definef(xlp,e,c/J) by 

f(xlp,e,c/J ) 

= p(sine )l/'l'(xlp) 

= (211')312(2)II2(E)1I4<xIH ,A;E,a,e,c/J ), (62) 

wherep,e,c/J are the optical coordinates ofp, a = sgnp, E = p2 
as before. Also for positive p let us define ble,c/J Ie ',f/J ') by 

bp(e,f/J Ie' ,f/J ') = < - l,e,f/J IS (E)I + l,e',c/J '). (63) 

We can define ble,f/J Ie ',c/J ') for negativep by analytic con
tinuation. In Ref. 1 it is shown that 

b -le,c/J Ie ',c/J ') = [bp(e,c/J Ie ',c/J ')]*. 

Furthermore, fromf(xl - p) = (f(xlp)]*, 

f(xl - p,e,f/J) = - [J(xlp,8,f/J )]*. 

The completeness relation (61) takes the simpler form 

l~ 00

00 

dp 111'/2 de f11' df/J f(xlp,e,f/J )f*(x'Jp,e,f/J) 

+ f + co dp (11'/2 de (11'!2 de' (211' dc/J (21T df/J' 
- co Jo Jo Jo Jo 

xf*(xJp,e,c/J )bp(e,f/J Ie ',c/J ')f*(x' I,p,e',f/J ') 

= D(X - x'). 

(64) 

(65) 

(66) 

Except for minor notational changes this completeness rela
tion is identical to that for the corresponding eigenfunctions 
of H in Ref. I, where it was found without the use of a 
Green's function, but an assumption was made about the 
triangularity properties of the Gel'fand-Levitan kernel or, 
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equivalently, about the asymptotic forms for the 
eigenfunctions. 

To see the close analogy with the one-dimensional the
ory, one should compare Eq. (66) with its one-dimensional 
counterpart, Eq. (54), 

The function ble,f/J Ie ',c/J ') is simply related to the am
plitude ofthe spherical wave which, forlarge Ix I in !,V-(x I p) of 
Eq. (18), describes the scattering. It is readily shown (see, 
e.g., Ref. 1) 

lim !'v-(xlp) 
r--... en 

.. ieiplrl 
= !'vo(xlp) - [211' SlIlASlIle]-ll2-blA,a-le,f/J), (67) 

p!rl 
where r ,A,a- are the optical coordinates ofx and p [taken> 0 
in Eq. (67)], e, f/J are those ofp. 

As mentioned earlier, the completeness relation (54) for 
the one-dimensional problem is equivalent to the 
Gel'fand-Levitan equation and contains the minimal data 
from which the scattering potential can be reconstructed, 
namely the reflection coefficient. It seems likely that the 
completeness relation (66) for three dimensions is equivalent 
to the Gel'fand-Levitan equation for an appropriate trian
gularity condition on the Gel'fand-Levitan kernel. Howev
er, the information that it contains is redundant in the fol
lowing sense. It was shown in Ref. 5 that the potential can be 
reconstructed knowing bp «(),c/J I(),f/J), i.e., the reflection coef
ficient back along the same ray along which the incident 
wave was propagating, all directions of propagation being 
confined to a hemisphere. By contrast, the completeness re
lation Eq. (66) contains more data, namely bp (e,c/J Ie ',c/J '). In 
Ref. 5 one can see that, in principle at least bp (e,c/J I()',f/J ') can 
be found from b p «(),c/J I e,c/J ) by first finding the potential V (x), 
then finding the eigenfunction !'v-(xlp), and, finally, using the 
asymptotic relation (67). The relation betweenbp (e,f/J le',f/J ') 
and bp «(),f/J I(),c/J) represents a constraint which may have to 
be used together with the Gel'fand-Levitan equation to pro
vide an inverse method for the potential which depends on 
the minimal data. Since the method of Ref. 5 depends heavily 
on the fact that the potential V (x) is diagonal in the x repre
sentation, that is, it is a multiplicative operator in that repre
sentation, the constraint is a consequence of this fact. It 
might be noted that we have already used the fact that the 
potential is a real operator in the derivation of the complete
ness relation (66) because Eq. (59) is a consequence of this 
fact. However, it is clear that we have not exhausted the 
relations that can be obtained from the fact that the potential 
is multiplicative. The constraint will be one of these relations, 
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The spectral properties of many-electron atomic 
Hamiltonians and the method of configuration interaction. 
III. Compactness proof associated with an infinite system 
of linear equations for n -electron atoms 

M. H. Choudhury 
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An infinite system of linear equations is derived from the Schrodinger equation of an n -electron atomic 
system (n;:: 3). The linear operator defined by this system of equations is then shown to be compact in a 
region of the complex energy plane which excludes the various bound state and multi particle scattering 
cuts (i.e .• the essential spectrum of the Hamiltonian of the n -electron atomic system). It is further shown 
that the method can be used to deal with the case of the diatomic molecule. The above result then 
permits one. bOth in the case of the n -electron atomic system and the diatomic molecule. to truncate the 
infinite system of equations in question with the assurance that as the size of the truncated system is 
increased. the energy eigenvalUes computed from the truncated system will uniformly converge to those of 
the original infinite system. 

1. INTRODUCTION 

In the final paper of this series, we derive from the 
Schrodinger equation of an n-electron atomic system an infi
nite system oflinear equations which when truncated yields 
a system of N XN linear equations whose eigenvalues uni
formly approximate the lowest N eigenvalues of the original 
infinite system. We have already shown in the first of the 
present series of papers (hereafter referred to as I) that a 
naive generalization of the method adopted for a two-elec
tron atomic system will oot work. As mentioned in the pre
vious paper (hereafter referred to as II), the idea is to obtain 
an infinite system oflinear equations which define a compact 
linear operator in a suitable region of the complex energy 
plane. To accomplish this, we adopt a method whose under
lying idea is that due to Weinberg, I and was applied by him 
to deal with multiparticle scattering processes. We shall not, 
however, use the diagrammatic language or techniques em
ployed in that paper to derive our equations. 

The proof of compactness that follows exhibits in a 
clear and detailed fashion the spectral properties of the Ha
miltonian of the n-electron atomic system. The spectral 
structure of an n-electron Hamiltonian is a complex one. The 
reader will therefore appreciate that any analytical method 
(like the one we have used) which picks out and exhibits 
explicitly the various multiparticle cuts and their branch 
points in great detail will inevitably be an involved and 
lengthy study. 

In Sec. 2 we derive from the Schrodinger equation of an 
n-electron atomic system (n;;;.3) an infinite system of linear 
equations. In Sec. 3 we show that the linear operator defined 
by this system of equations is compact in a region of the 
complex energy plane which excludes the various multipar
ticle cuts. For n = 3, we find that these mUltiparticle cuts 
which constitute the essential spectrum of the Hamiltonian 
are 

(i) the bound state scattering cuts starting at the two-

electron bound state energies (with the same nuclear charge) 
and extending to + 00, 

(ii) the bound state scattering cuts starting at the hydro
genic bound state energies and extending to + 00, 

(iii) the three-electron scattering cut starting at E = 0 
and extending to + 00. 

Finally, in Sec. 4, we show how the method we have 
employed can be adopted to the situation of the diatomic 
molecule, that is, in studying the spectral properties of its 
Hamiltonian as well as to computing its energy eigenvalues 
and eigenfunctions. It is to be noted that, in this case, the 
Bom-Oppenheimer separation will not be necessary. We 
end the section by summarizing our results and conclusions. 

2. REDUCTION OF THE SCHRODINGER 
EQUATION FOR AN n-ELECTRON ATOMIC 
SYSTEM TO AN INFINITE SYSTEM OF LINEAR 
EQUATIONS 

The Schrodinger equation for an n-electron atomic sys
tem can be written 

H lIP) = [ itl HOi + iJ~ 1 r~j 1 lIP) = E lIP), (2.1) 

i<J 

whererij = I fi - fj I, fiand fjbeing the position operators of 
the ith aodjth electrons respectively and 

HOi = - ~ V'7 - Z /ri, i = 1,2, ... ,n. (2.2) 

Let JYi , i = 1,2, ... ,n be the space of states associated with the 
ith electron. The resolution of the identity in these spaces are 
given by 

i = 1,2, ... ,n, (2.3) 
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where Ini> and IkHi > are the bound and continuum states 
associated with the hydrogenic Hamiltonian HOi' The reso
lution of the identity in the n-electron product space 
oW' = oW', ® oW'2 ® .•• ® oW'n is 

n 

IH = IH 1 ®IH2 ® .. • ®IHn = ® l Hi• 
i=1 

(2.4) 

In particular, using (2.3), the resolution of the identity when 
n = 3 is 

+ I J I In"n2,kH3> (n"nZ,kH3 1 
ni kill 

i= 1,2 

+ (two similar terms) 

+ ~ (f t:) Inl,kH2,kH3> (nl,kH2,kH31 

i= 2,3 

+ (two similar terms) 

+ ( J I) IkHI,kH2,kH3> (kHI,kH2,kH31, 
kill 

(2.5) 

which can be written in the abridged form 

(f ~ IV"VZ,V3> (V"V2,V31 =IH)- (2,5') 

If we use a complete discrete basis { lUi>} in oW'i' then the 
resolution of the identity I H is given by 

(2,6) 
u, 

Equation (2.1) for n = 3 can be formally inverted to obtain 
the equations 

\V'> = Gi (E) Vii lJI>, i = 1,2,3, 

where 

(2.7) 

Gi (E) = ( E - s tl Hos - r~J -I, i=l=f=/=k (2.8) 

and 

1 1 
Vi =-+-· (2.9) 

r ij rik 

Beginning with the third of the equations (2.7) (i.e., when 
i = 3) and iterating with respect to the other two in succes
sion, one obtains 

(2.10) 

Taking the inner product with respect to (u"uz,u31 and us
ing (2.6), we obtain the infinite system of equations 

u, 

(2.11) 

1158 J. Math. Phys., Vol. 20, No.6, June 1979 

It is easy to generalize equations (2.11) for the general case of 
n electrons. Exactly the same procedure as that adopted in 
the three-electron case now yields 

IlJI> = G,V,GzVz,,·Gn Vn IlJI>, (2.12) 

where 

n n 1 - 1 

G,(E)=(E- I Hos- I -) , i = 1,2, ... ,n 

and 

s = 1 j< k rjk 

j,k,*i 

n 1 . v,. = I -, 1= 1,2, ... ,n. 
j= 1 rij 

j,*i 

(2.13) 

(2.14) 

Taking the inner product with respect to (u"uz"",un I and 
using 

I Iu" ... ,un> (u" ... ,unl =IH , (2.15) 
u, 

we obtain from Eq. (2.12) the infinite system of equations 

(u" ... ,unllJl> 

= 4 (U"''''UnIG,V,GzV2···GnVnlu'I'·'''U~> 
ct j 

X(u;, ... ,u~1 lJI>. (2.16) 

It will become evident that the proof of compactness for this 
general case is similar to that when n = 3. It will therefore 
suffice if we deal with the proof for compactness in the case 
of three electrons. Reverting back to the three-electron situa
tion again, consider the equation 

HJZ) I lJI> = (HOj + HOk + 1. I lJI> = E I lJI», 
rjk 

J=I=k, j,k = 1,2,3. (2.17) 

Let a (HJZ» denote the spectrum of HjZ). This spectrum 
consists of the bound state poles and the various multiparti
cle scattering cuts associated with the resolvent 
(E - H jP) - I. Let oW'jk denote the space of states associated 
with the Ok) subsystem, Denoting the bound states and the 
various continuum states of oW'jk by IVjk >, where the set of 
indices {Vjk } assume discrete or continuous values as appro
priate, we have 

HjZl Ivjk> = EvJ, IVjk>' (2.18) 

Here Ev are the energies corresponding to the states IVjk>' 
Jk 

We define 

3 1 
Hjk= I Hos+-' 

s = 1 rjk 
(2.19) 

Its resolvent is 

Gi (E) = (E - ± Hos - 1.) - I. 

s = I rjk 

(2.20) 

Consider the product space oW' = oW'jk ® oW'i' The resolu
tion of the identity in oW' can also be written 
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(2.21) 

The spectrum of Hjk consists of the set of points making 
up 

(i) the poles at En + En, where the En are the bound 
state energies of two-ei~ctron' atoms as obtai~ed from (2.18) 
and the En, are the hydrogenic bound state energies, 

(ii) the bound state scattering cuts starting at En}, and 
extending to + 00, 

(iii) the bound state scattering cuts starting at En, and 
extending to + 00, 

(iv) the three-electron scattering cut starting at E = 0 
and extending to + 00. 

Denoting this spectrum by u(~k ), we note that G; (E) is 
a bounded operator for Ei:.u(Hjk ). 

Finally, we mention that the basic idea behind the deri
vation of (2.10) or (2.12) is due to Weinberg.' It has been 
shown by Hunziger2 that Weinberg's formulation works for 
a very large class of potentials which includes the Coulomb 
potential. It is important to note, however, that Weinberg's 
operator kernel 1 (E)/ while formally being similar to the 
operator G, V,G2 V2G3 V3, has important and significant dif
ferences. Our resolvent operators G;(E) are somewhat dif
ferent. Our choice of G; (E) is basically motivated by the fact 
that the two-particle Schrodinger equation with a Coulomb 
type of potential is exactly solvable. This fact allows us to 
define our free resolvent as 

( 3 )-1 
Go(E) = E - S~I Hos , 

while Weinberg's free resolvent is Go(E) = (E - Hot', where 
Ho is the total kinetic energy operator of the particles. 

3. PROOF OF COMPACTNESS 

In this section it will be shown that the operator 

K(E) = G,(E) V,G2(E) V2G3(E) V3 (3.1) 

occurring in (2.10) is compact in a region DE (to be specified 
later) of the complex energy plane. Let us first note that the 
domain of 

(3.2) 

is a subset Dv of R3 X R3 X R3 = R9 defined by 

Dv = I (r"r2,r3) : (r,.f2,r3)ER9
, Iri - rjl >E, iJ,k = 1,2,3 J .(3.3) 

We have 

1 co 

Vij = - = I Fk(ri,r)Pk(cos(Jij), 
rij k=O 

(3.4) 

where (Jij is the angle between r i and rj and 

Fk (ri,r) = ~ ( rj)k (J (ri _ r) + ~ (!!..)k (J (rj _ r;), 
r i r i rj rj 

(3.5) 

where (J (r) is the step function. We also require to define the 
sequence of potentials 
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V~p) = i Fk (ri,r)Pk (COS(Ji)' 
k=O 

using which we define the potentials 

v(n) = v(n) + V(kn). 
I IJ I 

(3.6) 

(3.7) 

The compactness of K (E) will be demonstrated by 
showing that 

(i) the sequence of operators 

KnCE) = G,(E)vln)GiE)v~n)G3(E)v~n) (3.8) 

are compact whenever EEDE and 

(ii) 11K - Kn 11-0 as n-oo 

in the uniform topology of the operator norm. 

From the second resolvent equation 

Gi (E) = G~O)(E) + G~O)(E)[Hok + ~k ]Gi (E), 

where 

G~O\E) = (E - Ho; - HoY', 

one obtains 

G; (E) = [1 - G~O)(E)(Hok + ~d]- 1 G~O)(E). 

We shall also require the second resolvent equation 

Gk(E) = Gijl(E) + Gij)(E)[Hok + Vij]Gk(E). 

Denote by 0-0 the set of points which make up 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(i) the branch cut starting at En, and extending to + 00, 

(ii) the points I En + En J. , } 

It is clear that G ~O)(E) is bounded for Ei:.o-o. Also G; (E) 
is bounded for Ei:.o-(H}k)' Hence, from (3.11) we see that 

[1 - G~O)(E)(Hok + ~k)] -I 
is bounded for Ei:.u(Hjk )uo-o• We denote this region by DE: 

D E = IE: Ei:.u(H}k)uo-oJ. (3.13) 

Let us write (3.8) in the form 

K,,(E) = [1 - G\DJ(H03 + V23)] - IG\DJv\nlGy~nlG3v~n). 

Noting that [1 - G\DJ(H03 + V23)] - 1 is bounded for EEDE 
and using the fact that the product of a bounded operator 
and a compact operator is compact: it is sufficient to show 
that the operator 

G IDJ(E) v\n)GlE) Vin)GlE) V in) (3.14) 

is compact for EEDE. Substituting for v~nl, i = 1,2, 3, from 
(3.7) into (3.14), one obtains a sum of eight terms. There are 
two types of operators involved in this sum, namely 

(3.15) 

and 

G\DJV\'!jG2V~;lG3VW. (3.16) 

It will therefore be sufficient if we prove that each of 
these operators are of the Hilberg-Schmidt type and there
fore compact for EEDE , that is, 

(f~) (f~) I <v"v2,v3 1 G\DJv\'!jG2V~1G3V~~) 
, i 
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(3.17) 

and 

(3.18) 

Considering (3.15) first and using (2.28), we find that 

I <v"v"vll G~~V~1GY~1GlV~~) Iviv;vi> I 

= I (f~) (f~) <VI,V"Vll G~~V~;)G,V~1Ivi'2'V;> 
X (E - E";,, - E,,~) - I < Vj'2'V; I vWlviv;v;> \. 

(3.19) 

Using the result from Paper II, Appendix A, 

<const \ <<1>11<1>,> I, Eea(Hjk ), 

we see that (3.19) becomes 

I <v"v"vll G~~)V~1G,VWGlVW Iviv;V3> I 
<const I <V"V2,vll G~~V~1GYWV~~) Iviv;V3> I 
<const [ I <V"V2,vll G~~V~;)G~~)v~1vW Iviv;v;> I 

(3.20) 

+ \ <v"v"vll G1~VWG~~)Ho,GY~1vW Iviv;v;> I 
+ I <VI,V"vll G\~V~1G~O(VlIGY}1v~~) Iviv;vi> I], 

EEDE , (3.21) 

where we have used (3.12) to obtain the last step. Taking the 
second term on the right-hand side of (3.21) and using (2.28) 
and (3.20) in succession, we obtain 

I <V"V2,vll G\~V11G~~lflo2G2V}~)VW Iviv;v;> I 

= I (f~) (f~) <V"V2,V31 G\~VWG~o( IV;I,v2) 

XE,,;,(E - E,,;, - E,,;,) - 1 <vi'pv;JV}1v~~)lviv;vi> I 
<const I <V I,VI ,Vl\ G\~v\1G~~)vWVW Iviv;v;> \, 

where, in the last step we have used the fact that 
E",(E - E /' - E ,,)-1 is bounded for EEDE • Similarly, ob
se';ving fro~' (3.3)~(3.4), and (3.5) that V31 is a bounded func
tion in its domain of definition Dv, one finds that the third 
term on the right-hand side of (3.21) yields the inequality 

I <V"V"V3\ G\~V~1G~O(VlIG,V~1v~~) Iviv~vi> I 
<const I <V"V2,V31 G\~v\1G~o(viJlvW Iv;vzvi> I· 

Hence, using these inequalities [for the second and third 
term of(3.21)], we find that (3.21) becomes 

\ <v"v"v,1 G\~V\1G,VWGlVW IV;V~V3> I 
<const I <v"v"vll G\~v\1G~~)ViJlV~~) Iviv~V3> I, 

EEDE • (3.22) 

Noting that [1 - E,,/(E - E,,)] - I is a bounded function 
for EEiJ E' we have the result 
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I (f I) <<1>1 IVI,V2,Vl> [1 - E,,/(E - E,,)] - I 
v, 

X <v"v2,v,1 <1>,> I 
<const I <<1>d<1>2> I for EEiJE 

Using this result, we have 

I <vl ,V2,v31 G~~V~1G~~)V}1vW Ivi,v~,vi> I 

= I(f I 
vi' 

(E -E )-E )-1 
VI V 1 

X (E - E",) - I [1 - E,,/(E - E",)] - 1 

X <vi',v;,v3 I V}~)V~~) Ivi,v;,v;> I 
<const I (E - E v , - Ev,) - I II (E - E,,) - 1 I 

X l<v"v"v]1 v\1v}1vW [vi,vI,vi> I, (3.23) 

Hence, in order that (3.15) be compact and of the Hilbert
Schmidt type for EEiJE , we see from (3.17) and (3.23) that it 
is sufficient to have 

EEDE • 

Summing over the v; , we find that this compactness condi
tion becomes 

X I <V"V2,V][ [V~1VWV~~)]2[VI,V2,Vl> < 00, 

EEDE • (3.24) 

Similarly, one finds that the condition for the operator 
(3.16) to be compact and of Hilbert-Schmidt type can be 
written as 

X I <v"v"v31 [VW]2 [VW]4Iv"v"v]>1 < 00, 

EEiJE • (3.25) 
Defining 

a= 1, 

(3.26) 

a=2, 

we can write the compactness conditions (3.24), (3.25) con
cisely in the form 

X I <VI,V2,V]I u~a) IVhV2,vl>1 < 00, EEDE • (3.27) 

Noting (2.8), we see that (3.27) can be written explicitly in 
the form 

M.H. Choudhury 1160 



                                                                                                                                    

L IE - En, - En, 1-2 IE - E n,I-2 <nl,n2,n31 U<:) Inh n2,n3) 
°i 

;= 1,2 

+ L (f L) IE -lk i - E n,I-2 IE - E nJ2 <kH l,n2,n31 U<:) IkH l,n2,n3) + (similar term) 
nj kll. 

;= 2,3 

;= 1,2 

+ ?2 (f L ) IE - Enl - ~k ~1-2 IE - ik ~1-2 <nl,kH2,kH31 U<:') In"kH2,kH3) + (similar term) 
I kill 

;= 2,3 

+ (f L) IE -!kf -lql-2IE - !ql-2 <kHI,kH2,kH31 U<:) IkHI,kH2,kH3)' EEDE • 
kif; 

Hence, for compactness, it is sufficient to show that the individual terms of (3.28) are separately convergent 

;= 1,2 

L (f L ) IE - !k i - E n,I-2 <kH I,D2,D31 u~a) IkH pD2,D3) < 00 EEDE , 

n, kilt 

;= 2,3 

L (f L ) IE - ~k i - !k ~1-2 <kH l,kH2,D31 u~a) IkH l,kH2,n3) < 00, EElJE , 

D3 kJlI 

;= 2,3 

EEDE, 

;= 2,3 

where we have used the fact that 

IE - En, - E n,I-2 ,const and IE - E n,I-2 ,const, EElJE • 

We first consider (3.29), Using the addition theorem of spherical harmonics in the form 
+1 _ 

L Y1m(f),¢ )Y/m(f),¢) = (2/ + 1)/41T 
m= -I 

and writing dil; = sin f); df); d¢;, i = 1,2,3, we find that (3.29) becomes 

~ <Du D2,D31 u~a) ID h D2,D3) = (41Ty3 t;, (2/1 + 1)(2/2 + 1)(2/3 + 1) LX> ~drJ dill LX) ~dr2 

X f dil2L" ~drJ dil3 [Rn,l,(rl)Rn,I,(r2)Rn,/,(r3)] 2 u~a), EEDE· 

We have from (3.5) and (3.6) 

[Vijn)]m,const i (~( rj)mk f)(r; - rj ) + 1.- (!i)mk f)(rj - r;)] [Pk(cos f);)r, 
k = 0 r: r; r; rj 

where m is a positive integer. Use of (3.36) yields 

U~I) = [V~~V~'jlVW]2 

,const i [~(!l)2-l' ~(!l.)2A' ~(!l)2A' () (rl - r2)() (r2 - r3) 
Ai = 0 ~ r l ~ r2 ~ r l 
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(3.33) 
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(3.35) 
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where use has been made of the identities 

() (r3 - r2)() (rl - r2) = [() (r3 - r l) + () (rl - r3)]() (r3 - r2)() (rl - r2) = () (r3 - r l)() (rl - r2) + () (rl - r3)() (r3 - r2), 

() (r2 - r3)() (r2 - r l) = () (r2 - r3)() (r3 - r l) + () (r2 - r l)() (rl - r3) 

(3.37) 

(3.38) 

to obtain the second and third terms on the right-hand side of(3.38). When the estimates (3.37) and (3.38) are substituted in 
(3.35), two inequalities are obtained (for a = 1,2). An examination of these inequalities reveal that there are two types of 
integrals involved whose angular integrations yield constants independent of n j , ( and whose radial parts have the forms 

rOC drl r'dr2 r'dr3[~(!2)2A' ~(!2-)2A' ~(!.2.)2A;] [Rn,/,(rl)rlRn,/,(r2)r2Rn,/,(rJ)r3] 2 
Jo Jo Jo ~ rl ~ r2 ~ rl 

= LI dtlLl
dt2 [t itA, + A,) -- I t ~(A' + A')l LOO drl [Rn,/,(rl)rlRn,/,(rltl)rltlRn,/,(rltlt2)rltlt2l2 r l- 4 (3.39) 

and 

dr1 dr2 dr3 - -2 ' 4 -2.. ' [Rn,l,(rl)rlRn,/,(r2)r2Rn,/.(r3)rJ] 2 fOC fr, sr, [1 (r)2A 1 (r )4A] 
o 0 0 ~ r l r2 r2 

= fdtll ldtd t iA, - 3 t iA'l LOO drl [Rn,/,(rl)rlRn,/,(rltl)rltlRn,/,(rltJ2)rltltd2 r1-- 4, (3.40) 

where the transformations r3/r2 = t2, r2/rl = tl have been made to obtain the right-hand sides of(3.39) and (3.40). We see from 
(3.35) that for compactness it is sufficient to show that 

00 lJ, -~ 1 n 

L L (2/1 + 1)(2/2 + 1)(n + 1) L R ~l,A' (nl/l,n212,n3/3) < 00, a = 1,2, EED£> 
n,~l/,~O A,=O 

where 

R ~L,(nl/\)n2/2,n3/3) = fdt lfdt2¢ ~L; (t\)t2) fX> dr[ Rn,l,(r)rRn,/,(rtl)rtlRn,/,(rtlt2)rtltd 2 r-4 

with 

{

t 2(A, + A,) - I t 2(A, + A,) 
1 2 

¢ ~~L, (t 1,t2) = 
tiA, - 3 tiA, 

fora = 1, 

fora = 2. 
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An examination of the remaining compactness conditions (3.30)-(3.34) reveal that it is sufficient to consider (3.30), (3.32), and 
(3.34) since the proof of(3.31) and (3.33) will be similar to those of(3.30) and (3.32) respectively. The reasoning led from (3.29) 
to (3.41) will, when applied to (3.30), (3.32), and (3.34) lead to 

f nil.! (2/[ + 1)(2/2 + I)(n + 1)1" dk3 k; 2 2 

n, = 1 I; = 0 I, = 0 olE - 2k 31 
i= 1.2 

x L~o R ~l'A' (n[/hn2/2,kH3/3) ] < 00, EeDE , a = 1,2, 

f n'f 1 I (2/[ + 1)(2/2 + 1)(2/
3 
+ 1) (00 dkl (00 dk2 k fk ~ 

n,=II,=O 1,=0 Jo Jo IE-1ki-!k~12 
i= 1.2 

x L~o R ~L, (kHl/hkH2/2,ni3) ] < 00, a = 1,2, EeDE , 

I (2/1 + I)(n + 1)(2/3 + 1) (00 dkl (00 dk2 k ik ~ (00 dk3 k ~ 
I, = 0 Jo Jo 1 E - !k i - !k ~ 12 Jo 1 E - !k ~ 12 

X L~o R ~l'A' (kHl/hkHi2,kHi3) ] < 00, a = 1,2, EEDE, 

where 

R ~~l,A. (nl/l,n2i2,kHi3) = fdtlfdt2 ¢ ~~l,A' (/I>t2) Loo dr[Rn,l,(r)rRn,I,(rtl)rtIRI,(k3rtI12)rlltd2 r-4
, a = 1,2, 

R ~L. (kH I/),kHi2,n3/3) = fdtlfdt2 ¢ ~L, (tlotZ) Loo dr[ RI,(klr)rRI,(kzrtl)rtIRn,I,(rtlt2)rtltd 2 r4, a = 1,2, 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

R ~L, (kH I/hkHiz,kHiJ) = fdtlfdtz ¢ ~~l,A' (tl,tZ) 100 
dr[R/,(klr)rRI,(kzrtl)rtIR/,(k3rt[tZ)rtllz] 2 ,-4, a = 1,2, (3.49) 

with <P ~l,A. (11,lz) defined by (3.43). We first consider (3.41). For reasons exactly similar to those given in the previous paper [see 
comments following (3.39) of Paper II], we split up (3.41) and write it in the form 

rY:) n, - 1 n 00 00 n, - I n 

I I (2/1 + 1)(2/z + 1)(n + 1) I R ~L, (nl/hnzlz,nJ/J) + L L L (212 + 1)(2/J + 1) L R ~~l,A' (nIO,nzlz,n}J) 
n, = 2 I, = 1 A, = 0 n, = 1 n, = 2 I, = 1 A, = 0 

i= 2,3 
00 00 n 

+ (two similar terms) + L L (2/1 + 1) L R ~L, (nJhnzO,nm 
n, = 1 n, = 2 A, = 0 

i= 2,3 

+ (two similar terms) + fiR ~L, (nIO,nzO,nJO) < 00, a = 1,2, EeDE• 
n, = 1 Ai=O 

It will therefore be sufficient to show that 

00 N, - I n 

L L (2/1 + 1)(2/2 + l)(n + 1) L R ~~l'A' (nJhnzlz,nJ/J) < 00, EeDE , 
n, = 2 I, = 1 A, = 0 

(3.50) 

00 00 n, - I n 

L I L (2/z + 1)(2/J + 1) L R~~L, (n I0,nz/2,n)/3) < 00, EeDE , 
n, = 1 n, = 2 I, = I A, = 0 

(3.51) 

i=2.3 

rn 00 n, - I n 

ILL (2/1 + 1) L R ~L, (nJhnzO,n30) < 00, EEDE , 
~=1~=21,=1 ~=O 

(3.52) 

i= 2,3 

f f R~l,A,(nIO,nZO,nJO)<oo, EEDE • 
n, = 1 A, = 0 

(3.53) 

Denoting the infinite integral in (3.42) by I (nl/hn2/z,nJ/J) and applying Holder's inequality in the form 

fa 00 If(r)g(r)ldr< (LOO If(r)IP yIP (L'" Ig(r)l
q
I2 Ylq ; + ~ = 1 (3.54) 
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to this integral, we have 

I (n Jhn2/2>n J/J)«f" dr 1 R n,/,(::,)rt,1
2P

) lip (L'" dr 1 Rn,/,(r)rR:~(rt't2)rt't21 q )2/q. (3.55) 

A further application of the Chauchy-Schwartz inequality on the second integral on the right-hand side yields 

I (nJ"n2/2,nJ/J) 

«L'" dr 1 Rn,/,(~;>rt'12p yIP (100 

dr 1 Rn,/,(rt;:)rt,t212QYlq (100 

dr 1 Rn,/~)rI2Q) I/q. (3.56) 

The substitution p = rt, in the first of the integrals on the 
right-hand side of(3.56) followed by the use of the inequality 
(II, Appendix B) 

in the form 

I R (p\ 12p - 2,,;: const 
n,l, JP '" (p _ I) 

n 

gives 

(3.57) 

1
00 IRn,/,(rt,)rt,12p ti i oo IR /(P)pI 2 

O 

dr <const -- dp -,-_n,~,_.....:..-
r4 nY'- I) 0 p4 

Hence, using the result' 

(00 dr IR nk)rl2 = Z4[3n2-/(/+ 1)] 

Jo y4 2n'(1 + %)(1 + 1)(/ + ~)l (1- ~) 

<const [( 1 - 1 (/3:
2 

1) )/n3
/'] (3.58) 

Note that / (/ + 1)/3n2 < 1 since I<n - 1. Similarly 

(1'" I Rn,/,(rt,t2)rt,t212q)1Iq (t,tYlq 
dr <const. 

o r4 n~q + 2)lq 1 jig 
(3.60) 

(l W IRn /(r)rI2q)l/q 1 
dr ' , <const . 

o y4 n\q + 2)1q / Vq 
(3.61) 

These estimates when used in (3.56), yield an inequality 
which when used on the right-hand side of (3.42) gives 

R ~~L1' (n,/hn2/2,n,/J) 

<constfdt, fdt2 ¢ ~~Ll, (t,t2) 

X I 2 
( 

t 3(l/p + 1/q) t 3/q ] 

nY' + 2)lp 1 ~/P(n,nJyq + 2)1q (/'/J)5Iq 

1 
<const , 

nY' + 2)1p 1 ~/p(n,nJ)(q + 2)lq (/,/J)5Iq (3.62) 

provided that [note (3.43)] 

3(~ + ~ »2. (3.63) 

The inequality (3.62) and the result 
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n-I L 1 - a <const n- a + I, a < 1 
l·~ I 

yields for the left-hand side of (3.50) 

IX) n, -- 1 

L L (2/, + 1)(2/2 + 1)(2/J + 1) 
n,~ 2 l,~ I 

x i R ~L<, (n,/hn2/2,n J/J) 
,t, '.' () 

00 1 
<const L < 00 

n, ~ 2 n~7 - P)IP(n
1
nJ(7 - q)lq 

provided that 

(7-p)/p> 1 and (7-q)/q>1. 

(3.64) 

(3.65) 

The conditions (3.63), (3.65), and [see (3.54)] l/p + 2/q = 1 
imply that 

2 1 1 1 1 3 
7<-;;<] , ]<--;<7' (3.66) 

Hence there exist values of l/p and l/q which satisfy all 
three conditions (e.g., (l/q) = 13/42 and (l/p) = 16/42). 

To demonstrate (3.51) we have [compare with (3.56)] 

(
('''' IR (rt)rt 12P )1/P 

I (n,O,n 2/2,nJ/J)< Jo dr n,!, r: 1 

X (fO dr I RnJ,(rt;:)rt,t212q) 1/q 

X (L" dr 1 R n'(5)r 1
2q

) I/q 

t i(l/p + 1/q)t ~/q 
<const----~-----------

nY' + 2)lp / ~/P n~q + 2)lq 1 ~/q 

X (L'" dr I Rn,o~)r 1
2q

) 1/q, (3.67) 

where the last step is obtained by using (3.59) and (3.60). 
Noting (3.66), we set Q = 3 + c (c> 0, small), so that 
p = 3 -1], where 1] is determined by l/p + 2/q = 1. 
Also using 

(i) the estimate (3.57) in the form 

1 
R (r)r 1 (1 + 2e) ";:const n - (I + 2<)/2 

11 10 ~ 1 , 

(ii) the estimate (II, Appendix B) 

1 Rno(r) I <const n'JI2. 

in the form 1 Rn,o(r) 1
3 <const n 1-' 9/2, 

(iii) the result· 

MH Choudhury 
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{oodr IRno(r)rI
2 

= Z 
~ r n2 

we find that 

(1"" IR o<r)r I2q )lIq 1 
dr n, ~const (7 )' 

o r n
l 

+£ Iq 
(3.69) 

The substitution of the estimate (3.69) into (3.67) yields an 
inequality which when inserted into the right-hand side of 
(3.42) gives 

~const-------------------------

n(7 + £)Iq n(P + 2)1p /Slp n(q + 2)lq j51q 
1 2 2 3 3 

(3.70) 

Using (3.64), we find that the inequality (3.70) yields for 
the left-hand side of(3.51) 

00 00 N, - 1 n 

I I I (2/2 + 1)(213 + 1) I R )'~l,A, (n,O,nz/z,nliJ) 

n, = 1 n, = 2 I, = 1 A, = 0 

i = 2,3 

co '" I 
~const '" " <0. £.. £.. n(7 + (')Iq n(7 - p)lp n(7 - q)lq 

n, = 1 n, = 2 1 2 3 

Similarly, we have for (3.52) 

I (n ,1lJnzO,n 10) 

t i(l/p + Ilq)t f q 

~const , n(q + 2)1q / 51q n(7 -~ 1)lp n(7 + £)lq 
1 1 2 3 

(3.71) 

where, in obtaining (3.71), we have used the estimates (3.61), 

(3.72) 

and 

(1'" I R n,0(rtltz)rtltz/2q) Ilq «(,(z)3Iq 
dr ~const, (3.73) 

o r4 n~7 + £)lq 

the last two estimates being obtained in a manner similar to 
that of (3.69). Hence [see (3.42)] 

1 
R (a) (n / n 0 n30) 0;;: const------------------

A,A,A, 1 I, 2, '" (q + 2)lq 151q (7 _ ,,)Ip (7 + £)lq 
n l 1 n2 n) 

so that the left-hand side of (3.52), with the use of (3.64) 
becomes 

00 C(J n, - 1 n 

L L I (2/1 + 1) I R ~~L, (nJ"n 20,n)0) 
n, = 1 n, = 2 [, ~ 1 A, = 0 

i = 2,3 

00 '" 1 
~const '" " < 00. n,~ 2 n'f;: 1 n~7 - q)lq n~7 - 1)/p n~7 + dlq 

Finally, in a similar fashion, the left-hand side of (3.53) 
becomes 

i i R tL, (n I0,nZO,n30) 
n,=I).,=O 

00 1 
~const " < 00. £.. (n n )(7 + £)/q n(7 - 1)lp 

n l = 1 1 3 2 

This concludes the demonstration of (3.41). 
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We now consider (3.44). Proceeding as in the case of 
(3.41), we find that for compactness it is sufficient to show 
that 

00 n, - 1 00 

I L I (2/1 + 1)(2/2 + 1)(2/3 + 1) 
n, = 2 I, = 1 I, = 0 

i= 1,2 

n 100 q 
X I dk 3 2 2 

J., = 0 0 r E - !k 3 r 

XR ~~l,)., (n 1/"n zI2,kH i3) < 00, EEDE , 

00 00 n1 - 1 00 

L L I I (2/z + 1)(2/J + 1) 
n \ = J n.!, = 2 I, = 1 II = 0 

X [i (00 dk 3 k ~ 2] 
A,=OJO IE - !k~1 

XR ~~l'A' (n10,n212,kHi3) < 00, EEDE , 

f f (n + 1) i ('" dk3 q 2 

n, = 1 I. = 1 A, = 0 Jo IE - ik ~ I 
i= 1,2 

(3.74) 

(3.75) 

XR ~1,J., (n ,O,nzO,kH i3) <0, EEDE . (3.76) 

Denoting the infinite integral in (3.47) by I(n 1/ h n}2,kH3 ,I), 
we have [compared with (3.56)] 

I (n,il,n}"kH3,J3) 

~(lOOdr IRn'I'(~I)rtI12p)I!P (1'" dr IRn'/~)rI2q)l!q 

(1
00 IRI(k3rtl,)rtlt212Q)l!q 

X dr---'----------
o r 

t ~(l/P + I/Q) t ~/Q 
~const----------~----~

n\q + 2)lq 1 ~/q nr + 2)1p I fp 

x(f" dp IR[3(~:)PI2qylq, (3.77) 

where the last step was obtained by use of the estimates 
(3.59), (3,61) and the transformationp = rtlt,. By trans
forming the infinite integral over in (3.77) to one over the 
infinite interval [0,1] and then using the mean value theorem 
of the integral calculus (see II, Appendix C where a similar 
trick is employed) one obtains 

(f" dp IRI'(~)PI2qylq 

1 
( 

k3Uo )1 2 

= R I , 1 _ U
o 

f(uo,q), UoE[0,1 ], (3.78) 

where 

f(uo,q) = (1 :ouoY (1 - uo)2lq 
UO-

4/Q
• (3.79) 

Substituting (3.78) into (3.77) and inserting the result into 
the right hand side of (3.47) yields 

R ~~l'A' (n 1/ h nZ/z,kH i,) 
r RI, (k3 uoIl - Uo) 12 f(Uo,q) 

~const~~~~~--~~---
n(q + 2)/q IS/q n(p + 2)/p I Sip • 

I 1 2 2 

M.H. Choudhury 1165 



                                                                                                                                    

We have therefore 

Sa
w k ~ ( ) 

dk3 R Iv, (ndhn2/2,kH3/3) 
o / E - !k ~ /2 " , 

1 R/ (k3muo/l - Uo) 12 f(uo,q) 
<const~-'----------~----

n\q + 2)lq I ilq n~ + 2)lp I ~/p 

X ("'dk
3 

q , 
Jo IE- !q12 

where k3m us the value at which IR/, (···W attains its maxi
mum value. Hence, the left hand sideof(3.74) with the use of 
(3.64) becomes 

00 ttl - I 00 

I I I (2/1 + 1)(2/2 + 1)(213 + 1) 
n,=2/,=1/,=0 

i= 1,2 

X (OOdk3 q <00, EEDE 
Jo IE- !q12 

where we have used the result [II, Appendix C] 

f (21 + 1)IRI(kr)i2 < 00. (3.80) 
/ =0 

Proceeding as in the case of(3.74), we have using (3.69), 
(3.59) and (3.78) 

(a) I R/, (k3uo/ 1 - Uo) 12 f(Uo,q) 
R A A A (n,O,nzlz,kH i3)<COnst -'---'------------'-------

, , , n\7 + <)Iq n~ + 2)lp I ~/P 

so that the left hand side of (3.75) becomes 

X ('''dk
3 

k~ < 00, 
Jo IE -!k ~12 

EEDE, 

where in the last step we have used (3.80) 

Similarly one shows that the left hand side of(3,76) 
satisfies 

f f (2/3 + 1) i (OOdk 3 k~ 
n, = 1 /J = 0 A, = 0 Jo IE _ !q 12 

XR ~L.(nIO,nzOkI/3/3) 

~ ~ (2/3 + 1)IR/,(k3mUo/l - Uo)I'i(Uo,q) 
<const ~ ~ 

n, = I /J = 0 nF + <)Iq n~7 - '1)lp 
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This concludes the proof of (3.44). We next consider 
(3.45). As in the previous cases we split up the expression (as 
a sum of two terms) and find that for compactness it is suffi
cient to show that 

f (2/1 + 1)(2/2 + 1)(2/3 + 1) 
1,=0 

i= 1,2 

X (00 dk
l 

(00 dk2 k f k ~ 
Jo Jo IE - !kt - !k~12 

X Lt DR ~~L, (kH I/j> k I/2/2n3/3) ]< 00, EEDE , 

(3.81) 

f f (2/1 + 1)(2/2 + 1) 
n. = 1 1,=0 

i= 1.2 

X (OC dk
l 

(00 dkz ki k~ 
Jo Jo IE - !kf - !k~12 

XLtoR~~1'A,(kH1/j>kH2/2n30) ]<00, EEDE , 

(3.82) 

Denoting the infinite integral in (3.48) by 
I(kH1 /1,kHi2,ni3)' we have 

I (kH 1/1,kHzI2,n3/3) 

«{<Odr IRI,(k2::1)rt112P)lIP (f" dr IR/,(:~)rI2q)lIq 

X dr 1'1,1, I Z 1 Z , (L '" IR (rtt)rtt 1
2q )llq 

o r4 

<const (t 1t2
)3/

q 

IRI (~)If(uo,q) 
n~q + 2)/q 1 jlq '1 - Uo 

X (100 
dr / R,,(k2::1)rtI12P riP, (3.83) 

where in the last step we have used (3.60) and (3.78). Making 
the transformationp = rt l in the integral and using (3.78) 
one obtains the result 

(3.84) 

Substituting (3.84) into (3.83) and inserting the resulting in
equality on the right hand side of (3.48) yields 

R ~L, (kH 1/1,kflz/2,n3/3» 

cons/(Uo,q)f(Uo,P)IR (~)121R ( k 2uo )1 2
. < n(q + 2)1q /51q I, 1 - Uo I, 1 - Uo 3 3 

Using polar coordinates kl = pcos(}, k2 = psin(}, we there
fore have 

Loo i'" R (a) (k / k / n / ) k Zdk k 2dk A,A,A, H 1 l' H22 3 3 
I I 22 2 22 

o 0 IE - !k I - !k 21 
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const il'l2
. < sm'O cos20 dO 

n~q+2)lq Irq 0 

xL~ pSdp IR1,(Plu:
o
::) 1 f(uo,q) IRI,(PIU~i::) 12 

Xf(uo,p)!IE - ~212. (3.85) 

Noting thatp4/1E - ~21' is bounded for EEDE and using 

(i) the mean value theorem of the integral calculus for 
the integration over 0 in the interval [O,1T12], 

(ii) the result (II, Appendix C) 

L~ P!R 1.(Plu:
o
::) !2!RI,(PIU~i::)!2 dp 

Vo 
X , VoE[O, 1], 

(1 - voV 
we find that (3.85) reduces to 

i
~ i~ R (a) (k I kin 1 ) 

k 2dk k 2dk "'"'''' H I I' H2 2 3 3 
I I 2 2 /E Ik2 lk 2 / 2 o 0 -21-22 

1 
<const ----

n~q + 2)lq I jlq 

1 ( 
uovocosOo ) 12 

X R 1, (1 _ 140)(1 _ vo) f(uo,q) 

1 ( 
uovo sinOo ) 12 Vo 

X R 1, (1 _ u
o
)(1 _ vo) f(uo,p) (1 _ VO)l • 

Hence, using (3.64), we find that (3.81) becomes 
00 n\ - 1 00 

L L L (2/1 + 1)(2/, + 1)(2/, + 1) 
n, = 2 I, = I I, = 0 

i= 1.2 

<canst f n3 - (7 - q)lq 
It, = 2 

X (1 < 00, EEDE, - vo)J 

where in the last step we have used (3.80). Similarly, using 
(3.73), we find that (3.82) becomes 

f f (2/1 + 1)(2/, + 1) 
n,= 1/,=0 

i= 1.2 

1167 J. Math. Phys., Vol. 20, No.6, June 1979 

X [/,~0(2/2 + 1)IR/'((1 ~o::;::~ Vo»)n 
Xf(uo,P)] Va < 00, EEDE. 

(1 - vo)J 

This concludes the proof of (3.45). 

Finally, we consider (3.46). Denoting the infinite inte
gral in (3.49) by I (kH 1/1,kHzI2,kH 313)' we have 

I (kH 1/1,kHiz,kHi3)' 

«f" dr IR/,(k2::I)rtI12P)IIP (LOO dr IR/,(:~)rI2qylq 

x(f" dr IRI,(k3rt~:2)rtlt212qylq 

(...!...+...!...) I (k 14 )1 2 1 (k 14 ))2 <t ~ P q t ~/q R/, 1 ~ :0 f(uo,q) R/, 1 ~ :0 
1 

( 
k3UO ) 12 xf(uo,p) R/, 1 _ 

14
0 f(uo,q) , 

where we have used (3.78), (3.84), and the result 

(LOOdr IR/,(k3rt~:2)rtlt212qy/q 

31 I (k]Uo ) ! 2 = (t l t 2) q R/, 1 _ U

o 
f(uo,q) 

obtained by the transformation p = rt I t 2 followed by the ap
plication of (3.78). 

If we now proceed in a manner similar to that in the case 
of(3.81) we obtain 

f (2/1 + 1)(2/, + 1)(2/, + 1) 
/,=0 

X[ f (212 + 1)IR/,( uovosinOo )12 fcuo ,p)] 
/, = ° (1 - 140)(1 - Vo) 

L
~ q 

X dkJ < 00, 

o IE - ~k312 
where, in the last step we have used (3.80) and k3/n as the 

M.H. Choudhury 1167 



                                                                                                                                    

values of k3 at which IR I , (···W attains its maximum value. 
This completes the proof of (3.46). 

We have therefore shown that the operator Kn (E) de
fined by (3.8) is compact for EEDE . To show that the opera
tor K(E) = GlVlG2V2G3V3 is compact for EEDE , all we need 
do is to show that 

(3.9) 

Noting that V j and v~n) have domain Dv defined by (3.3) 
and are bounded, we observe that (V, - v~n)EL ""(Dv), 

where the norm on the Banach space L 00 (Dv) is defined by 

Since Vj - V~n)~Oasn~oo andGj(E)i= 1,2,3 are bound
ed operators for EEDE we have 

11K - Knll = IIGl Vl G2 V2G3(V3 - v)n) 

+ Gj V j G2(V1 - V(2)G3v~n) 

+ Gl(Vj - v\n»Gyr)G3 v~n)11 

<IIGlV,G2V2G311IJV3 - Vnl 

+ IIGj Vj G2111\V2 - V(2)IIIIG3v~n)11 

+ II Gt\11I Vj - v\n)1I11 GYin)G;Vnl~ 

as n~oo, EEDE • 

Hence the operator K (E) is compact for EED E' 

4. ADOPTION TO THE CASE OF THE DIATOMIC 
MOLECULE 

We now show that the method developed so far to deal 
with atomic systems can equally well be applied to the case of 
diatomic molecules. The Schrodinger equation for a diato
mic molecule with respect to a reference system in which the 
center of mass of the nuclei is at the origin of coordinates is, 
to a very good approximation, given by 

"2 "2 00 ZAZ 8 n e2 
( --\7~--L\7~+-+ L 

2M 2mj= I R iJ= I Iri - fll 

n ZA e2 n Z#2 1 
Xj~l If

j
-1]RI - j~l If

j
+O-1])RI I/I=EI/I, 

(4.1) 

where fj is the position of the ith electron (relative to the 
center of mass of the nuclei "A " and "B" with masses M A 

and M 8' respectively), R = \R\ is the distance between the 
nuclei, m is the mass of the electron, 
M = MAM8/(MA + M B) is the reduced mass, 
1] = MB/(MA + M 8) andZA andZB are the charges on the 
nuclei "A " and "B:' respectively. We have 

1168 

+ _1_ (_r_i )kO(1]R _ r)]Pk(COSO) 
1]R 1]R 

o (r j - 1]R) 0 (1]R - r) 
= +----

rj 1]R 
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+ I Vk (fj,1]R), 
k=1 

(4.2) 

+ _1_ (2)kO(1]R _ r)]Pk(COSO;) 
1]R 1]R 

(4.3) 

and OJ is the angle between rj and R. Similarly 

1 

Irj +(I-1])RI 

= O(rj-(I-1])R) + O((l-1])R -r,) 

rj (1 -1])R 

+ I ( - l)kVdrj,(1 -1])R). (4.4) 
k=l 

Also 

O(rj -1]R) 8(1]R-rJ 
----+----

rj 1]R 

a a o O(rj -1]R) O(1]R-rj) 
=-+-+(I-a) -a'----

rj 1]R rj rj 

a a o T1 
= - + - + l.Jo(r j,1]R,a,ao), 

rj 1]R 
(4.5) 

where 

Similarly 
(4.6) 

o (rj - (I -1])R ) 0 «1 -1])R - r j) 
-~--~-+------

rj (l - 1])R 

/3 /30 
= - + + Uo(r j,(l-1])R,/3,/3o)' (4.7) 

ri (1 - T/)R 

Using (4.2)-(4.7) we see that, for example, (4.1) can be 
written 

[ 
,,2 

--\7~ 
2M 

({ZA(aO,!1]) + Z8 {/3o/(l -1])]}n - ZAZ8 le2 

R 

_ ~ i \77 - i (ZAa + ZB/3 )e
2 

+ i ~ 
2m i = I j = I rj jJ = I r ij 

i<1 
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+ itl {UO(ri,rJR,a,ao) + k~1 Vk(ri,rJR ) 

+ UO(ri,(l - rJ)R,[J,[Jo) 

+ k~ I( - l)kVk (rAI - rJ)R ) }] if! = Eif!. 

(4.8) 

Equation (4.8) which we have just derived for the diatomic 
molecule is of the same form as the Schrodinger equation 
(2.1) for an n-electron atom. We can therefore derive from 
Eq (4.8) the usual conventional configuration interaction 
equations of the same form as (2.1) of I, truncate it, solve the 
eigenvalue problem associated with the truncated equations, 
thereby obtaining, for instance, the ground state energy lev
el. Alternatively, one could use the system of equations 
(2.16) to obtain energy eigenvalues and eigenfunctions. Both 
these approaches have been made possible due to the deriva
tion ofEq. (4.8) which, as we have noted, has exactly the 
same form as the Schrodinger equation (2.1) for an n-elec
tron atom. The crucial step in the derivation of Eq. (4.8) is 
the identity (4.5). Note, that in our approach, the Born
Oppenheimer separation is not needed. 
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Finally, we summarize our results and conclusions. The 
Schrodinger equation for an n-electron atomic system (n>3) 
is reduced to an infinite system of linear equations in such a 
way that the linear operator defined by this system of equa
tions is compact in a region of the complex energy plane 
which excludes the various bound state and multiparticle 
scattering cuts, (i.e., the essential spectrum of the Hamilton
ian of the n-electron atomic system). This allows one to trun
cate this infinite system of equations with the assurance that 
as the size of the truncated equations is increased, the energy 
eigenvalues obtained from the truncated equations will also 
increase and uniformly tend to the eigenvalues of the original 
infinite system. Further, we have shown that the method can 
be used in the case of the diatomic molecule without the use 
of a Born-Oppenheimer separation. 
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JSee Ref. I, Sec. 3. 
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'H.A. Bethe and E.E. Saltpeter, Quantum Mechanics o/One and Two-elec
tron Atoms (Springer-Verlag, Berlin, 1957), p. 17. 

'See Ref. 5, p. 17. 
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Modified modal theory of transient response in layered media 
L. Tsang and J. A. Kong 
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A modified modal theory is developed for the transient response due to a line source 
placed in a two-layer slab medium. The double integral is evaluated by deformation on 
the complex wave number plane followed by a second deformation from the real 
frequency axis to the steepest descent path on the complex frequency plane. We first 
show that causality is preserved such that before the arrival time of the direct wave or 
the head wave, whichever takes the least time, the transient response vanishes. With 
the preservation of causality, we proceed to find the complete transient response at all 
times. The results obtained from the modal theory are then checked with those 
generated from direct numerical calculations with computers. Comparisons are also 
made with the explicit inversion technique which is applicable to the present case but 
appears to have severe restrictions that the modal theory does not have in generalizing 
to the solution of other transient problems. 

I. INTRODUCTION 

In this paper we study transient fields due to an infinite 
line source located in a slab medium by using a modified 
modal approach via double deformation. The line source can 
be either acoustical or electrical in nature. Time harmonic 
fields in layered media have been extensively studied'-

6 with 
the use of the Sommerfeld integral representations by appro
priate deformation in the complex wavenumber plane. The 
classical modal approach to time harmonic excitations 
yields normal modes pertaining to the structure represented 
by poles situated between the Sommerfeld integration path 
and the steepest descent path on the complex wavenumber 
plane. 

Let us focus our attention on one particular mode I. As 
frequency changes, the location of the pole representing the 
1 th modes moves on the complex wavenumber plane. De
pending on the frequency, the mode 1 can exist as a guided 
modeU -

J (surface wave mode) or a leaky mode. Over certain 
frequency ranges, the mode exists as an unexcited mode be
cause it lies outside the Sommerfeld integration path and the 
steepest descent path. Over these frequency bands, the mode 
amplitude is zero. If we integrate each individual mode am
plitude over real frequencies, the Paley-Wiener criterion is 
violated' and the mode in timedomain becomes noncausal. 
In this paper we develop time domain modes that are causal 
by employing the technique of double deformation. The pro
cedure consists first of a deformation to the steepest descent 
path on the complex wavenumber plane. Then there is a 
second deformation from the real frequency axis to the 
steepest descent path on the complex frequency plane. The 
double deformation technique has been used to investigate 

"This work was supported by the NSF Grant ENG76-01654, the Joint 
Services Electronics Program under Contract DAAG-29-78-C-0020, and 
by the Schiumberger-Doll Research Center. 

the long time response of slab geometry.9 In this paper, we 
show that the complete causal transient response at all times 
can be obtained with this approach. To check the results 
obtained with this approach, we compare with those gener
ated by direct numerical integration and by the method of 
explicit inversion (Cagniard's method of integration ltH 

I). It 
is noted that while the explicit inversion technique can be 
applied to evaluate the transient field of our present prob
lem, its inherent severe restrictions prevent its generalization 
to treat other problems. Such restrictions do not appear in 
the modal theory developed in this paper. 

II. FORMULATION 

Consider a line source situated at the center of a layer of 
fluid with density p and characteristic velocity v. The layer is 
bounded on both sides by another fluid of density P, and 
characteristic velocity VI' The thickness of the layer is 2a. We 
choose the coordinate origin to coincide with the line source 
(Fig. I). Let the source be initially at rest and have the excita
tion function 

x(t) = e - at sinwot u(t ), (2.1) 

)( 

fluid PI' VI 

a line source fluid 
L 

P, V 

a z 
_---_--------_ observation 

~ point 

FIG. 1. Geometrical configuration of the problem. 
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where u(t) is 1 for t;;;.O and 0 for t < O. The Fourier spectrum 
of the source excitation function is then 

x (tV) = (00 dt x(t )eiwt = tVo . 
Jo (a - itV)2 + tV~ 

(2.2) 

For an observation point atx = 0 and a distancez away from 
the source, the total transient response is 

rp (z,t ) = - - Re dtV e - ""'X (tV) 1 (Loo . 
2-rr 0 

Is 
g(tV,kz») 

X dkz exp(ikz z) -- , SIP f(tV,kz) 
(2.3) 

where the integration for kz follows the Sommerfeld integra
tion path (SIP) which is slightly above the negative real k; 
axis for k ;.;;0 and slightly below the positive real k; axis for 

k; > O. In (2.3): 

g(UJ,kz) = _.1_ [1 + ROl exp(i2k;J2)] , 
lkx 

f(UJ,kz) = 1 - ROl exp(i2k;J2), 

kx - bk 1x 

ROl = k bk ' 
x + Ix 

b =p/Ph 

k 1x = (k ~ - k ;)112 = k ix + ik i'x, 
kx = (k 2 - k ;)112 = k ~ + ik;, 

kl = UJ/VI' 

k = UJ/V. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

For electromagnetic wave exictation, we characterize the 
slab medium with permittivity £, permeability f.l, and the 
surrounding medium with £1 andf.ll' All the above formulas 
still hold except that b = f.l/f.ll' V = (f.l£)-II2, and 
VI = (/1'£1)-112. We shall assume that v <VI' Along the Som
merfeld integration path (SIP) all k~, k;, k ix' and k i~ are 
positive. Here we use a single prime to denote the real part of 
a variable and a double prime to denote its imaginary part. 

We now outline the steps in the modified modal ap
proach. In (2.3), we have a double integral lover both fre
quencies and wavenumber kz • The first step is the time-har
monic modal approach by deforming the Sommerfeld path 
of integration (SIP) to the steepest descent path (SDP) in the 
complex kz plane. In the process of deformatio·n, residue 
contributions due to the poles of guided modes and the leaky 
modes are included, so that 

1= ("" dUJ (poles) + (00 dUJ ( dkz. Jo Jo JSDP (2.12) 

The next step consists of interchanging order of integration 
in the second term in (2.12) and having a second deformation 
in the complex UJ plane to the steepest descent path. Residues 
of poles that are encountered in deformation are also taken 
into account. We thus have 

1= (00 dUJ(poles) + ( dkz (poles) 
Jo JSDP 
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+ ( dkz ( dUJ. (2.13) 
JSDP JSDP 

Equation (2.13) is the final answer for the modified mod
al approach. Poles in the firstterm are on the complex kz plane 
and are functions of real UJ. Poles in the second term are on the 
complexUJ plane and are a function of k zon the SDP. For both 
sets of poles, we label them by the same mode index I. 

In Sec. IV, we examine the location of poles in the sec
ond term in (2.13) as a function of kz on SDP. It is shown that 
for time less than either the head wave arrival time or the 
direct wave arrival time, the first term and the second term in 
(2.13) exactly cancel each other and the third term is also 
zero identically. Causality is thus proved. In Sec. V, we pre
sent numerical results of the solution as given in (2.13). The 
third term is seemingly highly singular in that there is a dou
ble pole on the path of integration and also the integrand 
blows up to the fourth power at the lower limit. Such seem
ingly singular behavior is dealt with. In Secs. VI and VII, 
comparisons of results are made with brute force numerical 
integration and the technique of explicit inversion, 
respectively. 

III. MODAL APPROACH 

In the modified modal approach to be described in this 
paper, we perform the double integration in (3) by deforming 
integration paths to the steepest descent paths. We first 
make the transformation 

kz = kl sinO, 

k 1x = kl cosO. 

- ."./2 

8" 

o guided modes 
~ leaky modes 
x unexcited modes 

.". 

(3.1) 

(3.2) 

8' 

FIG. 2. Location of poles in the complex () plane for a fixed frequency tl). 

L. Tsang and JA Kong 1171 



                                                                                                                                    

8" 

SIP 

-Tr /2 o 

I 
I 
I 
I 
I 

B , 

--

A 

, , 
I 

I 
/ 

,;-

9' 

FIG. 3. Root locus A represented by solid line and root locus B represented 
by dotted line for mode I = 1 on the complex () plane as a function of fre
quency. The parameters arep = 1, b = 0.5; v = 1.4 X 10' em/sec, 
VI = 3.5 X 10' em/sec, and a = 2.5 cm. 

In the complex () plane, for a fixed OJ the Sommerfeld integra
tion path (SIP) and the steepest descent path (SDP) are both 
illustrated in Fig. 2. The regions with k i'x> 0 are marked U 
and the regions with k i'x < 0 are marked L. The subscripts on 
U and L denote the corresponding quadrants on the complex 
kz plane. Poles on the boundary of UI and U. represent guid
ed wave modes and poles in region L, represent leaky wave 
modes.I.l·· The locations ofthe poles are determined by set
ting the determinant in the integrand of (2.3) equal to zero. 
We obtain the modal equation 

1 - Ro,exp(i2k.f1) = O. (3.3) 

We let Ro, = eit/> with if> complex and - 1T < if> < 1T. The mod
al equation becomes 

2kxa + if> = 2/1T, (3.4) 

where I = 0,1,2, .... Note that kx = (k 2 - k ;)112. Cutoff for a 
guided wave mode occurs at k z = kl and if> = O. The cutoff 
frequency for the I th guided mode is seen to be 

11T 
OJ/cut= • (3.5) 

aV l/v2 
- l/vi 

We observe that for a fixed OJ and 1=1=0 there are two solutions 
to the modal equation (3.4). As frequency varies, the loca
tions of the two solutions on the complex () plane also varies. 
We denote their loci A and B (Fig. 3). For OJ> OJ I cu!' solution 
A is a guided mode lying on the lower side of the vertical axis 
of ()' = 1T/2 and B lies on the upper side. As frequency OJ 

decreases, A and B moves toward the () = 1T/2 and meets at 
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OJ = OJ I dou' As frequency further decreases, A moves into re
gion L I and B moves into region L •. The locus A crosses SDP 
at OJ = OJ If and OJ = OJ Is' For OJ Is < OJ < OJ If' locus A represents 
leaky wave modes. For OJ < OJ Is and OJ If < OJ <(Ulcu!' locus A 
represents modes that are not excited because they lie out
side the region between SIP and SDP. For these two frequen
cy bands, the poles have no residues and the amplitudes of 
the corresponding modes are zero. Thus if we restrict to real 
frequency, each individual mode is in violation of the Paley
Wiener criterions and gives rise to noncausal results. 

If we regard the contribution due to the I th mode as a 
summation of residues due to root A over the frequencies 
when it is excited, we obtain a noncausal mode solution ¢I 
with 

¢/(Z,t) = if>ll(Z,t) + if>/2(Z,t), 1>0. (3.6) 

Notice that there is no leaky mode for 1= 0 so that if>oiz,t) 
= 0 where 

(3.7) 

is the guided mode contribution to mode I for OJ I cut < OJ < 00, 

and 

is the leaky mode contribution to mode lover the frequency 
range OJ Is < OJ < OJ If' In (3.7) and (3.8), k Iz(OJ) is the pole in the 
kz plane as a function of OJ. The partial derivatives with re
spect to k z are taken by keeping OJ constant. We find klz(OJ) 

from 

(3.9) 

for the I th mode. We used the subscripts 1 and 2 for the 
functions f and g to distinguish the regions k i'x > 0 and k l'x 
<0. We let 

(3.10) 

(3.11 ) 

where again we have k i~>O. The reason for usingg2 and}; is 
to eliminate the necessity of remembering which function 
has k ;'x>O and which has k ;~<O. All four functionsg"j;, g2' 
and}; have k ;~>O. Thus for guided modesj;(OJ,klz(OJ» = 0 
and for leaky modes};(OJ,klz(OJ» = O. 
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IV. CAUSALITY 
In deformation from SIP to SDP, we noticed that on the kz plane, the SDP is a vertical line. We let 

k 
UJ . 

z= - +lq. 
VI 

The complete transient solution tP (z,t) then consists of the modal fields plus the saddle point contributions. We obtain 

tP (z,t) = - - Re dUJ e - ""IX (UJ) F(UJ), 1 foo . 
21f1- 0 

where 

with 

elsewhere, 

representing the leaky mode contributions, and 

00 (2rrigl (UJ,klz(UJ» / aft (UJ,kliUJ», UJlcut <UJ, 
FJ(UJ) = I akz 

1-0 - 0, elsewhere, 

representing the guided mode contributions. We write 

tP (z,t) = f ¢[(z,t) + tPiz,t), 
1=0 

where ¢[(z,t) is the modal contribution as discussed in the last section and the SDP contribution is 

1 100

. 1 Loo . tPiz,t) = - - Re dUJ e- ""IX(UJ) FI(UJ) = - - Re ldq e-qzH(q), 
2rr2 0 2rr2 0 

where 

H (q) = ('''' dUJ X (UJ) exp [ _ iUJ(t _ ~ )]( gl(UJ,kz) _ giUJ,kz) ) 
Jo VI ft(UJ,kz) fz(UJ,kz) 

in view of (4.4). 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

We first examine the singularities of the integrand of H (q) in the complexUJ plane as a function of real q. For 0 <q < 00, we 
set 

/1(UJ,k z = UJ/Vl + iq) = 0, 

fz(UJ,k z = UJ/v 1 + iq) = O. 

(4.10) 

(4.11) 

We label the solution corresponding to mode I, UJI(q) and plot as a function of q in Fig. 4. We note that the trajectory is in the 
lower-half UJ plane in the pointed portion of the figure. We note that for the I = 1 mode, the locus of the solution for (4.11) 
crosses the real UJ axis at UJ = UJ I cut> UJ If' and UJ Is corresponding to q = 0, q If' and q [s ' respectively. This is in accordance with 
the crossings of the locus A with the SDP in the complex (J plane. For the I = 0 mode whose cutoff frequency is zero, we show 
the pole locus in the upper UJ plane. Since the integration limits for dUJ is from UJ = 0 to UJ = 00, only poles on the right-half 
plane UJ'>O are of concern. The poles for I = 0 in the lower half-plane need separate attention. 

For the bracket term in the integrand for H (q) in (4.9), we find by using (3.10)-(3.13), 

- i8bk\x exp(i2k..a) 
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- i2bk 1x 
(4.12) 

We note that as W-+oo for a fixed q, 

lim k; = lim [W22 _ (~ + iq)2] = w
2 

cos'ec' 
(u--OO (!)---->.OO V VI v2 

(4.13) 

where ()c is the critical angle for which 

e = sin-' ~ c v, 
(4.14) 

Thus at a fixed q as w-+ 00, 

(4.15) 

By combining this decay factor with the other decay factors in the integrand of (4.9), we can determine whether we should 
deform the contour of integration upward or downward. For w" > 0, we find the total decay factor to be 
w"(t - z/v, - 2a cose/v) and for w" <0 it is w"(t - z/v, + 2a cose/v). We conclude that 

(1) For t <z/v, - (2a/v) cosec' we can only deform upward. 

(2) For t>z/v, + (2a/v) cosec' we can only deform downward, 

(3) For z/v, - (2a/v) cosec < t <z/v, + (2a/v) cosec' we can either deform upward or downward. 

Notice in particular that 

z 2a 
th = - + -cosec 

v, v 

is the arrivial time of the head wave. 

(4.16) 

We shall now show that our total transient response is causal. Notice that the arrival time of the direct wave is td = z/v and 
the arrival time of the head wave is th = z/v, + 2a cose/v. By causal, we mean that tP (z,t) = 0 for t < th or t < td depending on 
whether th < td or td < tho 

We first deform the original integration path from the positive real axis w' to the positive imaginary axis w". The residues 
due to poles on the upper w plane in the first quadrant contribute to the integral. We set w = ip along the imaginary w" axis. 
Therefore, for t < t h' 

H(q)= foc idpeXp[p(t-z/v,)]X«(v=iP)D[W=iP,kz=i(L +q)} + 2m' .f S,(q) + 21Ti .f T,(q), 
)0 VI' ~ 0 ,= 1 

( 4.17) 

where 

(4.18) 

and 

(4.19) 

otherwise. 

The minus sign for T[(q) is due to thefact thatD = gJIt - g2//z' The partial derivatives with respect tow are taken by keepingq 
constant. The solutions for the I th mode are expressed as w [(q), 

( 
w[~). ) ( w,(q). ) J, w,(q),kz = -v-, - + lq = 0, /z w[(q),kz = -v-, - + lq = 0 

for all q. We note that w,(q) is an analytic function of q. 

Substituting (4.19) in (4.8), we obtain for t < t h' 

tPs(z,t) = _1_Re{ foc dqe- qz foc dPexp{p(t-Z/V,)]D(w,kJ} + 
21T2 Jo Jo I. tP[lz,t) + I. tP,iz,t), 

'=0 ,-- t 

(4.20) 

where 

tP[3(z,t) = - _1_ Re f'" idq e - qZ21TiS,(q), 
21T2 )0 

(4.21) 
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lPliz,t) = - _1_ Re (q" idq e - qZ21TiT/(q). 
2rr2 Jqlj 

We note that on the imaginary UJ axis 

UJ = ip, 

k z = i (~I + q). 
p and q are real and nonnegative. 

k 1x = ~q(q + ~) is pure real 

and 

[ 
p2 ( P )2]112 k = - - + - +q 

x v2 VI 
is pure real or pure imaginary. 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

Thus from (4.12) we know thatD (UJ = ip,kz = ip/vi + iq) is pure imaginary so that the first term in (4.20) is zero. Therefore, for 

t<th' 

lPiz,t) = f lPdz,t) + f lPliz,t). 
1=0 1= 1 

We now change the integration variable from q to UJI = UJI(q) in (4.21). Since for all q 

j;( UJ/(q),kz = UJ~:q) + iq) = 0 

we find 

dj; _ 0 _ aj; I + aj; I dUJI = i aj; I + aj; I dUJI 
dq aq w, aUJI q dq akz N, aUJI q dq 

and therefore, 

d - (. aj; I ~Oj; I )d q- 1- - UJI' 
aUJI q akz w, 

We obtain from (4.21) 

lP/3(z,t) = _1_ Re ('xo dUJ1 21TiX (UJI ) exp( - iUJl) exp(iklz z)gl(UJ/>klz) ;aj; I ' 
2rr2 IN,C"' akz w, 

where 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

The integration contour runs in the complex UJ plane from UJI cut to 00 along CI3 which is the mapping ofthe roots for mode I for 
real q satisfying (4.28) (Fig. 5). 

Similarly we obtain from (4.22) 

lPliz,t) = - ~Re{WI'dUJI21TiX(UJI)exp(-iUJl)exp(iklzz)glUJ/,klz) A aj; I ). 
21T L/j '/ \ akz w, 

(4.32) 

The integration contour on the complex UJ plane runs from UJifto UJls along C/4 (Fig. 5). 

Notice that lP I iz,t ) cancels lP dz,t) if we deform the integration path from C/4 to the real UJ axis because there is no 
singularity between the paths. We may also deform the integration along C/3 for lP I iz,t ) to the real axis if integration over the 
arc at 00 vanishes. If the deformation is permitted, then lPI3(Z,t) will cancellP/l(z,t). We note thatj;(UJ,kz) = 0 at UJI and klz 
implies that g/UJ/,k lz) = 2Iik lx does not decay exponentially. Similarly by letting 

ROl exp(i2k,p) = 1 

in the expression for [aj lakzL we see that [aj /akzL,}UJI,klz) does not decay exponentially for IUJ/I---oo. According to the 
modal equationj;(UJI,klz) = 0, klz~llv + small terms as /UJI/-OO. Thus the exponential decay dependence of the integrand is 

exp[ -iUJI(t-z/v)]. 

Deformation from C/3 to real UJ axis is permitted for t < td = z/v. We conclude that for t < td, lP/l(z,t) + lP/3(z,t) = O. 

As a consequence of deforming upward for t < t h' and later by deforming Cl3 and C/4 back to the real axis, we have 
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(1) t <th < td, <p (Z,t) = O. 

(2) t <td < th, <p (z,t) = O. 

(3)td<t<th' <p(z,t)= I (<PII(Z,t) + <pdz,t». 
1=0 

Thus the earliest arrival is either the head wave (if t h < td ) or the direct wave (td < th)' Causality is observed. 

V. COMPLETE TRANSIENT SOLUTION 

For t > zlv\ - 2a cosO/v, we deform downward on the w plane to the negative imaginary w axis. Besides taking the 
residues ofthe poles due toflw,k;) = 0, we also take into account singularities due to the source function X (w) which has a pole 
at 

Wx = - ia + Wo' 

We find 

(5.1) 

H(q)=M(q)- f 2rriUI(q)- I 2rriV[(q)-2rri Residue[X(wx)] exp[ -iwx(t-zlv,)]D(wx,kz=wxlv,+iq) (5.2) 
1= I 1= I 

where 

{ 

- X (w[(q» exp[ - irtJtCq)(t - zIV,)]g2(WtCq),kz = (J)[(q)/v, + iq) 

U1(q) = 

o. 

VtCq) = 

I[! IJW[(q),kz = W~~q) + iq)] , 

for O<q<%, 

otherwise, 

for qll < q < oc!, { 

- X (wl(q» exp[ - iwl(q)(t - zlv,)]g2(wI(q),kz = w/q)lv, + iq) 

O. otherwise. 

(5.3) 

(5.4) 

In (5.2), we left out the I = 0 term. Due to the strong interaction between the I = 0 mode and the negative imaginary w" axis 
which is the steepest descent path on the w plane, we denote the combined contributions as M (q) which will be studied in detail 
later. 

The complete transient solution is then found to be 

<PsCz,t) = <P (z,t) + f <PIS(Z,t) + f <P/6(Z,t) + <Px(z,t), (5.5) 
1= I 1= I 

where 

<P (z,t) = - _1_ Re roc idq e - qZM (q), 
2rr2 Jo (5.6) 

(5.7) 

(5.8) 

and 

<Px(z,t) = _1_ Re roo idq e- qz 2rri Residue[X(wx)] exp[ - iwxCt - zlv,)]D(wx,kz = wxlv, + iq). 
2rr2 Jo (5.9) 

Following a similar procedure in obtaining <PI iz,t) and <Pliz,t) in the last section, we find 

(5.10) 

(5.11) 

where CIS extends from Wl cut to wlfcorresponding to q = 0 and q = qlf' and CI6 extends from Wis to 00 corresponding to q = qls 
and q-+ 00 (Fig. 5). 

Thus for t>zlv, - 2a cosO/v, the total response is 
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¢ (z,t) = f/> (z,t) + ¢OI(Z,t) + f ¢1(Z,t) + ¢x(z,t), (5.12) 
1= I 

where 

¢1(Z,t) = ¢lI(Z,t) + ¢Ilz,t) + ¢IS(Z,t) + ¢16(Z,t). (5.13) 

The four components of the time-domain modal solution ¢1(Z,t) are given by (4.26), (4.28), (5.10), and (5.11). 

We make the following remarks: 

(1) The solutions ¢12' ¢IS' and ¢16 have the same integrand. The integrand for ¢II is essentially the same except for the 
function gl and}; instead of g2 andj;. At the point of q = ° or equivalently w = (j) 1 cut> k Ix = ° and as a consequence}; = j; and 
gl=g2' 

(2) We cannot deform CIS to the real frequency axis between w 1/< w < WI cut as we have done for CI3 and CI4 because there 
is a double root at W = Wldou and aj lakz vanishes at that point. 

(3) Note that the expression (5.5) is also valid for t >z/vi - 2a cosB/u because we can deform either upward or down
ward for zlvi - 2a cosB/v < t < tho Thus we have two alternative expressions for the total transient solution in this time 
interval. 

From (5.6) 

1 i oo 
1 loc f/>(z,t) = - - Re idq e -qzM(q) = - - dq e -qz Im[M(q)]. 

2~ 0 2~ 0 
(5.14) 

We now examine the roots for 1 = 0, q real ofj;(w,kz = (uiv i + iq) = 0. On the lower half-plane, as q-IX) there are two roots 
lying on the two sides of the imaginary axis. As q decreases, these two roots approach each other and at q = qo dou' they merge 
to form a double root. As q is further decreased, they both move up the w" axis but with different speeds (Fig. 6). 

On the negative imaginary axis we set 

W = - ip 

so that 

(5.15) 

(5.16) 

(5.17) 

In the regionp < vlql2, k lx is purely real and D (w = - ip,kz = - ipivi + iq) is purely real. The roots ofj; = ° for the 1=0 
mode when appearing on the imaginary axis, always fall on the region where k lx is purely imaginary. 

The residues of the roots are proportional to - gJ(aj;1 aw} and in view of(5.15) are equal to ig2/(a hi ap). Since the roots 
are governed by j; = ° where};*O, the residues are equal to that of D (w,kz = wlv + iq) with respect to w. In view of the fact 
that alaw = ialap, the residues due to these roots are seen to be purely imaginary because D assumes real values in these 
regions. The contributions of these poles to M (q) are proportional to 21Ti times the residues, which are purely real numbers. 
Thus they do not contribute to ¢ (z,t) as seen from (5.14). We conclude that when the steepest descent path is taken along the 
negative wI' axis, it makes no difference whether we circle above or below the poles or take the principal values of those poles 
that lie on the imaginary axis. Therefore, we find 

1 loo f/>(z,t) = - - dqe-qzI(q) 
21T2 0 

(5.18) 

with 

I(q) = [Re21TVo(q)+P.v. ('''' dpexp[-p(t-zIVI)]X<-iP)D(w= -ip,kz = _ ip +iq)), 
)qV,12 VI 

(5.19) 

where 

{

-X (wI(q» exp[ - iWI(q)(t - Z!V I)]g2( wl(q),kz = wIV:
q

) + iq) 

Vo(q) = 
q >qodou' 

0, otherwise. 

(5.20) 

The lower limit in the principal value of the integral in (5.19) is due to the fact that for 0 <p < qvj2, D«(j),kz ) is purely 
imaginary and that portion is not contributing to f/> (z,t). The value of M (q) at q = qo dou when there is a double pole on the 
imaginary axis presents no problem because M (q) is a continuous function of q for 0 < q < IX). 

To evaluate the principal value in (5.19), we note that there are in general four poles close to the initial point p = qV1/2. 
These are the two poles for I = O,j; = 0 and lying in the lower w plane. The other two poles are due to I = O,}; = 0, and lying on 
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two sides of the imaginary axis on the upper half OJ plane. We shall carry out the modified asymptotic method by subtracting out 
these pole sigularities.' 

We make the transformation of variables 

q = Q/a, 

p = v,(P + Q)!2a, 

to obtain 

(5.21) 

(5.22) 

I(q) = Re[21TVo(q) + P.V. ~e-mQVQ (00 dpe-mPVP x( - i ~ (P + Q»)], 
a2 Jo W(P,Q) 2a 

(5.23) 

where 

m= 
v,(t - z/v,) 

2a 

W (P,Q) = k; sin2kxl1 + b 2k L cos2kxl1' 

(5.24) 

k; = - _1_ [P2(R 2 _ 1) + Q2(R 2 _ 1) + 2PQ(R 2 + 1)], 
4a 2 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

kL= _PQ/a2
, 

R = vJv. 

As Q---"O, the four poles locate at, respectively, 

P = ( ~Y/3, (~ )ei2rr!3, (~ y/3 e - i2rr/3, 

where 

SQ\ 

(5.29) 

(5.30) 

The first two poles are due to h = a and I = O. The last two 
poles are due to/, = 0 and I = 0 lying on the upper half OJ 

plane. In Fig. 7 we sketch the locations of the four poles on 
the complex P plane for various values of Q. For 
Q < QOdou = aqodou' two poles lie on the real P axis. For 
Q> QOdou, all four poles lie on the complex P plane 

(5.31) 

10 

8 

6 

.. 
4 , 

Q 

2 
3 ---

.{ ~ 1 

f, ~ 0 

increasing Q --------. 
"-

"
'-

0 1L--+----+-----4~~/----+-- +---------t------+-------+'-,.L-__+_ 
2 4 

-2 

/ 
f 

- 4 - / 

I 

6/8 
/ 

I 
/ 

10 12 14 16 18 20 
w' x 10 4 

FIG. 4. Location of poles on the complex OJ plane for I = o and I = I modes 
as a function ofreal q. The parameters arep = I,p, = 2, v = 1.4X 10' 
em/sec, v, = 3.5 X 10' em/sec, a = 2.5 cm, OJo = 81TX 10' sec-', 
a = O. 79OJo/ 1T, and z = 40 em. The intersections of the / = 1 mode trajec
tory with the real OJ axis are atq = 0, OJ lcu, = 1.92 X 10' and qlf = 0.085, OJ I! 

= 1.864X 10'. 
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I 
Using the modified asymptotic technique, we find that 

I(q) = ~ e- mQVQ Re[ _1_( ~ )1/2 Yo(Q) 
2 2m m 

x R4(Q)e - mP,(Q)u(Q - QOdOU)]' (5.32) 

where u is the unit step function. Pn(Q) are the complex 
location of the four poles with n = 1,2,3,4 as a function of Q 
and Rn(Q) is the residue defined by 

Rn(Q) = x( - i ~~ [Pn(Q) + Q] )/~~ I (Pn(Q),Q), 

W" 

I 

C"SI 
I 

I W,(s 
I 

W~f , __ ........ w~ cut 

C.t5 

FIG. 5_ Contours of C", CI4, CIS' and Clb in the complex OJ plane. 
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II 
W 

______________ -rtr-______________ ~Wl 

FIG. 6. Root locus for f,({U,kz = ((U/v,) + iq) = 0 for real q, 0 < q < 00 and 

1= 0 on the lower-half {Il plane. For q less than qOdo" there are two roots on 
the negative {u" axis. For q greater than qOdo,,' they are situated symmetrical

lyon two sides of the (u" axis. 

(5.34) 

the w function in (5.32) is related to the incomplete error 
function l2 

Re[V P,,(Q) ] ;;;,0, 

Yo(Q) = x( - i ;~ Q )/k;~ sinh2(k~) 
and 

Q(R 2 _ 1)112 
k';o = ~'----'--

2a 

(5.35) 

(5.36) 

(5.37) 

The continuity of the function I (q) at q = qOdou can be shown 
in spite of the presence of a double root on the imaginary 
axis. 

As Q--+O, the locations of the four roots are as follows: 

~(Q) = ( ~ ) 113 ei2rr(j - 1)13, j = 1,2,3, (5.38) 

P4(Q) =SQ3, (5.39) 

where 

(R 2 - 1)2 
S = -'--1-6b-2 '-, (5.40) 

aw I = 3Qb
2

, j= 1,2,3, 
ap PiQ) a' 

(5.41) 

~~ Ip.(Q) = - b;~ . (5.42) 

Thus from (5.33), we find 

R}(Q) = o( ~). j= 1,2,3. (5.43) 

From (5.36) 
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(5.44) 

which will mean a nonconvergent integral. It can be shown 
that the singular behavior of Yo(Q) cancels that of 
RiQ)/PiQ) so that as Q--+O, 

Yo(Q) + ± RiQ) = 0(1). (5.45) 
j= 1 ~(Q) 

Also the l/Q behavior of RiQ) cancels each other in 
};J= lRiQ), so that the dependence of J(q) as Q--+O is 

I· J ( ) - 1TVI - mQ X (0) (5.46) 1m q - - ---e . 
(2-->0 Q 1/3b V 3S \/6 

As a function of Q, J (q)emQ behaves like Q -1/3 as Q--+O 
and is continuous at QOdou' 

BecauseoftheQ -113 behavior as Q--+O, toevaluate<P (z,t) 

as given by (5.18), we can use Laguerre's quadrature of - + 
order. The zeros and weights of L "- 113(X) are calculated in 
ways similar to that in Ref. 13. 

We can also use ordinary asymptotics to calculate 
<P (z,t) by using (5.46) in (5.14). This gives a closed form 
solution for 1> (z,t ), 

r(!.) 
1> (z,t)::::: _1_~ X (0) 3 

2rra b V 3S 1/6 (zla + m)2/3 
(5.47) 

This is a good approximate solution to 1> (z,t) but not accu
rate enough to cancel the noncausal behavior of <Polz,t ). 

We remark that the location of the poles are a property 
of the medium parameters and is independent of z and t. 
Once they are computed, they can be stored and used for all z 
and t. Locations of the poles are calculated with the New
ton-Rapson method with the initial approximation being 
the Taylor expanded value of the pole due to the neighboring 
(i) or q. That is we use the location of the previous (i) or q and 
then (4.29) to find the initial approximation of the pole of 
this U) or q. 

p" 

6, P2 

OP2 

6, P4 

p' 
P4 6, PI 

OP3 
PI 

FIG. 7. Locations of our poles in the complex P plane: (1) 0 for Q < QOdo"; 

(2).:1 for Q> QOdo"' 
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VI. COMPARISON WITH NUMERICAL 
INTEGRATION RESULTS 

The modified modal solutions as presented in the pre
vious sections can be compared with results obtained by di
rect numerical calculations. The integration can be carried 
out along the real k; axis and the Laplace contour in the 
complex frequency planelo 

<P (z,t ) = - - Re e'" t do./ e - IOJ X (liJ) 1 (., 1"" 'I 

rr2 0 

1"" g(liJ,kJ ) 
X dkz coskz z --- , 

o f(liJ,k,) 
(6.1) 

where liJ = liJ' + iliJ" with liJ" positive and finite. We further 
separate the response from the direct arrival as follows, 

<P (z,t) = <Pr(z,t) + <pAz,t), 

where 

100 cosk, Z 2Rol exp(i2kp) ) 
X dk ------~-

o ' ikx 1 - ROl exp(i2kp) 

is the response and 

<Pd(Z,t) = - -Re dliJ'e-1wtX(liJ) 1 (1'" . 
rr2 0 

X dk--1"" COSkzZ) 
o z ikx 

(6.2) 

(6.3) 

(6.4) 

is the direct arrival. We evaluate the integrals in (6.3) by 
direct numerical integration. For the integrals in (6.4), we 
evaluate by convolving the source function with the Green's 
function for the line source 

<pAz,t) = - - dr x(t - r)G (z,t), I 100 

2rr 0 

24~ 
20L 

I 

1.6 -

.; 1.2 

""9-
08 

04 

OL-~ __ ~~~ __ ~ __ -L __ -L __ -L __ -L __ -L __ 

130 140 150 160 170 180 190 200 210 220 
t,me In 10-6 sec 

FIG. S. Transient response up to 220 ftsec after initial excitation for p = I, 
PI = 2, v = 1.4 X 10' cm/sec, VI = 3.5 X 10' crn/sec, a = 2.5 cm, 
Wo = StrX 104 sec· I

, a = 0.79wo/tr, and z = 40 cm. 
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FIG. 9. Transient response up to 325 ftsec after initial excitation. 

where 

{

a, 
G(z,t) = _ 2v 

for t <z/v, 

for t > z/v. 
(6.5) 

In Fig. 8, we plot the early arrival of the transient waveform. 
Notice that for the chosen parameters, the arrival time for 
the head wave is 

z 2a cosec 
th = - + = 146,usec 

VI V 

and the arrival time for the direct wave is 

Z 
td = - = 286 ,usec. 

v 

The results obtained with the numerical integration method 
and the modified modal method are indistinguishable as 
plotted in Fig. 8. In Fig. 9, we show the complete transient 
solution to a time of 325 ,usec after initial excitation. 

VII. EXPLICIT INVERSION METHOD 

The response <Pr(z,t) in (6.3) can also be expressed in the 
form of a convolution of the source function with a Green's 
function of multiple reflection. The Green's function can be 
evaluated by using the technique of explicit inversion. 10.11 We 
write 

I i"" <Pr(z,t) = - - dr x(t - r)Gr(z,r), 
2rr 0 

(7.1) 

where 

G ( t) 1 i d -- ;'01 r Z, = - liJ e 
rr L 

fOO dkz ROl exp(i2kp) exp(ikz z) 
X - (7.2) 

- 00 ikx 1 - ROl exp(i2kp) 

with L denoting the Laplace contour for - 00 < liJ' < 00 

with liJ" positive and finite. 

We expand the denominator in (7.2) in a power series 

f R ~1 exp(i2nkp). 
..=0 

(7.3) 
1 - ROl exp(i2kp) 
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Let 

k z = !!!.... sinO, 
v 
(J) 

kx = -cosO. 
v 

Then 

(7.4) 

(7.5) 

cosO - b (sin20c - sin20 )112 
Rol«(J),O) = (7.6) 

cosO + b (sin20c - sin20 )112 

becomes independent of frequency and the (J) dependence of 
the integrand lies entirely in the exponent. Explicit inversion 
applied to each term yields 

G/z,t) = - 2 ! Fn(t) (7.7) 
n~l 

with 

for t> 2na/v, 
(7.8) 

for t < 2na/v, 

where 

Rn = [Z2 + (2na)2] 1/2 (7.9) 

and 

cos/3 = vt /Rn' (7.10) 

We notice that R n is the distance between the observation 
point and the nth image source. From (7.10) we see that 
fJ = fJ / + i/3" and for t <Rn/v, 

- 17"/2</3' <0, /3" = 0, 

while for t> Rn/v, 

/3 / = 0, 0</3 " < 00. 

In (7.8) 

Yn - bfln 
ROI = , 

Yn + bfln 

Y n = cos(f3 + (Jin), 

fln = [sin2(Jc - sin2(f3 + 0in)] 112, 

sinOin = z/Rn-

time 1O,6 5ec 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

150 170 190 210 230 250 270 290 310 
0.0 I----...,=-~---, I • 

- 0.2 

-0.4 

-0.8 

-1.0 

- 1.2 

FIG. 10. The function G,(z,t) up to 280 f.lsec. 
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FIG. 11. The function G,(z,t) up to 320 f.lsec. 

Thus 0in corresponds to the observation angle for the nth 
image source. In, (7.13) n n lies in the fourth quadrant so that 
O<fl ~ < 00 and - 00 < fl ; < O. 

In Figs. 10 and 11 we plot G,(z,t) as a function of t. We 
note that head wave arrival times are 

z 2na cosOc 
thn = - + , n = 1,2,3, .. " 

VI v 

where n indicates nth image. Thus the first head wave arrival 
time is at t h t = 146 ftsec and the latter head waves arrive at 
time intervals 2a cosO /v,;::;; 32 ftsec apart. 

The arrivals of the reflected waves are at 

[Z2 + (2na)2] 112 
trn = , n = 1,2,3,. ... 

v 

For the chosen parameters in this study, we find t,t = 288 
ftsec and t,2 = 295 ftsec. Such reflected waves give rise to 
sharp spikes shown in Fig. 11. 

Convolving G,(z,t) with x(t) yields <p,(z,t ) which is then 
added to <Pd(z,t) to obtain the total response <P (z,t). When 
plotted the result is indistinguishable from the modified 
modal approach and the numerical integration approach. 
Thus confirming the correctness of all three methods. 

The severe restriction on the method of explicit inver
sion is that at making the transformation (7.7), the function 
ROI must become independent of frequency. All (J) depen
dence can lie only in the exponent or exists as power series. 
Thus for example the explicit inversion technique will not be 
applicable to cylindrical geometry where we have the Han
kel functions 

H~t)[( :: _k;Y12a] =H~t)( ~a COSO), 

H~t)[(:; _k;)1I2a] =H~t>( :a (Sin20c-Sin20)II2) 

The explicit inversion technique is also not applicable to dis
persive media, for instance, when 

E = E' + ia/m. 
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Then ROl will be a function of UJ even after the transformation 
(7.7) 

The modified modal approach, on the other hand, does 
not seem to have such limitations as long as all singularities 
in the complex UJ and kz plane are properly taken care of and 
may have a promising future for treating more complicated 
problems. 
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A method for determining a stochastic transition 
John M. Greene 

Plasma Physics Laboratory, Princeton, New Jersey 08544 
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A number of problems in physics can be reduced to the study of a measure-preserving 
mapping of a plane onto itself. One example is a Hamiltonian system with two degrees 
of freedom, i.e., two coupled nonlinear oscillators. These are among the simplest 
deterministic systems that can have chaotic solutions. According to a theorem of 
Kolmogorov, Arnol'd, and Moser, these systems may also have more ordered orbits 
lying on curves that divide the plane. The existence of each of these orbit types depends 
sensitively on both the parameters of the problem" and on the initial conditions. The 
problem addressed in this paper is that of finding when given KAM orbits exist. The 
guiding hypothesis is that the disappearance of a KAM surface is associated with a 
sudden change from stability to instability of nearby periodic orbits. The relation 
between KAM surfaces and periodic orbits has been explored extensively here by the 
numerical computation of a particular mapping. An important part of this procedure is 
the introduction of two quantities, the residue and the mean residue, that permit the 
stability of many orbits to be estimated from the extrapolation of results obtained for a 
few orbits. The results are distilled into a series of assertions. These are consistent with 
all that is previously known, strongly supported by numerical results, and lead to a 
method for deciding the existence of any given KAM surface computationally. 

I. INTRODUCTION 

Problems in many branches of physics can be reduced 
to the study of two-dimensional measure-preserving map
pings. In one important application, these mappings are an 
abstract representation of the simplest nontrivial problem of 
classical mechanics, the motion of two coupled oscillators. I 
It is an intriguing problem because the corresponding equa
tions are simple and deterministic, with solutions that are 
either ordered or chaotic. The type of solution depends sensi
tively on both the parameters of the system and on the initial 
conditions. The aim of this paper is to illustrate a point of 
view for the examination of the boundaries between these 
types of motion. The method adopted here is to first explore 
the problem empirically with the aid of a computer, and then 
use this insight to guide analytic calculations. 

A number of authors2
-

6 have recently written reviews of 
the subject covered in this paper, so that it need not be intro
duced in great detail. One physical example will be given 
here to provide a context for the remainder of this paper. 
Consider a particle constrained to the surface of a nonsym
metric bowl, i.e., moving in a potential V(x,y) which has a 
minimum at x = y = O. In general, the particle will go 
around and around the bowl on some irregular orbit. For 
ease in picturing and understanding this orbit, its dimension
ality can be reduced by one by a method introduced by Poin
care. Consider a time at which the orbit crosses the ray y = 0, 
x> O. This orbit is completely characterized by its position in 
the two-dimensional phase plane (x,i) since the requirement 
y = 0 together with the conservation of energy can be used to 
complete the specification of the orbit in the full phase space. 
An orbit is then conveniently pictured through its successive 
intersections with this plane. 

The orbits running around the bowl from intersection 
to intersection of the phase plane (x,x) determine a mapping 
of the phase plane onto itself. By one of Poincare's invar
iants, the area of a bundle of orbits is conserved in this map
ping. Mappings with this area preserving property can be 
constructed analytically and these show the full range of 
orbit types as those arising from Hamiltonian differential 
equations. Thus, they represent a very convenient abstrac
tion of dynamics, since they can be evaluated rapidly and 
accurately. 

This paper is devoted to the study of a particular map
ping that was introduced by Taylor,7 and more recently 
treated extensively by Chirikov: Termed "the standard 
mapping" by the latter author, it is 

'I/+I='n- ~sin21Ten' 0n+I=OI/+rn+ l • (1) 
2ff 

It transforms a point (rn,On) to the point (rn + 1,0" + I)' In this 
space an orbit is a sequence of points generated by successive 
iterations of the mapping on an initial point (ro,eo). One iter
ation of this mapping is thus analogous to one traversal of the 
particle around the bowl in the previous example. For this 
reason, the number of iterations that generate an orbit seg
ment will be called the length of that segment. 

The mapping ofEq. (1) is naturally periodic in both e 
and r with unit period. Thus, the domain O';;r < 1, 0.;;8 < 1 
will be treated as a torus. 

Consider the standard mapping for the value k = o. 
Then r is a constant of the motion, and the mapping is inte
grable.8 Orbits on invariant curves where r is rational close 
on themselves after a finite number of iterations of the map
ping, and thus are periodic. Surfaces with irrational rare 
filled ergodically as the orbits are extended indefinitely. 
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FIG. I. Five orbits for the standard mapping with k = 0.97. 

Five typical orbit segments for non vanishing k are 
shown in Fig. 1. Now a type of orbit appears that did not 
exist for the integrable case, one that apparently randomly 
fills out some area of the torus. These will be called stochas
tic, or two-dimensional orbits. Two such orbits are illustrat
ed in Fig. 1. The two types of orbits that appeared in the 
integrable case are also found when k is finite. According to a 
theorem of Kolmogorov, Arnol'd, and Moser,9.10 for suffi
ciently small but finite k, there are orbits filling surfaces that 
in the limit as k vanishes go continuously into surfaces with 
irrational r. These are one-dimensional orbits, or KAM sur
faces. Two orbits of this type are illustrated in Fig. 1. Finally, 
according to a theorem of Poincare and Birkhoff,5 surfaces 
with rational r are reduced to a finite number of periodic 
orbits when k is nonvanishing. In fact, in Appendix A it is 
shown that for this mapping two such orbits survive from 
each rational surface. These orbits can be called zero-dimen
sional. One orbit of this type is denoted by the symbol 0 in 
Fig. 1. The resultant mapping, then, is a complex mixture of 
zero-, one-, and two-dimensional orbits. 

Two KAM surfaces extending around the r, e torus in 
the e direction divide the torus in two. This divides the orbits 
into two classes, since by continuity and uniqueness, orbits 
in one region cannot cross the bounding KAM surfaces into 
the other region. Under this circumstance, two stochastic 
orbits such as shown in Fig. 1 are distinct and disconnected. 
Thus, these orbits cannot wander around the torus in the r 
direction. 

On the other hand, for sufficiently large values of k, 
orbits are seen to encircle the r, e torus in the vertical, or r 
direction. This behavior will be called connected stochasti
city. The presence of connected stochasticity precludes the 
existence of horizontally encircling KAM surfaces. 

We are thus led to the following picture. For small val
ues of k, there are many KAM surfaces that encircle the r, e 
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torus horizontally. These divide the space into many com
partments, each of which may contain stochastic orbits. For 
larger values of k, there are fewer such KAM surfaces, and 
individual stochastic orbits can occupy a greater area of the 
phase space. Finally, at some critical value of k, the last hori
zontally encircling KAM surface disappears. For larger val
ues of k there are vertically, encircling stochastic orbits. A 
major purpose of this paper is to calculate and describe the 
critical k. 

Previous work on this problem for this mapping has 
been summarized by Chirikov: 

The method of approach used in this paper was first 
studied several years ago. II It is based on an examination of 
the stability of periodic orbits. These orbits are attractive 
points of departure since they are of finite length, and thus 
can be treated with arbitrary accuracy. It is shown here that 
there is necessarily a close relation between the stability of 
these orbits and the existence of nearby KAM surfaces. 

This paper is an improvement over the previous paper 
in several respects. The particular mapping studied here is 
superior. There is now a well-defined problem for finding the 
critical k for connected stochasticity that has no simple ana
log in the previous mapping. Also, this mapping is continu
ously connected to an integrable mapping through the pa
rameter k, which is very useful conceptually. Among other 
developments that have been helpful is a new formulation of 
the problem of calculating the stability of periodic orbits 
given by Bountis and HeIleman 12 that sheds considerable 
new insight. This is discussed in the next section, and de
scribed in more detail in Appendix B. Finally, present com
puters have permitted the calculation and sifting of much 
more data, allowing stronger statements of results to be 
given. 

The quantities to be calculated in this paper are defined 
and discussed in Sec. II. The results of many numerical cal
culations are then distilled into a series of assertions given in 
Sec. III. Some of the evidence leading to these assertions is 
given in Sec. IV. Finally, the meaning of it all is discussed in 
Sec. V. 

II. DEFINITIONS 
The material in this section has considerable overlap 

with similar material in the previous paper. II It is included 
here for completeness, and also to point out certain differ
ences between these two papers. 

Here we are interested particularly in the periodic or
bits of the mapping given in Eq. (1). A periodic orbit is a 
finite set of points that transform among themselves under 
iteration of the mapping, and all of which are accessible from 
anyone of the points. We will say that the orbit is oflength Q 
if the orbit closes after Q iterations. 

Not all of the periodic orbits are considered here. The 
class of interest can be defined succinctly as those periodic 
orbits that exist for all values of the parameter k, down to 
k = O. Some of the other periodic orbits bifurcate out of 
shorter periodic orbits at a finite value k, and some just sud
denly appear as k is increased. One way of classifying all 
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these orbits is through the bifurcation tree that produced 
them, as k is varied from zero. This classification was called a 
hierarchy in the previous paper. Hopefully, it is somewhat 
clearer here, where the mapping can be connected to an inte
grable mapping by a continuous transformation, i.e., 
through variation of k. 

A method for calculating all the periodic orbits of inter
est is given in Appendix A. 

Similarly, attention in this paper is focussed only on 
those KAM surfaces that encircle the torus. Other KAM 
surfaces bifurcate out of periodic orbits, interspersed with 
the bifurcated periodic orbits discussed above. These, how
ever, provide only limited impediment to the diffusion of 
many orbits, since they do not encircle the torus. The KAM 
surfaces of interest can also be defined as those that exist 
down to k = 0. The conclusion of this paper is that there is a 
close connection between the KAM surfaces and the period
ic orbits that exist together down k = 0. 

By extension, the KAM surfaces that bifurcate out of a 
periodic orbit are related to the interspersed periodic orbits 
that successively bifurcate out of the given orbit. All of the 
periodic orbits and KAM surfaces on a given branch of a 
bifurcation tree should be considered together as a system. 

It is convenient to associate a winding number with the 
periodic orbits and KAM surfaces of interest. In the integra
ble limit, k = 0, this winding number isq = I/r. For rational 
r, r = P IQ with P and Q relatively prime, Q is the length of 
the orbit before it closes, and 

P f rn = f ((In - (In ~~ ,) = (JQ - (Jo, (2) 
n = I n = I 

where rn and (In are the coordinates of the nth point of the 
periodic orbit. Then, from Eq. (I), P and Q, and thus 

q_QIP (3) 

are well-defined and independent of k, and can be used to 
identify a given periodic orbit. Returning to the picture used 
in the Intr9duction where an iteration of the mapping was 
analogous to a traversal of a particle once around a bowl, Q 
can be~egarded as an angle, and it is reasonable to call q a 
winding number. This winding number can be extended to 
KAM surfaces in the obvious way. 

The nature, behavior, and characteristics of periodic 
orbits and KAM surfaces are not continuous functions of the 
winding number, q. It is observed that, in the neighborhood 
of a given periodic orbit, KAM surfaces and other longer 
periodic orbits are strongly perturbed. In perturbation the
ory, this effect appears to be a problem of small denomina
tors, where the denominator is a measure of the distance 
between a perturbing periodic orbit and the region of inter
est. A good way to take account of this phenomena is to 
express winding numbers as continued fractions, 13 

q=ao + ----- (4) 

a2 + .. , 
where, since q;.l, the an's are positive integers. This will be 
denoted 
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(5) 

Note that [aO,a"a2] approaches [ao,a.] when a2 becomes large. 
Thus, the magnitude of the partial quotients, an' is a measure 
of the degree of isolation of the associated orbit. 

The continued-fraction representation is unique up to 
an ambiguity in the last partial quotient 

(6) 

as can be seen from the definition. There is also an inversion 
symmetry around the midpoint of the standard mapping, 
with the result that orbits with winding numbers q and 
ql(q - I) are essentially identical. In the continued fraction 
representation, this means that winding numbers 
[ao,a" ... ,aNJ and [l,ao -1, ... ,aN1 are interchangeable. His 
amusing that this is symmetric with the natural ambiguity of 
continued fractions. 

It is sometimes useful to place a subscript on q to indi
cate the number of partial quotients in its continued fraction 
representation. 

Irrational numbers have unique representations as con
tinued fractions, with an infinite number of partial quo
tients.13 Thus, these numbers will be denoted q ao' Successive 
truncations of the infinite continued fraction yield rational 
approximations that are called the convergents lJ of q. These 
convergents yield, from among the periodic orbits of the giv
en length or shorter, the one that most nearly approaches the 
surface of interest. 

Other parameters can be calculated to further charac
terize the periodic orbits. Orbits in the immediate vicinity of 
the given orbit can be computed in the linear, differential 
approximation. The domain of this approximation is called 
the tangent space. It was well treated in the previous paper, I' 
but the results will be summarized here. 

The tangent space orbit (or",o(J,,) at the point (rn,(Jn) is 
given in terms of the initial conditions on the orbit (oro,o(Jo) 
at the point (ro,(Jo), through a matrix M, 

(o(J,,) = M({j(Jo). 
or" oro 

(7) 

This matrix M can be computed as the product of matrices, 
one for each orbit section. Over the full cycle of a periodic 
orbit, 

M = IT (I - k COS21T(Ji 11)' 
i = , - k COS21T(Jj 

(8) 

The property of M of greatest interest is its eigenvalues. 
These are the Floquet multipliers for the linear difference 
equation in the periodic tangent space. From the area-pre
serving property of the mapping, 

DetM = I, (9) 

the eigenvalues of M depend only on its trace. As will be 
seen, to obtain the best analytic properties it is convenient to 
subtract two from the trace, and then it is convenient to scale 
it with a factor of - 4. This leads to a definition of a quantity 
to be called the residue" 

R = *(2 - TraceM). (10) 
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The eigenvalues of M are given in terms of the residue by 

A = 1 - 2R ± 2[R (R - 1)]112. 

When 

O<R < 1, 

(11) 

(12) 

the eigenvalues are complex with magnitude unity. Under 
this condition, tangent space orbits, continued over many 
periods, rotate about the origin on ellipses. Ifwe express 

A = expiL, (13) 

thent is the average angle of rotation per period. It is given in 
terms of the residue, 

R = sin't!2. (14) 

When R < 0 or R > 1, tangent space orbits lie on hyper
bolas. Then the periodic orbit is said to be unstable since all 
the tangent space orbits march off to infinity, except those 
lying on the eigenvector of M with an eigenvalue less than 
one. 

In the previous paper'l a theorem of Poincare's was in
voked to show that, for each rational q, there are as many 
periodic orbits with positive residue as there are with nega
tive residue. It follows from the results of Appendix B that, 
for the mapping treated here, there is always one orbit of 
each kind when k is small. These two periodic orbits with the 
same q will be distinguished by ± superscripts. 

For integrable mappings, all except a small, finite num
ber of periodic orbits lie on surfaces composed of periodic 
orbits. Then there must be a line of periodic orbits in the 
tangent space also. A necessary condition for this is R = 0 
(A = 1). Thus, for the present mapping, all the residues for 
the periodic orbits of interest here vanish in limit as k goes to 
zero. 

The positive residue orbits are stable when k is small, 
but the residues are seen to increase with k and ultimately 
become larger than unity. At that point the corresponding 
orbits become unstable. This change in orbit character, from 
stable to unstable, as k is increased, is the central concept of 
this paper that will be related to the disappearance of KAM 
surfaces. 

Appendix B presents a result of Bountis and HeIle
man, 12 that the residue can also be written as the determinant 
of the Q X Q matrix, 

R = - * DetH 

H= 

(

2 - k COS21Te, 

-1 

o 

- 1 

- 1 

2 - k COS21Te, 

where H is tridiagonal with additional 

(15) 

-I ) 

2 - k c",2"e
Q 

' 

(16) 
- I 's in the corners. 

It is apparent that when k is large, the residue is propor
tional to k Q. To prove this, one would need only to establish 
that periodic orbits do not approach either e = * or e = i, 
and numerically the opposite tendency is observed. 
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In Appendix B it is shown that in the limit of small k 
also, the residue is proportional to k Q. 

In the succeeding sections of this paper, the aim is to 
make sensible statements relating the residues of neighbor
ing periodic orbits of different lengths. Since it appears that 
the magnitude of the residues is dominated by an exponen
tial dependence on orbit length, it is natural to introduce a 
new quantity proportional to the Q th root of R. The new 
quantity will be called the mean residue,/, 

f=(IR 1//3)lIQ. (17) 

The quantity /3 could be adjusted for convenience, as is dis
cussed in Sec. IV C. From the considerations of Sec. IV E, 
the value/3 = ! is preferred for the cases of most interest, and 
that value has been used for all the numerical computations 
of this paper. 

In the previous paper," a slightly different definition of 
f was used, which was the square ofthe value used here. For 
the present mapping, it is clear that it is preferable to havef 
proportional to the perturbation k, rather than its square. In 
retrospect, this argument should have led to the present defi
nition of lin the previous paper also. 

A quantity partially related to the mean residue has 
been used by other authors. 14 ,ls 

(18) 

where A is the eigenvalue of Eq. (II). When the residue is 
large, and therefore the eigenvalue is large, 

A~-4R (19) 

so that 

(20) 

However, in distinction to h,fis a real analytic function of k 
for both large and small values of k, and is thus considerably 
more useful in the same way that the residue is more useful 
than the eigenvalue. 

The quantity I can be evaluated for both positive and 
negative residue orbits. A superscript ± will be used to indi
cate the sign of the residue of the orbit. 

One further property of the tangent space mapping is 
useful, that of the shapes of the conic section surfaces that 
are invariant when the mapping is extended over a full peri
od. Since this quantity depends on more than the trace and 
determinant of M, we introduce the parameterization, II 

C + b). 
o-d 

The condition on the determinant of M can be written 

(21) 

0 2 + b 2 _ c2 
- d' = 1. (22) 

First consider unstable periodic orbits so that the invar
iant surfaces are hyperbolas. It is straightforward" to estab
lish that the angle r between the asymptotes of these hyper
bolas is given by 

4R (R - 1) 

b' 
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Thus, when the residue is small, the hyperbolas degenerate 
into straight lines, appropriately for integrable systems. 

Further, it can be shown that in the stable case, where 
the invariant conics are ellipses, the same expression is relat
ed to the ratio of major, p., to minor, po, semiaxes, 

4p2+ p2_ 1 _ a2 4R (1 - R ) = ----- = --~----~ 
(P2+ + p2_)2 b 2 

(24) 

Again, small values of R show the approach to the straight 
lines of an integrable system. 

III. ASSERTIONS 
An outline of the numerical results that have been ob

tained for the standard mapping is given in this section. The 
results are presented as a series of assertions, or hypotheses. 
The evidence for the truth of these assertions will be given in 
the succeeding section. The emphasis here is on their signifi
cance, and on the relation between them. It will be seen that 
they are not independent, but since they have not been prov
en, it is undesirable to form a logical structure that is too 
rigid. 

Assertion I: 

k<j<,l + -!k + Mk 2 + 4k )112<,k + 2, 

a/ 21 /+,;;1"-. ak "', <>v 

This first assertion applies to each periodic orbit and 
provides some estimates and bounds on the magnitude off 
In fact, for the standard mapping,! is close to linear in k. 
According to the third part of this assertion, the periodic 
orbit with negative residue has a slightly larger value of/ 
than the associated orbit with positive residue. Note that the 
upper bound on/is consistent with the bound on the deriva
tive, i.e. a/maxi ak';;.l. 

Assertion II: Consider the mean residue,f, to be a func
tion of the partial quotients of the continued-fraction repre
sentation of the winding number q of a given periodic orbit. 
Then 

/(ao, ... ,ai,···,aN ) > /(bo, ... ,bi,···,bN ) 

if a, = b, + 1 for some set of b/s that satisfy 
bi = bmax = maxJ{b), and ai = bi otherwise, with the further 
restriction 

ao = aN = 1. 

Further, 

0,-.00 

This assertion compares orbits whose continued-frac
tion representations have the same number of partial quo
tients, and says that the mean residue is increased if any of 
the largest partial quotients are increased. 

The first comment to be made about this assertion is 
that it is reasonable to consider/to be a function of the 
partial quotients of q rather than a function of q directly. In 
fact,! is not a well organized function of q with continuity 
properties. Its dependence on the partial quotients is more 
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orderly. The general thrust of this assertion is that periodic 
orbits with large partial quotients have large values off, and 
thus tend more to instability. In other words, periodic orbits 
that are close to shorter periodic orbits tend to be more un
stable than orbits that are further removed. 

Unfortunately, the mean residue is not simply mono
tonic with respect to each partial quotient. Thus, the desired 
properties must be expressed in terms of some weaker state
ment. The most important use of a statement of this kind is 
the identification of the orbit with the minimum value off, 
among all those with a given number of partial quotients in 
the continued-fraction expansion of its winding number. 
This provides a context, for example, for Assertion IV be
low. Thus Assertion II seems to be the cleanest statement 
that is both true and useful in this respect. 

The symmetries associated with the partial fraction re
presentation permit the restriction on ao and aN without 
eliminating any significant periodic orbit. Again, unfortu
nately, this restriction is necessary to avoid 
coun terexamples. 

The last part of this assertion, when combined with As
sertion VI, leads to the conclusion that there is a stochastic 
region in the immediate vicinity of every chain of periodic 
orbits. Note that the bounds of Assertion I are consistent 
with the present inequality, and prevent the limit from 
diverging. 

Assertion III: Consider an irrational winding number 
q, and its unique continued-fraction representation. Associ
ated with this, consider the series of periodic orbits whose 
winding numbers are given by the successive truncations, or 
convergents, of this continued fraction, and calculate the 
mean residue for each. Then 

converges nontrivially, where 

qN -[aO,a20 ... ,aN }· 

Further, 

/+(q oc) = F(q ."J, 
This assertion continues the definition of/(q) to irratio

nal values of the argument. According to the theory of con
tinued fractions, the orbits that have been used in each ap
proximation have the minimum separation from the chosen 
irrational orbit among all orbits of a given length. This has a 
clear meaning, at least, when there is a KAM surface with 
the chosen irrational q. Thus, the irrational is approached 
through a consistent sequence of rationals. 

The statement that the convergence of/is nontrivial 
means/(q oo,k) is not identically unity. In that case, the in
teresting behavior associated with irrational winding num
bers would be exhibited by some other function of the 
residue. 

The second part of this assertion states that the same 
value of/is achieved if the limit is taken using either the 
positive or negative residue orbits. While according to As
sertion I. the negative residue orbit yields the larger value of/ 
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for each finite approximation, the difference disappears in 
the limit. The significance is that near the irrational surface, 
associated positive and negative residue orbits will have the 
same character. See also the comments under Assertion VI. 

Assertion IV; Define 

q:=[ 1,1,1, ... ] = 1(1 + ys). 
Then 

f(q:) <f(q 'YJ for all q ",=I=q:. 

The irrational number q: has been known for millenia 
as the golden mean. It has many interesting properties that 
are discussed in Niven, 13 and also by Gardner. 16 It is the 
number that is least easily approximable by rationals. It is 
thus the point at which the problems of small denominators 
are minimal, and the surface for which the conditions for the 
KAM theory are most easily satisfied. 

Assertion IV follows if Assertion II is true for all sets of 
orbits with a finite number of partial quotients. Together 
with Assertion VI, it yields Assertion VII for the boundary 
of connected stochasticity for this mapping. 

The details of this assertion are true only for the stan
dard mapping considered in this paper. It should be borne in 
mind that the partial quotients determine the position of the 
orbit with respect to inhomogeneities over the full domain of 
the mapping, as well as its relation to nearby shorter periodic 
orbits. The former variations will always have a weak depen
dence on the partial quotients a j with large i. Thus, this asser
tion should be relevant, for general mappings, for all except 
the first few partial quotients. See also the comments on the 
next assertion. 

Assertion V; Consider an irrational winding number 
q;- whose partial fraction representation has the property 

a j = I for all t~N. 

Choose that value of k = k; such that the converged mean 
residue satisfies 

f(q~,k;) = 1. 

Then the associated residue converges with the limit, 

R (q~,k;) = 0.25. 

This assertion can be approached in the following man
ner. Consider an asymptotic representation of the residues 
and mean residues for the sequence of convergents of a par
ticular q 00' in the limit of a large number of partial quotients. 
The length Q of the associated periodic orbits can be taken to 
be the large parameter of the expansion. According to Asser
tion III, this asymptotic expansion for the residues can be 
written 

R=r(Q,q oo,k 1(Q(q oo,k)[ 1 + ... ], 
where r need only satisfy 

rliQ ---'7 1 
Q--oo 

Then Assertion V can be restated 

r(q~,k b = 0.25. 
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(25) 

(26) 

The irrational numbers q~ are closely related to the 
golden mean that appeared in the previous assertion. They 
are an obvious generalization when attention is fixed on a 
subregion of a given mapping. It is remarkable that this as
sertion appears to be true for all such numbers, even though 
there are counterexamples to its generalization to the full set 
of irrational numbers. Since the surfaces corresponding to 
the winding numbers q:' have a considerable variation in 
their immediate environment, there is some hope that this 
assertion could be generalized to other mappings. 

Picking up a loose end, the rather arbitrary value/3 = ! 
that appears in the definition of j, Eq. (17), has little or no 
influenece on the assertions ofthis section. Only in Asser
tions I and II will this number enter, and then, rather 
weakly. 

The significance of this Assertion V is in determining a 
best value for /3. A value of! yields the most rapid conver
gence, in the sense of Assertion III, for those interesting 
winding numbers q:' in the vicinity of the critical limit, 
k = k c• since the asymptotic expansion for the mean residue, 
from Eqs. (17) and (25), is 

(27) 

and the leading term is independent of Q only when /3 = y. 

It is interesting that in the preceding paper, similar con
siderations, if less coherently presented and less accurately 
evaluated, led also to the conclusion that /3 should be given 
the value of! for the most rapid convergence. It is very 
tempting to speculate that, for some hidden reason, /3 = ! is 
universally the desired value to best determine the KAM 
surfaces of most interest. The common factor between the 
corresponding orbits is not at all clear. 

Assertion VI: The KAM surface with a given winding 
number q"", exists if and only if 

f(q if) < 1. 

This is perhaps the most striking of the various asser
tions ofthis section. An intuitive feeling for this assertion can 
be gleaned from a consideration of the definition off, Eq. 
(17). Whenf(q 00) is slightly smaller than unity, Assertion 
III yields the conclusion that the necessarily long, nearby 
periodic orbits corresponding to the convergents of q oc will 
all have a small residue, IR I ~ 1. On the other hand, when 
f(q 00) is slightly larger than unity, these residues will be 
large, IR I ~ 1. Thus, at the critical value of k, R (q oc ,k) will 
have an infinite discontinuity. It should not be surprising 
that this discontinuity is associated with other remarkable 
phenomena. Note that, from Assertion Ill, this discontinu
ity occurs simultaneously for positive and negative residue 
orbits. 

Assertion VII; Connected stochasticity occurs for 

k>k;, 

where 

f(q:,k;) = 1, k; = 0.971635 .... 

From Assertion IV. 
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Table I. Mean residue for q = 3 orbits. 

k 

0.5 
1.0 
2.0 

20.0 
21.0 

0.52068 
1.04378 
2.09494 

20.48158 
21.48851 

0.52118 
1.05081 
2.16282 

21.44352 
22.46472 

f(qoo,k;» 1, for all qoo-=l=q:, 

and thus, from Assertion VI, no other KAM surfaces exist 
that encircle the torus horizontally in the usual pictorializa
tion. Therefore, for k> k ;, there are no impediments to or
bits encircling the torus vertically. Evidence will be present
ed that this latter type of orbit does exist, then, at least for k 's 
that are slightly above the critical value. That is, it is shown 
that there is at most a very small range of the parameter k for 
which there is neither a vertically encircling stochastic type 
orbit, nor a horizontally encircling KAM orbit. This is sort 
of reasonable in the following sense. If there are no vertically 
encircling orbits, then each orbit must have some upper and 
lower bound, 

rL(O)<r;<ru(O). 

These bounds can be intuitively identified with KAM 
surfaces. 

IV. EVIDENCE 
A. Assertion I 

The upper limit onfhas been obtained by considering 
the Jacobian matrix M ofEq. (8). For any given length orbit, 
the trace of this matrix must always be less in absolute mag
nitude than the trace of the matrix obtained from an orbit 
restricted to 0 = ~, i.e., 

(
1 + k I TraceM I <Trace k 

The inequality follows from the fact that the product of ma
trices on the right then involves the sum of positive terms, 
each of which has been maximized over conceivable orbits. 
The trace on the right has been evaluated by diagonalization, 
and thus represented in terms of the largest eigenvalue of 
each factor, 

(29) 

When this estimate is used with the definition off, an 
upper bound is obtained that decreases with orbit length. 
Since the general trend of Assertions II and III is thatfdoes 
not decrease with the orbit length, the leap has been made to 
minimize this bound over Q, with the result given in Asser
tion I. 

A few periodic orbits are independent of k. Thus, they 
are easily found. For q = 1, the positive residue orbit is 

r=O, 0=0 

and the negative residue orbit is 

1189 

r=O, 0 -1 
- 2' 
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(30) 

(31) 

Table II. Mean residue for various orbits with k = I. 

q QIP f' 

[1.1,1, 1,1] " 1.0325 
5 

[1,1,1,2,1] 11 1.0638 
7 

[1,1,2,1,1] l' 1.0378 
7 

[1,2,1,1,1] 11 
1.1139 -

" 
[1,1,2,2,1] 17 

1.0475 -
10 

[1,2,1,2,1] 15 
1.1447 

11 

[1,2,2,1,1] 17 
1.0967 -

12 

[1,2,2,2, I] 14 I. 1070 
17 

[1,1,1,3,1] 14 
1.1020 

9 

[1,1,3,1,IJ 
If, 

1.0796 -
9 

[I,3,I,I,IJ 14 
1.2290 -

11 

The corresponding mean residues are easily evaluated 
yielding 

f:i(1,k) = k. (32) 

Similarly, the positive residue orbit for q = 2 is 

r- 1 
- 2' 0 -1 -2 

and the corresponding mean residue is 

j+(2,k) = k. 

(33) 

(34) 

These orbits thus test the lower bound onfand its derivative. 

The expansion for small k given in Appendix B can 
yield as many asymptotic values off as one cares to evaluate. 
In this limit, the positive and negative residue orbits yield the 
same mean residues. A few such values are 

f(3) = (i) 1/3k, 

f( 4) = (~)1I4k, 

f(5) = [(1675 + 375YS)1768] 115k, 

f(f) = [(1675 - 375YS)1768] 1/5k. (35) 

Finally, in Table I, a few values of the mean residue are 
given for orbits with the winding number q = 3. 

Table III. Residues and mean residues of golden mean convergents, 
k = 0.971635. 

QIP f' R' f R-

89/55 0.99998014 0.24956 1.000217 - 0.25488 
144/89 1.00001090 0.25039 1.000158 - 0.25574 
233/144 0.99999772 0.24987 1.000088 - 0.25520 
377/233 1.00000177 0.25017 1.000058 - 0.25551 
610/377 0.99999965 0.24995 1.000034 - 0.25528 
987/610 1.00000009 0.25002 1.000021 - 0.25537 
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Table IV. Mean residues of golden mean convergents, k = 0.9. 

QIP I' F 

55/34 0.92427 0.92428 
89/55 0.92409 0.92409 

144/89 0.92406 0.92406 
233/144 0.92401 0.92401 

Altogether, the results of this subsection should provide 
some feeling for the typical behavior of/as a function of k. 
The most noteworthy result is that the positive residue in
creases monotonically as a function of k. It passes through 
unity, and thus the orbit becomes unstable without hesita
tion or indication of nonanalyticity in these parameters. 

B. Assertion II 

In Table II, a series of values of mean residue is present
ed for a number of orbits whose winding number q has five 
partial quotients. It is seen that minimizing the partial quo
tients yields the minimum mean residue. On the other hand, 
the fifth in the list is smaller than the second. This shows the 
difficulty of making useful true statements, without invali
dating Assertion II. 

The limit of a given partial quotient tending to infinity 
that is considered in the second part of this assertion is quite 
interesting. The winding number in this limit approaches the 
continued fraction that is truncated at the term i-I, as is 
clear from the continued fraction representation. Experi
mentally, the corresponding limiting orbits are closely asso
ciated with the negative residue orbit with the truncated wid
ing number. This latter orbit will be referred to as the 
truncated orbit. It is observed that the limiting orbit ap
proaches the homoclinic points of the truncated orbit l7 

where each set of homo clinic points is defined as an orbit of 
infinite length that asymptotically, at either end of its trajec
tory, approaches points of the truncated orbit. s Thus, orbits 
that are close to the truncated orbit at several points will also 
be close to corresponding homoclinic points. 

Now consider a set of limiting orbits with increasing 
partial quotients, as in the second part of Assertion II. These 
have an increasingly long residence near the truncated orbit 
with short bridges from one orbit section to the next. The 
beginning of this process can be seen in Fig. 3 of Ref. 11. The 
contributions to the Jacobian matrix M from orbit sections 
neighboring the truncated orbit can be calculated as powers 
of the Jacobian matrix associated with the truncated orbit, 
and the contribution from the bridges is independent of ai' 
when a i is large. As a result, 

(36) 

and 

(37) 
Or -"'Cf:; 

whereAt is the largest eigenvalue of the truncated orbit, Q, is 
the length of that orbit, and c is a constant, for large ai' 

1190 J. Math. Phys., Vol. 20, No.6, June 1979 

associated with the bridges. Since the eigenvalue A, is always 
larger than one, the limiting/is also larger than one. 

c. Assertion III 
Table III presents data relating to the convergence of 

the mean residue/for a sequence of convergents to the gold
en mean. These have been chosen because the golden mean is 
the winding number of the greatest interest. The value of k 
given here is the best approximation to the critical k that has 
been evaluated. Attention for the moment should be fo
cussed on the mean residue/, to the exclusion of R. It has 
been evaluated for both positive and negative residue points. 

For the positive residue orbits, the convergence is oscil
latory and the differences decrease approximately as Q '2. 

Since Q increases exponentially from convergent to conver
gent as powers of the golden mean, the convergence of/is 
quite rapid and convincing. 

The negative residue orbit exhibits convergence from 
above, the differences decrease more slowly, and they are 
more nearly proportional to Q -1. The problem is that the 
value of f3 in the definition of/has been chosen to maximize 
the convergence of the positive residue orbit. For this set of 
orbits, the quantity y of Eq. (25) is slightly larger than 0.25, 
as can be seen from Table III. A slightly larger value of f3 
would provide faster convergence, without affecting the con
verged value,J·(q:'). Note also that, to within the limits of 
accuracy of the calculation, the convergedf's for the positive 
and negative residue orbits are identical. 

As a further example, in Table IV the golden mean is 
again considered, but for a somewhat smaller value of k. 
Again monotonic convergence with differences proportional 
to Q'\ is observed. It thus appears that the optimizing f3 
should be a function of k as well as of the orbit. 

Part ofthe reason for the excellent convergence of these 
cases lies in the regularity of the succeeding partial quo
tients. Orbits with random partial quotients are probably 
less interesting in light of Assertion II, and they are more 
difficult to calculate. The problem is that orbits become long 
very fast, there is a limited window 

10·\0 < IR I < 109 

within which residues can be calculated accurately because 
of roundoff, and the residue depends exponentially on orbit 
length. 

There are a couple of possibilities for generalizing the 
results that have been given here. Perhaps the convergence 

Table V. Residue for convergents of q = (143 + Y5)/38, k = 0.834365. 

QIP 

730/191 
11811309 
1911/500 
3092/809 
5003/1309 

0.24766 
0.25166 
0.24924 
0.25079 
0.24995 
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, (d) 

i 

(c) 
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~~.J l~~~" .~~"~:~~ 
FIG. 2. Golden mean convergent periodic orbits with k = 0.95. In (a) positive and negative residue orbit segments are shown for q = 55/34 and 89/55',that lie 
ina rangeof8, 88 = 5.2·JO-l and a rangeofr,8r = 1.1·10-). In (b) the orbits and rangesareq = 144/89 and 2331.144Wlth 88 = ~;O.JO-l and8r = 1~65.JO . In(c) 
they are q = 377/233 and 610/377 with 8e= 7.5·10-' and 8r=2.4·1O-', in(d)q= 987/610 and 1597/987 with 88= 2.9·10 and,8r= 3.5·10 ,m~e) 
q = 2584/1597 and 418112584 with 8e = 1.I.JO-) and 8r = 5.0·10-', and in (I) q = 6765/4181 and 10946/6765 wIth 88 = 4.2·10 and 8r = 7.5·10 . 

ofJ(q:) could be combined with the approximate monoton
icity ofJwith partial quotients discussed in Assertion II, and 
the upper bound established in Assertion I, to establish con
vergence in more general cases. Also, it might be possible to 
use the calculation of Appendix B to establish convergence 
in the limit of small k. 

To conclude, the evidence for convergence seems quite 
strong for the interesting cases associated with the golden 
mean. It is at least credible that there should be convergence 
in a large generalization of this class. 

D. Assertion IV 

No independent work has been done for this assertion. 
All the evidence assembled for Assertion II indicated that 
golden mean convergents yielded the smallest!, among all 
orbits whose winding number had a partial fraction repre
sentation with a given number of partial quotients. While 
this assertion follows from Assertion II, it is logically inde
pendent of the efforts to generalize it beyond the golden 
mean convergents. It has thus been given a separate number. 

E. Assertion V 

Some evidence for this assertion has been given in Table 
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III. The fact that the positive residue converges to t, accu
rate to at least four decimal places, is sufficiently remarkable 
to invite speculation that an integer is involved. 

This inspired the calculation presented in Table V. Here 
an irrational winding number has been chosen whose first 
few partial quotients are arbitrary, but all of whose succeed
ing partial quotients are unity, q = [3,1,4,1, ... ] 
= (143 + Y5)/38. Again, k has been carefully selected to 

be close to the critical value for this winding number. The 
associated residue here is also approaching t to a remarkable 
degree of accuracy. 

F. Assertion VI 

The evidence for this assertion is given in Figs. 2, 3, and 
4. In each of these figures, portions of periodic orbits have 
been plotted, with X's denoting negative residue orbits and 
o's denoting positive residue orbits. In every case, the orbits 
chosen are golden mean convergents. 

For Fig. 2, the value k = 0.95 has been chosen, and the 
corresponding mean residue had been evaluated, 

J(q:,0.95)c::::.O.977 

so that the golden mean KAM surface is expected to exist. In 
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Fig. 2(a) the orbits shown have winding numbers q = ~ and 
34 

~, respectively. These two numbers are slightly larger and 
55 

smaller, respectively, than the golden mean, and thus, the 
two orbits should enclose the golden mean KAM surface. 
This statement is true of the succeeding pairs of orbits also. 

The next two golden mean convergents are shown in 
Fig. 2(b). Each successive golden mean convergent orbit has 
approximately ¢> times as many points as the preceeding, 
where the golden mean is denoted by ¢> for brevity. Thus, the 
horizontal scale has been expanded by approximately ¢>2 be
tween Figs. 2(a) and 2(b), and also between succeeding 
frames. This accounts for the fact that each figure exhibits 
about the same number of points. 

When examining the bottom of a parabola with increas
ing magnification, the vertical scale should be expanded as 
the square of the expansion of the horizontal scale to pre
serve the aspect. Thus, for each succeeding frame in this 
figure, the vertical scale has been expanded by ¢>4. 

This figure then, is entirely consistent with the picture 
that these successive convergent orbits are closing down on a 

r-
(a) (b) 

KAM surface that is represented very well by the first few 
terms of its Taylor expansion. 

Expressions for the mapping in the tangent space of 
these periodic orbits are given in Eqs. (23) and (24). Since R 
is very small and of the order 10-20 for the orbits of Fig. 2(f), 
the invariant ellipses associated with the positive residue or
bit are extraordinarily long and thin, with an aspect ratio of 
the order 1010. Also, there is an extraordinarily small angle 
between asymptotes of the hyperbolas associated with the 
negative residue orbits. Even on the expanded scales used 
here, these figures are not resolvable from straight lines. Fur
ther, from Eq. (14), of the order of 1010 iterations are re
quired to traverse these ellipses. Thus, about the same num
ber of iterations would be required to distinguish the 
mapping in the portion of phase space delimited by Fig. 2(f) 
from the shear mapping of an integrable system. 

Turn now to Fig.3, which is very similar to Fig.2, except 
that here k = 0.971635, which is the critical k to the accura
cy of this figure. Remarkably unlike the previous picture, 
here a new structure appears with each successive magnifica
tion. From Table III, it can be seen that each of these orbits 

(c) 

f 

I r 

~~~_~~~~~_" J I~~~ 
I Cd) 

----I r--- ---l (I) 
i 
I 

f r 0 
I 

~ 0 0 x 

FIG. 3. Golden mean covergent periodic orbits with k = 0.971635. In (a) the orbits and ranges areq = 55/34 and 89/55 with <'i(;l = 5.2.10-2 and<'ir = 1.0·10-', in 
(b) q = 144/89 and 233/144 with <'i() = 2.0.10-2 and 3.0·10-', in (c) q = 377/233 and 610/377 with <'i() = 7.5·10-) and <'ir = 1.5·10-', in (d) q = 987/610 and 
1597/987 with.5() = 2.9·10-) and <'ir = 4.6·10-', in (e) q = 2584/1597 and 4181/2584 with <'i() = 1.1·10-) and <'ir = 1.4·10-', and in (I) q = 6765/4181 and 
10946/6765 with <'i() = 4.2·10-' and <'ir = 7.0·10-". 
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(a) (b) (c) 

l---"~"--~-"" 

f (d) (e) (I) 

FIG" 4" Golden mean convergent orbits with k = 0.99. In (a) the orbits and ranges are q = 55/34 and 89/55 with oB = 5.0.10-2 and or = 1.0·10-', in (b) 
q = 144/89 and 233/144 with oB = 2.0.10-1 and Or = 4.0·10-', in (c) q = 377/233 and 610/377 with oB = 7.5·10-' and Or = 1.5.10-', and in (d) q = 987/610 
with oB = 3.5·10-' and Or = 7.0·10-'. In (e) and (I) orbits of (c) with the two values of q have been plotted separately. 

has very nearly the same residue, R. Thus, from Eqs. (23) 
and (24), the shape of the tangent space conic sections varies 
only with the parameter b. Evaluating this, it was found that 
these shapes would be similar from frame to frame, if the 
mean vertical magnification were 6.0l/frame when aver
aged over a three-frame period. This was used here, rather 
than the magnification of,p4 = 6.85/frame used in the pre
vious figure. It is seen that similarity is indeed achieved by 
this scaling. It seems natural to associate the structure on 
successive scales with a necessity to accommodate the invar
iant ellipses surrounding each stable orbit. 

As further evidence in this direction, note that the 
threefold period in the structure is accompanied by a three
fold period in the positions of the X and 0 points, relative to 
the center of each frame. 

After carefully observing that Figs. 3(c) and 3(f) each 
exhibit two w shaped curves, one lying above the other, the 
picture emerges that the convergents for this value of k are 
squeezing down on some nonanalytic curve that has a struc
ture on every scale. 

Finally, in preparation for the next figure, note that, 
while there is similarity, the configurations in Figs. 3(d), 
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3(e), and 3(f) are somewhat shrunken compared with Figs. 
3(a), 3(b), and 3(c), respectively, indicating that there is a 
mild tendency toward the clustering of orbits. 

Now consider Fig. 4 for which k has been increased to 
0.99. In each of these frames, the vertical exaggeration has 
been fixed at 50. This scaling yields a similarity of the tan
gent space configurations for this value of k, and indeed, 
there is a tendency for similarity of the wedges that appear 
here. 

Aside from that, there is such a strong tendency toward 
the clustering of orbits, i.e., some of the black marks on Figs. 
4(c) and 4(d) represent three or four points, that these orbits 
do not seem to be squeezing down on any kind of curve, even 
a highly singular one. Something strange is going on at this 
value of k. 

To conclude then, the value of the mean residue,/, de
termines the value of the residue, R. This, in turn, has a 
strong influence on the shape of the tangent space figures 
through Eqs. (23) and (24). The latter fit smoothly against 
KAM surfaces when k is below the critical value and rumple 
it nonanalytically at the critical value. Beyond the critical 
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FIG. 5. Orbits near the golden mean with d = 0.975. Periodic orbits with 
positive and negative residues are shown for q = 144/89 and 233/144, to
gether with a segment of a stochastic orbit. The ranges of rand 0 in this 
figure are 00 = 2.0.10-1 and or = 2.0·10-'. 

value there is no indication for the existence of KAM sur
faces or any other organizing principle. 

G. Assertion VII 

In the previous section, evidence was presented that 
KAM surfaces existed for values of k up to the critical value. 
Here we concentrate on showing that stochastic orbits verti
cally encircling the torus exist for values of k slightly exceed
ing the critical value. It is clear that horizontally encircling 
KAM orbits, and vertically encircling stochastic orbits can
not coexist. It is not so clear that there is no range of k for 
which neither type of orbit exists. Nevertheless, it appears 
that this statement i~ true. 

Five orbits are ~hown in Fig. 5 wher~ k'has been chosen 
to be 0.975. Four of these are periodic, the positive and nega-
. 'd . . h . d' b 144 d 233 hve rest ue pomts wtt wm mg num er 89 an 144 respec-

tively. These are the last golden mean convergents for which 
there are stable orbits. Golden mean convergent orbits with 
length 377 or greater have residues greater than unity, and 
are therefore unstable. 

A stochastic orbit is also shown on that figure. The ini
tial condition for this orbit was near one of the X points on 
the figure. The interesting point is that it wanders back and 
forth across the region between the periodic orbits, the re
gion where the KAM surface might exist. There is not the 
slightest indication of an invariant surface in this vicinity 
that divides phase space. 

It was not possible to carry this orbit to the length re
quired for it to encircle the torus vertically. It wandered 
slowly upward out of the picture, and beyond, but the diffu
sion of other orbits back into this region is really extraordi-
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narily slow. Similar behavior has been found by Karney l8 in 
an inhomogeneous random walk problem, showing that it is 
consistent with a Markovian process. 

The details of the stochastic orbit diffusion are gov
erned by a numerical roundoff. One can rapidly lose thou
sands of digits of formal accuracy in such calculations. To 
show that the effects of Fig. 5 are not strictly roundoff, we 
present Fig. 6 . 

For this figure, k is 0.97. From the criteria of Assertion 
VI, KAM surfaces exist on both sides of the stochastic orbit 
shown. The length of the orbit shown in this figure is a few 
hundred thousand. In another calculation, this orbit was 
taken to a length of 5·10\ and it was entirely contained with
in the stochastic orbit region exhibited here, in spite of the 
fact that crude estimates show that the calculation suffered 
from truly fantastic numerical error. 

How can this be? A more careful consideration of the 
numerical error is called for. A detailed calculation of this is 
given in Appendix C. It turns out that, at a given point, the 
errors from all the preceding parts of the orbit are, to great 
accuracy, spread out in only one direction. When this direc
tion is calculated, it is found to be parallel to the apparent 
edge of the stochastic orbit in Fig. 6. Thus, numerical error 
can only lead to diffusion parallel to KAM surfaces, not 
across them. 

As for numerical error in diffusing orbits, other calcula
tions, similar in spirit,II.19 have shown that there is almost 
always one exact orbit in the vicinity of any orbit determined 
numerically with a roundoff error that is small for each 
iteration. 

These considerations lead to the conclusion that 
roundoff does not affect the essential features to be learned 
from Figs. 5 and 6. 
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FIG. 6. Stochastic orbit for k = 0.97. The range of rand 0 in this figure is 
00 = 1.0.10-1 and or = 1.2·10-'. 
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v. DISCUSSION 
This paper has explored the concept that there is a close 

relation between the existence of KAM surfaces and the sta
bility of nearby periodic orbits. Since Moser has ~ho~n20 t~at 
KAM surfaces are in the closure of the set of penodlc orbIts, 
it is reasonable that such a relation might exist. The relation
ship has been found to be very close when the problem is put 
in the proper perspective. In this section we first review that 
perspective. 

Since not all orbits can be calculated and evaluated for 
stability, a credible method must be found for estimating this 
trait by extrapolation. Eigenvalues evaluated in the tangent 
space of the periodic orbit, as in Eqs. (10), (11), and (15), 
quantitatively characterize the stability of the orbit. These 
eigenvalues are unsuited for extrapolation, however, because 
they are not analytic functions of the parameters of the sys
tem. They have branch points where they turn from real to 
complex as in Eq. (11). 

Information equivalent to these eigenvalues is con
tained in the residue, R, defined in Eqs. (10) or (15). This 
residue is a real continuous function of the parameters of the 
system. It is, thus, in this respect quite suitable for interpola
tion and extrapolation. 

As a vehicle for extrapolation, the residue suffers from 
another problem. Orbits near a KAM surface have varying 
lengths and arelonger, the closer the orbit is to the surface. It 
has been noted by several authors in the pastll.21.22 that the 
residue has an exponential dependence on orbit length. The 
methods of Appendix B of this paper allow this result to be 
established firmly for large and small k. As a result, nearby 
orbits may have vastly different residues. This exponential 
dependence on orbit length can be suppressed by defining 
the mean residue in Eq. (17). 

Even this mean residue, or residue per unit length, is not 
a continuous function of relative location of the periodic or
bit. More precisely, it does not depend continuously on the 
winding number q defined in Eq. (3). The problem is that 
periodic orbits perturb nearby longer periodic orbits. An or
bit of given length is more likely to be unstable if it is close to 
a shorter periodic orbit and more likely to be stable if it is 
relatively isolated. Since every rational number has its zone 
of perturbation, the dependence of/on the winding number 
q is very peculiar as seen for example in Ref. II or 21. 

One way to deal with this problem is to express the 
winding number as a continued fraction as was done in Eq. 
(4). The magnitudes of the partial quotients of the continued 
fraction provide an estimate of all the perturbations on the 
given orbit. It is not yet possible to estimate the mean resi
due,f, quantitatively as a function of these partial quotients, 
but they do yield a very useful qualitative understanding. 
This understanding can be used to estimate the stability of 
orbits by extrapolation of known results for nearby orbits. 

In order to relate the existence of a KAM surface to the 
stability of nearby periodic orbits, it is desirable to make a 
careful choice of this set of orbits. It should be a sequence of 
successively longer orbits that asymptotically, in some sense, 
approach the postulated KAM surface. Further, each mem-
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ber should be as close to the desired surface as feasible and as 
far from the perturbing effects of other, shorter orbits. A 
choice that meets these criteria is the set whose winding 
numbers are the convergents to the KAM winding number. 
These were defined in Sec. n. 

These considerations determined the calculations made 
in this paper. 

The results of a large number of these numerical calcu
lations have been distilled into a series of assertions in Sec. 
III. 

According to Assertion III, the sequence of mean resi
dues for the convergents of a KAM surface converges to a 
limit. For the sequences calculated in Sec. IV C, adding a 
partial quotient had a smaller effect when the continued 
fraction representation of the winding number had many 
partial quotients. 

When the limiting mean residue is less than one, beyond 
some orbit length all the residues will be less than one ac
cording to Eq. (17). In fact, the residues rapidly approach 
zero in the limit. Therefore, the positive residue orbits are 
stable. On the other hand, when the limiting mean residue is 
greater than one, the converse is true. In this case both the 
positive and negative residue orbits of the chosen set are un
stable for orbits longer than some length. 

Figures 2, 3, and 4 show graphically that there is a close 
relation between KAM surfaces and the stability of nearby 
periodic orbits. Repeating the discussion from Sec. IV F, the 
environment of an irrational winding number is entirely dif
ferent depending on whether the nearby periodic orbits are 
stable or unstable. This is particularly true because, accord
ing to Eq. (17), the stability of these orbits is extreme, wheth
er stable or unstable. It is thus reasonable that the value of 
the converged mean residue for an irrational winding num
ber determines the existence ofthe corresponding KAM sur
face. This idea has been discussed in Ref. 22. 

Convergence of the mean residue can be optimized by 
judicious choice of f3 in Eq. (17). It appears that f3 = ! is the 
preferred value for all cases that have been considered to 
date. The underlying reason is given in Assertion V. This 
choice of f3 yields remarkably good results. For example, 
consider the crudest approximation to the converged mean 
residue for the golden mean surface discussed in Sec. III. The 
leading convergents to this surface are the periodic orbits 
with q of one and two. The mean residue was evaluated ana
lytically for these orbits in Sec. IV A and is equal to k in 
either case. Thus, the leading estimate for the converged 
mean residue of the golden mean surface is 

f(q:J;:;:;k. 

This estimate yields a critical k of unity, only a few percent 
different from the more exact value of Assertion VII! So, the 
method described in this paper seems well suited for giving 
rough estimates for stochastic behavior. 

The accuracy of this estimate depends critically on 
choosing an optimum value of f3 in Eq. (17). That is, it de
pends on Assertion V, that near the critical k many orbits 
have residues near !. It is interesting to examine this crite-
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rion geometrically. From Eq. (14), the corresponding value 
of l for these orbits is 60·. When a periodic orbit bifurcates 
out an orbit with period six times longer than itself, some 
nearby related KAM surface is on the edge of disappearance. 
This relationship has been noted by Lichtenberg23 also. 

Sufficient numerical work has been done on this prob
lem to identify reasonable hypotheses, but considerable ef
fort is now needed to provide proofs. Probably the most cru
cial of these is Assertion III, concerning the convergence of 
the mean k residue for irrational winding numbers. It might 
be possible to use the methods of Appendix B to establish 
this hypothesis for small k as a first step. Such a proof would 
show that the mean residue is indeed a fruitful concept. 

Recently, PercivaP4 has derived a variational principle 
for KAM surfaces that might also provide a foundation for 
further progress. 
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APPENDIX A: CALCULATION OF PERIODIC 
ORBITS 

It is possible to use the symmetry of the mapping to 
reduce the problem of finding a given periodic orbit to one of 
finding the root of a function of one variable. This reduction 
from a two-dimensional problem to a one-dimensional prob
lem vastly increases the speed and accuracy with which these 
orbits can be determined. This method has been described 
thoroughly by deVogeleare25 but is included here for 
completeness. 

The nature of the symmetry can be stated succinctly: 
The mapping is the product of two involutions. In other 
words, if the standard mapping is denoted by T, then 

T=I,Ih 

where II is given by 

Oil = - On _ I' 
and I, by 

rn = rn "" I - ~ sin217"8n -"" I' 
217' 

0 11 + 1 = -On+rn> rn+l=rn" 

It is straightforward to show that 

n = 1, I~ = 1, 

so that these transformations are involutions. 

(AI) 

(A2) 

(A3) 

(A4) 

Each of these involutions has lines of fixed points.'6 
Namely, 

Il(r,O) = (r,O) 
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is satisfied by 0 = 0 or 0 = ~ for any r, and 

I,(r,O) = (r,O) 

is satisfied by 0 = 1r or 0 = 1(r + 1). 

It is now easy to show that if the initial value of an orbit 
is a fixed point of II, 

It(ro,Oo) = (ro,Oo), (AS) 

and the Nth iterate is also a fixed point of 110 

(A6) 

then the full orbit is periodic with length 2N. Consider with 
the aid of Eqs. (A 1), (AS), and (A6), 

T2N(ro,00) = TN-II,ItTN-II2It(ro,00) 

= TN - II2TN - I Iz(ro, ( 0), 

From Eqs. (AI) and (A4), 

I,T = II, TIl = I" 

which, used alternately in Eq. (A 7) yields 

T2N (ro,Oo) = (ro,Oo) 

as stated. 

(A7) 

(A8) 

(A9) 

Thus, the problem of finding periodic orbits has been 
reduced to that of finding the root of any function that van
ishes on the fixed lines of II, and with the independent vari
able taken to be the one-parameter family of fixed points of 
It. For example, fixed points can be found from the solutions 
of 

sin21T0N (ro) = 0 

with 00 = O. 

The procedure can be readily generalized to include the 
fixed points of I, as either the initial or the final point of the 
computed orbit. All the periodic orbits that exist down to 
k = 0 can be determined this way. 

APPENDIX B: EXPANSION FOR SMALL k 

In this Appendix an algorithm is derived for calculating 
the residue, R, in the limit of small k. It is shown that R is 
proportional to k Q, where Q is the length of the periodic 
orbit. In the first few paragraphs, the relation between the 
two forms for calculating R, Eqs. (10) and (15), is derived, 
since the less familiar Bountis and Helleman 12 form is used in 
the argument of this Appendix. 

The equations governing the orbits in the tangent space 
are found by differencing Eq. (1) and evaluating the coeffi
cients on the periodic orbit considered, yielding 

br l1 \- 1 = br n - k COS21T0 "bOil' 
(BI) 

where On is the coordinate of the nth point on the periodic 
orbit. A set of equations for the 2Q variables 
(bO"brl, ... ,b0Q>brQ) is closed through the Floquet condition, 

br l1 + Q = Abrn, bOn + Q = AbOn. (B2) 

Then (Dro,bOo) is an eigenvector of M of Eqs. (7) and (8), with 
eigenvalue A. 
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These equations can be written in matrix form 

0 -1 0 0 

- k COS21T()1 0 -1 0 0 

0 0 0 -1 

0 0 - k COS21T()2 1 0 -1 

-A A 0 0 

0 -A 0 0 - k COS21T()Q 

The condition that the determinant of J vanishes yields an equation for A. 

Adding each even numbered row to the row above yields 

{

MI 

DetJ=De :0 
-A o 

o 0 
- 1 0 

where each element is now a 2 X 2 matrix, and 

M. = (1 - k COS21T()i 1) 
I _ k COS21T()i l' 

Drl 

D()2 

Drl = J.DX = O. (B3) 

° 

(B4) 

(BS) 

Multiplying the first row by M l , adding the second row, and continuing on to eliminate all but the diagonal term in the first 
row, we find 

DetJ = Det( ifrl Mi - AI ). (B6) 

where DetMi = 1 has been used. This is the usual equation for the eigenvalue A. 

Alternatively, the fourth element in the first row ofEq. (B3) can be used to eliminate every other element in its row and 
column. The other 1 's down that diagonal are treated similarly, as is the A in the second column next to last row. These 
elements can then be factored out of the determinant,12 leaving 

DetH(A) = 0 

where 

(

2 - k COS21T()1 

-1 
H(A) = . 

-A 

(B7) 

-1 

2 - k COS21T()2 -1 
(B8) 

-1 

is a tridiagonal matrix with additional elements in the corners. Considering the cofactor of the element, A, yields the result 

DetH(A) = DetH(l) - A - A -I + 2. (B9) 

Since the residue R is related to the eigenvalue A, we obtain directly 

R = -! DetH(l). (BlO) 

In some respects, a determinant is easier to calculate than the trace of a product. 

The relation between these two forms for calculating R is analogous to the relation between Hill's method and the shooting 
method for calculating the Floquet parameter for the Mathieu equation. 

We now proceed to eval uate DetH (1). The argument A = 1 will be understood for the rest ofthis section, and thus dropped 
from the notation. At k = 0, 

( 

2 
-1 

H(k=O)= ~ 

-1 

- 1 

2 

- 1 

o 
- 1 

2 

-1 

It can be seen immediately that the eigenvalues of this matrix are 

1Jj = 2(1 - COS21TjIQ) = 4 sin"1Tj/Q 
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(Bll) 

(BI2) 
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with eigenvectors, 

SnJ = cos21TnjIQ. 

The lowest eigenvalue vanishes, so 

DetH(k = 0) = O. 

The product of the others can be evaluated with the resule 
Q-l 

(BI3) 

(B14) 

II TJj = Q 2. (BIS) 
j~ 1 

It follows from DetH = ITjTJj that the lowest order novanishing approximation to DetH is Q 2TJo , where TJo is the lowest order 
non vanishing approximation to the lowest eigenvalue of the symmetric matrix H. 

Since H depends on the orbits, it is necessary to evaluate the orbits to some degree of accuracy. It will be shown by the result 
that the requisite order is k Q - 1. 

The coordinate rn can be eliminated from the standard mapping, Eq. (1), yielding 

- 8n + 1 + 28n - 8n _ 1 = ~ sin21T8n" 
21T 

(B16) 

This has been written in recursion form. That is, if the periodic orbit is known to some degree of precision, and that estimate is 
used to evaluate the right-hand side ofEq. (BI6), inverting the operator on the left yields an estimate improved by one order in 
k. The inversion is done with the periodicity condition 

8nt Q = 811" (BI7) 

We already know something about this operator, since it isH (k = 0). For one thing it is singular, and each element of the 
eigenvector of the vanishing eigenvalue is unity. Multiplying by this eigenvector yields the solvability condition 

f sin21T8" =0. (B18) 
n~l 

A formal solution of these equations can be written in the form 

00 f a l(r(O»k 1+ 2j 
21T8 = 21T8 (0) + '" y sin21Tle (0) 

n "L (0)" , 
j=OI~ 12(1- cos21Tlr ) 

where 

r(O) p IQ, 8 ;~~ 1 = 8 ~O) + rIO), 

(B19) 

(B20) 

P and Q are relatively prime, 86°) will be determined later, and the alj coefficients are evaluated as follows. Inserting this form 
into the right- and left-hand sides ofEq. (BI6) yields 

00 ( xc f a k I + 2j ) '" .g a k 1+ 2j sin21T!e (0) = k sin21T8 = k sin 21T8 (0) + '" lj sin21T18 (0) • L 2.. Ij n n n L (0) n 
j ~ ° I ~ I j ~ 0 I ~ 12(1 - cos21Tlr ) 

(B21) 

The sine on the right can be expanded since the second term 
of its argument is small in powers of k. The factors of result
ing products are combined to yield Fourier coefficients of 
sin21Tle ~O) as powers of k. These determine the coefficients a lj 

on the left-hand side, order by order in k. Thus, the formal 
solution is consistent. 

Since from Eq. (B20), the 8 ~O) are equally spaced in the 
interval (0,1), the solvability condition is satisfied trivially 
for I=l=Q and thus, up to the order of k Q. At the order k Q, the 
value of 8 6°) must be chosen so that sin21TQ8 ~O) = O. There 
are two such solutions, with COS21TQ8 ~O) = ± I. With this 
solvability condition, the problem of a vanishing denomina
tor, 1 - cos21Tlr(0), disappears. Further, it can be used to 
eliminate terms with I> Q in favor of terms with 1< Q. 

Since the relation between the 8 ~O) and /0) is identical to 
the integral mapping for k = 0, and also from the fact that 
the solvability condition is satisfied in the lower orders by 
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I 
every point on the surface rIO) = const, it is apparent that the 
formal solution above is equivalent to the transformation 
from an integrable mapping to one that is integrable to all 
orders. This is useful below so it will be pursued further here. 

Consider the transformation 

r = r(/o1,8 (0)), 8 = 8 (r(01,8 (0»). (B22) 

If these functions satisfy 

(B23) 

to all orders in k, then /0) is a constant of the standard map-
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ping to all orders. Eliminating 0 (0) between rand 0 would 
yield an implicit expression for the invariant r(O). 

Indeed, the formal solution of these equations is very 
similar to that given above, 

00 00 a (,.<.G»k I + 2j 

21T0 = 21T0 (0) + L L lj sin21Tle (0), 

j ~ 0 i= 1 2(1 - COS21T/"<0» 
(B24) 

where the alj are determined by 

! f aljk 1+ 2j sin21Tle (0) 
j~ 0 l~ I 

(
auk 1+ 2j ) 

= k sin 21T0 (0) + f ! 1 sin21Tle (0) • 

j ~ 0 I ~ I 2(1 - cos21T/r(0» 

(B25) 

The subscripts on 0 (0) have been dropped since here 0 de
pends continuously on 0(0), the sum over I has been extended 
to infinity, and the condition that r(O) be rational has been 
dropped. Indeed, it is better if it is not rational! 

Now return to the problem of calculating the lowest 
eigenvalue of H, 

H (00,,) = Tlo(oO,,), 

where oOn is the eigenvector. This also can be expressed in 
recursion form, 

- 00" + 1+ 200n - 00" _ I = (Tlo + k COS21TOn)OOn 

(B26) 

again, yielding the operator H (k = 0). The solvability condi
tion is used to determine the eigenvalue, 

Tlo = - k };~ ~ lOOn COS21TOn (B27) 

};~ ~ lOOn 

As will be seen, the lowest order of the eigenvalue is the 
order of k Q. Thus, we need to evaluate the eigenvector accu
rate to the order k Q - I, with 1/0 being a higher order term in 
Eq. (B26). 

This can be done directly. Take the derivative of Eq. 
(B23) with respect to 0 (0), and evaluate it at the point 
0(0) = 0 ~O) which are the values ofEq. (B20). It can be veri
fied immediately that these derivatives satisfy the same 
equation as 00", and thus, 

00,,= -- . ao I 
Je (0) e ((H = e ~;)) 

(B28) 

Since the mapping is effectively integrable to the desired or
der, the eigenvector is merely deformed by the transforma
tion of Eq. (B22). 

1199 

It then follows immediately that 

oOnk COS21T0" = ~ _a_ sin21T0 I 
21T ao (0) n e"" ~ e;;" 

I I /auk I + 2j COS21Tle ~O). (B29) 
j = 0 I~ I 
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In evaluating the eigenvalue from Eq. (B27), the sum over n 
vanishes trivially for I < Q. Thus, the first non vanishing term 
is proportional to k Q. For I = Q, the cosines are either plus 
or minus one depending on the orbit as discussed above. 
Therefore, the eigenvalue has as its lowest nonvanishing 
estimate 

1/0 = Of'aQoQk Q, 

yielding for the residue 

R = ± !aQoQJk Q. 

(B30) 

(B31) 

The quantities aQo can be calculated one by one using 
Eq. (B25). It would be exceedingly interesting to know some 
general properties of these coefficients. 

APPENDIX C: STRETCHING AND NUMERICAL 
ERRORS 

In numerical work, it has been noticed that computed 
orbits are stochastic only in regions where stochasticity is 
expected and lie on surfaces when the mapping is integrable. 
This is surprising in the sense that there are huge numerical 
errors in calculating these orbits, yet these errors do not seem 
to fundamentally change the character of the orbit. A part of 
that question is examined in this Appendix. 

These numerical errors are highly anisotropic. Here, we 
show that errors are generally parallel to KAM surfaces and 
do not lead to diffusion across them. 

Consider a long segment of an orbit that is not periodic. 
There will be a certain small numerical error in calculating 
the first iteration of the mapping from (rhOj) to (r2,02)' This 
error will have a probability distribution that can be crudely 
represented by a small circle. At the end of the considered 
segment, at the proint (r n'O n), this circle will have become an 
ellipse, in the tangent space approximation, with a large as
pect ratio. Thus, a small error will have become a large error 
in one direction. 

First, let us calculate this ellipse. If the tangent space 
orbits are represented by 

(CI) 

where the notation distinguishes the matrix N from the simi
lar matrix for periodic orbits, M, then the initial values, and 
the adjoints, are given in terms of the endpoints by 

oXo = N ;'2Ioxn, ox; = ox;,(N n-:-2lt (C2) 

The condition that the initial point lie on a circle of radius 
one, 

(C3) 

yields an expression for the ellipse at (rn,On)' Thus, the axes 
of the ellipse are given in terms of the eigenvalues and eigen
vectors of(N ;'21)tN n-:-21, or its inverse, NNt. If Nis 
parameterized 
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N = (a2 + d 2 

n,2 C
2 

- h2 

with 

a~ + h ~ - d - d ~ = 1, 

then 

where 

A 2 = a~ + b ~ + c~ + d ~ = 1, 

Cz = 2(aZc2 - b2d 2), 

D2 = 2(a2d2 + b2cZ)' 

(C4) 

(CS) 

(C6) 

(C7) 

The eigenvalues of this matrix are the squares of the major 
and minor semiaxes, 

pZ± =A2 ± (A ~ _ 1)'12 

(C8) 

and the eigenvectors yield the angle, Be' that this ellipse 
makes with the line 8r = 0. 

(C9) 

Note that the eigenvalues of the matrix N n•z do not en
ter, and in fact this result depends on both a, and b, whereas 
the eigenvalues of Nn ,2 depend only on a,. Nor is there any 
reason for eigenvalues to be important. They are appropriate 
for determining the properties of powers of N n,2 and the non
periodic orbit will never retrace this orbit segment. 

Next consider the effect of the roundoff error that arises 
in computing (r"B,) from (ro,Bo). This error is propagated to 
the point (rn,Bn) over a slightly longer path, so the corre
sponding orbits in the tangent space are given by 

N =(a,+d, c,+b')=N (a+d c+b) 
II.!- cl-bl al-dl ",2 c-b a-d' 

where the second factor on the right propagates the tangent 
space orbits from (ro,Bo) to (rl,B I ). 

Straightforward multiplication yields 

a l = aa, - bb, + cc, + dd" bl = ab, + ba, + cd, - dc" 

C I = ac, + bd, + ca, - db" d l = ad, - bc, + cb, + da" 

and 

a,c, - bid, = (ae - bd )(a~ - b i + e~ 

- d~) - 2(ad + bc)(a,b, - c,d,) 

+ (a' + b' + c' + d ')(a,c, - b,d,), 

a,d, + b,cl = 2(ac - bd )(a,b, + c,d,) + (ad + bc) 

X (a~ - b ~ - c~ + d D 

+ (a' + b' + c' + d ')(a,d, + b,c,). 
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(ClO) 

(Cll) 

We next need some identities that follow from the determi
nant condition, a2 + b' = c' + d' + 1, 

a' _ b ' + c' _ d' = 2(ac _ bd) ac + bd + a' - b ' 
a' + b ' a' + b' ' 

ab - cd = _ (ac _ bd) ad - bc + ab 
a' + b' a' + b' 

(CI2) 

ac + bd ab 
ab + cd = (ad + bc) + ---

a' + b' a' + b' 

ad - bc a' - b' 
a' - b' - c' + d' = 2(ad + bc) + ---

a' + b' a' + b' 
Using these results in Eq. (CII) yields 

a2 b 2 
a,c, - bid, = (a,c, - b,d,)S + (ac _ bd) 2 - 2 

ai + b~ 

_ (ad + bc) 2a,b, , 
a~ + b ~ 

aldl + blc, = (a,d, + b,cJS + (ac - bd) 2a,b, 
a~ + b~ 

a2 _ b 2 

+ (ad + be) 2 2, 

a~ + b~ 

a~ + b T = (a~ + b ~)S - (e' + d '), 

where 

S a' + b' + c' + d' + 2(ac _ bd) a,e, + b,d, 
a~ + b ~ 

(C13) 

(CI4) 

(CIS) 

(CI6) 

We are interested in the cases aT + b ~ and a~ + b ~ are 
both large, so that the ellipses for both roundoff errors are very 
long, but the coefficients, a, b, c, and d are not large since the 
latter only carry the tangent space orbits over one iteration. 
It follows from Eq. (C 15) that S cannot be very small. It also 
follows from DetNN t = 1 that at least one of the factors 
a,c, - b,d, and a,d, + b,c, must be large. The two terms on 
the right of Eqs. (CI3) and (CI4) cannot be large. Hence, the 
two error ellipses must be very nearly parallel in the limit of 
interest. 

It follows that the large accumulated errors at a given 
point are all in a direction that is characteristic of the given 
point. Errors perpendicular to this direction are only of the 
order of the roundoff, and thus, very small. Since the quanti
ty (a' + b ') generally grows exponentially with the orbit 
length, numerical convergence to the characteristic direc
tion is quite rapid. 

These quantities can be calculated on a KAM surface. 
Since this surface can be transformed to reo) = const as in 
Appendix B, the tangent space orbit can be written in the 
space (d,cO),8B (0), 

( I o)n ( 1 01)' 
N".! = s I = ns (CI7) 
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Thus, here (a2 + b 2)1/2 grows only linearly with n. From Eq. 
(C9) (Je goes to zero in the limit oflarge n, so that the roun
doff error is parallel to the KAM surface. Numerical calcu
lations confirm this result for orbits that come close to KAM 
surfaces. 
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Adiabatic expansions of solutions of coupled second-order linear 
differential equations. II a) 

s. A. Fulling 
Department of Mathematics, Texas A & M University, College Station, Texas 77843 
(Received 28 August 1978) 

The "phase-integral" approach to higher-order WKB approximations, associated with 
the names of Froman and Chakraborty, is generalized to systems of equations, written 
in vector notation as h" (t) + U 2 M( t )h( t) = 0, where M is positive definite and u ---+ 00 • 

Expansions are constructed in the form h - P - 1I4e exp ( - iu st P - 112 dt '), where p 
and e are power series in u- I and e is (asymptotically) a unit vector. Expanding out the 
higher-order terms in the exponential yields the approximations studied in the first 
paper of this series, which are less uniform in t. (A search for still greater uniformity 
leads to nonlinear differential equations for the leading term in e, which can be 
explicitly solved only in special cases, notably that in which all eigenvalues of Mare 
distinct.) The expansions are proved to be valid asymptotic approximations on finite 
intervals where the eigenvalues of M are strictly positive and do not cross (i.e., the 
multiplicity does not depend on t). 

1. INTRODUCTION 

The first paper I of this series presented expansions as 
u-- 00 for the solutions of 

h"(t) + u2M(t)h(t) = 0, (1) 

where M(t ) is, for each t, a positive definite, self-adjoint oper
ator in a finite-dimensional complex Hilbert space. The case 
of permanently degenerate (i.e., coinciding at all t) eigenva
lues ofM was handled neatly by employing projection opera
tors onto the eigensubspaces, instead of bases of eigenvec
tors, whenever possible. If M(t) is sufficiently smooth, the 
expansions are defined and asymptotically valid away from 
points where two or more otherwise distinct eigenvalues 
cross (or merge). A sequel was promised which would offer a 
partial resolution of the crossing problem by the method of 
matched asymptotic expansions. This paper is not that one.' 

In this paper a slightly different type of expansion is 
constructed, still for the case of no crossing but arbitrary 
permanent degeneracy of the eigenvalues. These expansions 
are better approximations (more uniform in t) than those of 
Ref. I, and they are formally more appropriate for the appli
cation in quantum field theory which motivated this work. 

To motivate the new type of expansion we consider the 
much-studied case of a single ordinary differential equation 
of the form (I), M (t) now being a positive number. Three 
kinds of expansions appear in the literature: 

(A)3 h(t)_M(ttI/4exp[-=f-iU fM(t')1l2dt'] 

x I (-=f- iu) - Salt). 
s -" () 

a) Research supported in part by National Science Foundation Grant No. 
PHY 77-01432. 

(B)4-7 h(t)-W(ttl12exp[ -=f-iu f W(t')dt'], 

CAe 

W(t)"-M(ty12 + L u 2'b2,(t). 
s = 1 

[Here v may be 2, 1, !, etc.; the results for any choice ofv are 
asymptotically equivalent, since M (t )*0 by assumption·1 

(C)' h (t)-ex p{ -=f-iu f [M(tr +,t
1 

u -scit)]} . 

In Ref. 4 it is shown that the c, with s odd (which are imagi
nary) are related to those with s even in such a way that the 
integrals of the odd terms and their exponentials can be eval
uated, to yield the real factor [u W (t )1- 112 , where b2s = C2s if 
v = 1. Thus the expansion of type C is merely an awkward 
way of writing the expansion of type B, obscuring the fact 
that the amplitUde (modulus) of the asymptotic approxima
tion is a local functional of M (t) and its derivatives.' 

To convert an expansion of type B to one of type A, one 
simply expands 

exp[ -=f-iu f W(t')dt']/exp [ -=f-iu f M(t')ll2 dt '] 

as a power series in u- l
• Clearly this worsens the approxima

tion except in the neighborhood of the starting point, t = c, 
since one is replacing oscillatory functions like 
exp(iu I 2s S b2\ dt) by truncated power series in possibly 
monotonic quantities like S b2s dt. The type-B expansion in
volves the instantaneous effective frequency of oscillation, 
u W (t), of the solution; the type-A expansion, by insisting on 
the naive frequency, uM (t ) 1/2, forces the appearance of unde
sirable "secular terms" which are nonuniform in t (although 
of negative order in u).l° 

The expansion B (which is often called the "phase-inte
gral approximation") suggests a natural decomposition of 
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the solutions into a subspace of "positive frequency" and one 
of "negative frequency." Namely, a solution has positive 
(negative) frequency if its initial data at the point c coincide 
with the values at that point of such an expansion and its 
derivative, with a minus (plus) sign in the exponent. (The 
unnatural sign convention is traditional in quantum field 
theory.) This direct sum decomposition is independent of c, 
up to the order in u to which one has carried out the expan
sion [provided that M (t ) is sufficiently smooth for the expan
sion to be valid]. This fact has important implications for 
quantum field theory in time-dependent external gravita
tional (or other) potentials. 1l The present work will, it is 
hoped, allow the conclusions of Refs. 11 to be extended to 
space-time models in which the field equation does not de
couple into individual normal modes. 12 

The expansions for coupled equations treated in this 
paper alleviate, but in general do not completely eliminate, 
the problem of secular terms. Section 5 outlines an attempt 
to solve the problem completely, which did not yield explicit 
formulas for the approximation to h. Apparently the ap
proach of Sec. 5 can be used to define the "true" approximate 
normal modes of a coupled system, and the material of the 
rest of the paper and of Ref. 1 provides approximate repre
sentations of these functions which should be adequate for 
many practical purposes. 

2. POLAR DECOMPOSITION OF A VECTOR 
FUNCTION 

The characteristic feature of the expansion B discussed 
in Sec. 1 is the factorization of the solution into an amplitude 
(a positive real-valued function) and a phase (a complex
valuedfunctionofmodulusunity):h (t) = A (t)e - is(t). That 
A is proportional to ) S' )-112 (for the exact solution; in this 
case for the approximation as well) is an immediate conse
quence of the fact that the Wronskian h *, h - h *h' is an 
imaginary constant; this comes in turn from the differential 
equation (1) and the reality of M. 

Our goal is to treat similarly the case where h(t ) takes 
values in an N-dimensional Hilbert space, which we might as 
well identify with eN, so that the scalar product is the stan
dard one, 

N 

(h,g) = I h/ gj' (2) 
j=l 

and Eq. (1) stands for a system of N coupled equations. The 
Hermiticity of M implies the conservation of a generalized 
Wronskian: 

(h',h) - (h,h') = iC, (3) 

where C is a real number independent of t. A basis for all the 
solutions can be chosen to consist of N solutions with C = 1 
and their complex conjugates, which have C = - I. Hence
forth we shall consider a solution with C = 1. 

Any vector-valued function can be written as the prod
uct of a scalar amplitude, a scalar phase, and a unit vector: 

h(t)=A(t)e(t)e -i5(1), (4) 

(e,e) = 1. (5) 
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We cannot require that e be real, since its components may 
have a relative phase. However, we can restrict the arbitrari
ness in the phase of e by requiring 

(e,e') = O. (6) 

The real part ofEq. (6) already follows from Eq. (5); the 
geometrical significance of the imaginary part is that the 
phase variation of h(t ) has been entirely concentrated into 
S (t). To see that this is always possible, let«~(t )beanarbitrary 
differentiable function whose value at each t is a unit vector; 
then 

S (t )=i f (e,e') dt ' (7) 

is real, and e-ee is satisfies Eq. (6). Readers of Ref. 1 will 
recognize Eq. (6) as the key property of a Kato eigenvector, 
but in the present context e will not generally be an eigenvec
tor ofM. 

From Eqs. (4) and (6) one obtains 

(h',h) - (h,h') = 2iS'A 2. 

Thus for a solution satisfying Eq. (3) with C = 1, one must 
have 

A = (2S ')-112 and S' > O. (8) 

We introduce a quantity pet ) corresponding to W (t )2 in 
expansion B: 

S '(t) = up(t)II2, 

h = (2utll2ft-1/4e exp[ - iu f ft(t ')1/2 dt']' 

Then Eq. (l) is equivalent to 

o = (M - p)e - 2iu- IftIl2e' - u-2ft je 

where 

I-(t) - 1 --2 -II 5 --3( -')2 --:iPP -16P p. 

3. CALCULATION OF THE TERMS IN THE 
EXPANSION 

(9) 

(10) 

(11) 

Equation (9) with Eqs. (5), (6), and (10) is an exact 
representation of any solution ofEq. (I) satisfying Eq. (3) 
with C = 1. The approximation begins when one assumes 
that ft and e can be approximated by polynomials in u- I : 

m+l 
ft(t)= I u-Sps(t), (12) 

s=o 
m 

e(t) = I u - Selt ). (13) 
s= 0 

Anticipating that Po will be an eigenvalue of M, we shall 
write p for Po and let 

(14) 

so that the notation is consistent with that of Ref. 1. We 
substitute Eqs. (12) and (13) into Eqs. (10), (6), and (5) and 
examine the results order by order in u. The general term is 
rather complicated to write out, so attention will be concen
trated on the equations of the first few orders and their solv-
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ability. (See Appendix A for higher orders.) 

The term of order UO in Eq. (10) is 

(M-p)eo = 0, (15) 

confirming that p must be an eigenvalue with eigenvector eo. 
(I t follows that ft will be strictly positive for sufficiently large 
u.) Let P(t) be the orthogonal projection onto the space of all 
eigenvectors ofM(t) with eigenvaluep(t). According to Eqs. 
(5) and (6) in lowest order, eo is a unit vector satisfying 

(16) 

If there are no other linearly independent eigenvectors in 
JY=PC N, this is enough to establish that eo(t ) evolves under 
the Kato transformation (see Ref. 1, Sec. 2 and references 
therein): 

e~(t) = P/(t )eo(t), P(t )e~(t) = 0, 

or, equivalently, 

(17) 

eo(t) = U(t )eo(c), (18) 
K 

U(t) = I Pk(t)Pdt)U(t), U(c) = 1, (19) 
k ~ I 

where the sum is over the K distinct eigenspaces of M(t). 

Equations (17) and (18) should also be enforced if p is a 
degenerate eigenvalue, but to see why we must look at the 
next-order term in Eq. (10), which is 

(20) 

For consistency the projection of the right-hand side of this 
equation onto JY must vanish. In view ofEq. (16), it follows 
that Eqs. (17) hold and that 

(21) 

Now eo(t) is completely determined by its (normalized) ini
tial value, eo(c). 

The projection ofEq. (20) onto the orthogonal comple
ment, JY \ of the eigenspace can now be solved: 

el = et + Peh et -(1 - P)eh 

ell = 2ipll2(M - ptle~. 

(22) 

(23) 

In Eq. (23) the inverse matrix (M - pt l is defined as an 
operator on and onto JY 1. It exists at all t because of our 
initial "no crossing" assumption: The eigenvalues of M(t ) 
acting on jf" l(t ) remain permanently distinct from p(t ). 

The term of order u- I in Eq. (6) is 

(e1,eb) + (eo,e;) = O. 

A short manipulation converts this equation to 

(eO,(Pe1),) = 2i Im(eb,et) 

(24) 

(25) 

Before we can use Eq. (25) to find Peh we must look at the 
projection onto JY of the u-2 term ofEq. (10): 

(26) 

The right-hand side must be a multiple of eo, so, projecting 
onto the other p-eigenvectors, we get 
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(P - eo ® e~)(e;) = - !ip - 1I2(p - eo ® e~)(e;). (27) 

Therefore, combining Eqs. (25), (27), and (23), we have 

P[(Pel),] 

= eo(eO,(Pel)') + (P - eo ® e~)(e; - et/) 

- 2ip(P - eo ® e~) :t [p1l2(M - p) -- leb], (28) 

where eo ® e~ (or 1 eo> <eo I) is the orthogonal projection onto 
eo. To solve Eq. (28) for Pel is a problem of a type solved in 
Ref. 1, Sec. 3: 

(Pel)(t) = U(t )31(t ), (29) 

31(t) = L dt /U(t /tl [P[ (Pel)'] J (t /) + (Pel)(c). (30) 

Here 31(t) is in JY(c), not JY(t). If an explicit basis of Kato 
eigenvectors is introduced for JY(t ), the effect of the opera
tor U(t )U(t /tl is to move the basis vectors outside of the 
integral, which then becomes a set of scalar indefinite inte
grals of the coefficient functions of the expansion ofP[(Pel),] 
in terms of that basis. (See the examples in Appendix B.) 

The term of order u- I in Eq. (5) is 

2Re(eo,e l) = 0; (31) 

that is, (eo,Pe l) is imaginary. This is a constraint on the con
stant of integration, Pel(c), in Eq. (30). The determination of 
el is nOw complete. Also, Eq. (26) now yields 

P2 = - 2iiI2(eoe;) + (eo,e~) - pf 

(32) 

which is real, as it ought to be. [The second equality is derived 
with aid ofEqs. (17), (23), (24), the derivative of(16), and the 
Hermiticity of P/.] 

The continuation to higher orders is clear in principle. 
The projection onto .7(- I of the sth-order terms in Eq. (10) 
determines e;, while the projection onto eo determines p, . 
The sth-order part of Eq. (6) gives the component of (Pe, )' 
proportional to eo, and the rest ofP[(Pe,),] must be obtained 
by acting with P - eo ® e~ on the term of order s + I in Eq. 
(10). One can then find Pe, by integration, imposing the sth
order term of Eq. (5) on the integration constant, Peic). 

The recursion relations for the first few orders are re
corded in Appendix A, and an example is worked out in 
Appendix B. 

4. COMMENTS 

It is not obvious from the algorithm that the Ps are 
guaranteed to turn out real for s > 2, but this can be estab
lished by a tedious reductio ad absurdum, which we omit. 

Unlike the approximations constructed in Ref. 1, this 
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approximation is not linear in its dependence on the starting 
values, eo(c) and Pes (c). In particular, ifb1 and b2 are ortho
gonal eigenvectors with the same eigenvalue p, then the ex
pansion built on eo = A Ib l + A2b2 (Aj EC) is not the corre
sponding linear combination of the expansions with eo = b l 

and eo = b2• Nevertheless, the asymptotic validity of both 
series (Sec. 6) implies tht they must agree up through the 
order to which the expansion is carried out, both with each 
other and with the corresponding expansion of the type of 
Ref. 1. This can verified to the lower nontrivial order from 
the formulas (9), (15)-( 16), (23), (28)-(30), and (32), and the 
corresponding formulas (16), (17), (22), (23), and (25)-(27) 
of Ref. 1. (See the example in Appendix B.) 

A closely related effect is that Ps (s~2) will not be the 
same for all vectors eo in a given eigenspace, since such quan

tities as (eo,e:;) will differ. 

A more positive observation is that P2 does not depend 
upon the constant of integration, Pe1(c), in Eqs. (29)-(30). 
Consequently, plt) can be computed as if Pel(t) = 0, and 
hence does not involve an integral over t '. That is, the fre
quency correction depends only on the local behavior of M 
and its derivatives, not on "past history." One would expect 
this to hold true in all orders in the nondegenerate case, but it 
is not evident from the recursion relations for p~3. [In the 
degenerate case, the component of the integral in Pes (t) per
pendicular to eo(t) in effect modifies the direction in the p
eigenspace in which e(t) points, and hence it should affect the 
frequency in higher orders, by the mechanism mentioned in 
the preceding paragraph.] 

5. SKETCH OF A POSSIBLE REFINEMENT 

The integrals in Eq. (30) and the analogous higher-or
der formulas for Pe, are, alas, secular terms of the sort that 
were eliminated in the one-dimensional problem by aban
doning type-A expansions for type-B expansions. Thus, al
though our results improve on Ref. 1,13 they do not com
pletely achieve the intended goal. Satisfying Eq. (6) order
by-order by a series (l3) is evidently a sin of the same nature 
as satisfying I e - is I = 1 by 

e" ,S = exp( - iu r pll2 dt') [1 - iu-IS, - U-2S2 + ... ] 

(which would lead to an expansion of type A), and it suffers a 
similar punishment. A completely satisfactory resolution of 
this problem does not seem to be possible, but some relevant 
observations can be reported here. 

It is clear that the offensive integral terms, which lie in 
the eigenspace .5Y', ought to be somehow absorbed into eo(t ). 
Let us continue to hypothesize the expansions (12) and (13), 
but allow the e., to depend on u. Suppose that 

, f: - S( ') eo = L.. u eo " (33) 
s=o 

{This is analogous to writing 

. (m+l )1/2 .. 
(e - IS), = - iu s ~o u - sp., e - IS, 

which has e - is = exp[ - iu J (}: u - spyl2 dt '] as its solu-
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tion. J In deriving recursion relations, eo, elt ,,· and 

(eb)o, (eb)l"" are all to be formally treated as independent of 
u. The recursion relations will determine es (s~ 1) in terms of 

eo and eb, and hence induce expansions like Eq. (33) for e;. 

Under these rules, the term oflowest order in Eq. (1) is 
still Eq. (15), so eo is still an eigenvector with eigenvalue p. 
The normalization condition, (eo, eo) = 1, from Eq. (5) like
wise survives. The leading part of Eq. (6), however, is now 

(eo,(eo)o) = 0. (34) 

Note next that eo = Peo implies eb = Peb + pleo, or 
m m L u-'(eb)'= L u-'P[(eb)s1 +pleo· (35) 

s=o s=o 

It follows that 

(eb)sEdY'-PC N for s > ° (36) 

and that 

(37) 

Proceeding to the next order, we obtain from Eq. (10) 

(M - p)e1 - PleO - 2ipl12(eo)o = 0. (38) 

Projecting this equation with P - eo ® e;, we find that (eo)o 
has no component in~' orthogonal to eo. This fact combines 
with Eqs. (34) and (37) to establish that 

(eb)o = pleo; (39) 

to lowest order, eo behaves as a Kato eigenvector. The pro
jection of Eq. (38) onto eo yields, as before, p, = 0, and the 
projection onto jy 1 yields 

et = 2ip1/2(M - p) - I(pleo) (40) 

as the correct version ofEq. (23) in this context. Also, Eq. (5) 
in this order again leads to Eq. (31). 

In place of Eqs, (24)-(25), the u-, part ofEq. (6) is now 

(41) 

Recall that our objective is to avoid recursion relations 
whose solutions involve indefinite integrals (except in con
texts like the exponent of e- is, where they are irrelevant to 
the magnitude of the error of the approximation). This can 
be done by avoiding inhomogeneous differential equations 
like Eq. (28) for Pe, . Instead, we shall in each order simply 
choose Pes to be zero, except insofar as Eq. (5) decrees other
wise. The latter will always yield a condition of form 

2Re(eo,es ) = prescribed function of t, 

but we are free to set 

Im(e(),e,) = 0, (P - e() ® e~)(e) = 0. 

(42) 

(43) 

The inconsistencies which would thereby have arisen in the 
procedure of Sec. 3 are avoided this time because of the free
dom to choose (eb),. In the case of e" Eq. (42) is Eq. (31) and 
we have 

Pe, =0. (44) 

Hence Eq. (41) becomes 

(eO,(eb)l) = - (e 1,P'eO) - (eo,(ei')o) 
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or 

(45) 

To finish the determination of (e6) I' one must act with 
P - eo ® e; on the second-order term of Eq. (10). The result 
combines with Eq. (45) to give 

(e6)1 = 41pl!2(eo,P'(M - p) - IP'eo)eo 

- (P - eo ® e;)[ (eJ)o + ~ ip - 112« e6)~)o]' (46) 

From Eq. (39) one finds that 

«e~)~)o = P"eo + (p')2eo, (47) 

and (e;)o = (ei')o can be calculated from Eq. (40). 

The other equations of order u·2 determine P2 [for which 
the final version of Eq. (32) remains valid], ei, 

2Re(eo,e2) = - (ei,et), (48) 

and 

(eO,(e~)2) = - (eo,(e;)o) - (e2,(eO)o) - (el,(ei)o)' (49) 

The e, terms in Eq. (49) can be found from Eqs. (43) and (48) 
and the formula for ei. 

In this way one can determine to any desired order the 
expression (33) for eo. Then eo is the solution of this differen
tial equation with a given initial value, eo(c), and es and p, 
are determined from eo by the formulas derived in the forego
ing discussion. The only problem is that the terms on the 
right-hand side of Eq. (33) depend on eo(t) nonlinearly, so 
that it is not possible to write down an explicit general solu
tion. For this reason the expansion constructed in this sec
tion is unlikely to be of much practical use. Its existence 
should be of some theoretical interest, however. 

One exception to this gloomy conclusion is the case 
when the eigenvalue p is not degenerate. There P - eo ® e; is 
zero, and eo is already known up to a phase factor, which 
cancels out of expressions like (46) and (48), which are al
ways matrix elements of operators with respect to eo. Thus 
Eq. (33) takes the form 

(eo,eb) = prescribed function of t and u, (50) 

and such a problem can always be solved by the method 
which led to Eq. (7). See the examples in Appendix B. 

An alternative approach to this case is worth mention
ing because of its relative conceptual simplicity. Returning 
to Sec. 2, let us relax Eq. (6), although keeping Eq. (5). Then 
Eq. (8) must be replaced by 

(51) 

This will complicate Eq. (10) and add many terms to the 
resulting recursion relations in the method of Sec. 3. But now 
we no longer have the constraints of the type ofEq. (25), so 
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we may set Im( eo, e, ) = 0 by fiat as in the method discussed 
earlier in this section, but proceed otherwise as in Sec. 3. 
Thus if JY (the eigensubspace) is one-dimensional, es (t) will 
be, except for phase, a purely local functional ofM(t), with
out the polynomially growing secular terms which can arise 
from iterated indefinite integrals in the unmodified ap
proach of Sec. 3. However, if eo is not the only eigenvector in 
,W", this approach has little advantage over Sec. 3, since the 
equations of the type of Eq. (27) will force integral terms to 
be included in the approximation. 

In the nondegenerate case the expansion based on Eq. 
(51) clearly must be equivalent to the one based on Eq. (33) 
[or (50)], with some changes in the meaning ofe andp. Eq. 
(51) is slightly misleading, since it suggests that the ampli
tude of the approximation (9) changes when the condition 
Im(e,e') = 0 is dropped. Actually, it is the frequency, pin, 
which changes, as a phase factor is transferred from e to 
e is 

6. ASYMPTOTIC VALIDITY 

Theorem: Letp(t) beoneofthe eigenvalues ofa positive 
definite Hermitian matrix function M(t) which is continu
ously differentiable m + 3 times. Define hm (t ) by Eqs. (9), 
(12), and (13), with p, and e, calculated by the recursive 
process described in Sec. 3 and Appendix A. Let h(t ) be the 
solution of Eq. (1) with initial data h(e) = hm(c), 
h'(e) = h:,,(e). Let 

Zm = u l12(h - h",). (52) 

Then as U-+oc, 

IIZ",(t )11 = 0 (u· (m + I) and IIZ;"(t )11 = 0 (u . In) 
(53) 

throughout any bounded closed interval of t containing e and 
containing no point of crossing of the eigenvalues. 

The proof is almost identical to that in Sec. 5 of Ref. 1, 
which should be consulted for details. By construction [in 
particular, the fulfillment of Eq. (10) through order u - "] 
we have 

Z:; + u2MZII = O(u (II" I), (54) 

and this conclusion is unaffected ifPn + I and Pen are omitted 
from the sums (12)-(13). Since the Green function for the 
inhomogeneous equation is 0 (u· l

) and its derivative is 
bounded, Eq. (54) implies that Zn = 0 (u .. n) and 
Z~ = 0 (u - (II • I). Ifwe let n = m + 1, Eq. (53) follows, 
since Zm differs from the modified Zm -t 1 only by the term 
involving u (m + l)e~ + I' 

To construct Z;~ + 1 we need derivatives of order m + 3 
of the eigenvalues and eigenprojections of M. These exist, 
since we are avoiding crossing points. 14 

Corollary: Let! eO()) (t) I (j = 1, ... ,N)beanorthonormal 
basis for eN consisting of eigenvectors ofM(t ). Define corre
sponding approximate solutions hm()) (t). If u is sufficiently 
large, the vectors e{j) (t) [Eq. (13)] are linearly independent. 
Therefore, every solution of Eq. (1) is approximated in the 
sense ofEq. (53) by some linear combination of the hmu) and 
their complex conjugates. 
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One would expect the conclusions of Ref. 1 and this 
paper to apply in an infinite-dimensional Hilbert space if 
M(t) is a positive definite self-adjoint operator with entirely 
discrete spectrum-for example, an elliptic differential oper
ator on a compact manifold with no vanishing eigenvalues, 
for which Eq. (1) is a classical hyperbolic partial differential 
equation. The main technical point to be established is that 
the operator G(t,t ') describing the general solution of the 
Cauchy problem exists1S and has the nice behavior at U---*oo 

described above for the finite-dimensional Green function. 
However, a more interesting extension of this work would be 
to obtain a better understanding of what happens when ei
genvalues cross or merge; this might suggest a new, more 
powerful approach to these problems which would be appli
cable to very general operators, including those with con
tinuous spectrum. 
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APPENDIX A: RECURSION RELATIONS 

The equations which come from Eq. (5), after 
(eo,eo) = I, are all of the form 

.,.- I 

2Re(eo,eJ = - I (ell,e, - n)' 
11-=1 

(AI) 

The equations from Eq. (6), after (eo,e[» = 0, are of the form 
,-I 

(eo,(pe)') = 2i Im(efJ,e~) - I (e",e~_ ,J, 
n=l 

The first seven orders of Eq. (10) are 

(M -p)eo = 0, 

(A2) 

(A3a) 

(A3b) 

(M - p )e2 = 2ip 1I2e; + [P2 + ± p"p - 1 - -ftpYP - 2] eo 

+ 1 , .-1, " '2 pp eo-en, (A3c) 

(M ) 2 · 1/2 , + [ I" - 1 5 (')2 2] - P e3 = lp ez P2 + '4 p p -16 p P - e l 

(A3d) 
(M - p)e4 = [(M - p)e] with es replaced by es+ Il 
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+ [ZP3P - 1/2 + ~ p;p - I - ~P2P'P - 2]eo, 
(A3e) 

(M - p )es = [(M - P )e4 with e, replaced byes + 1 ] 

+ [Ps + ± p~'p'p - 1 - fp',p'p - 2 

(M - p )e6 = [(M - P )es with e, replaced bye, + I] 

I ,,_ 2 5 (P')Z_ 2 - '4 pz pz p - 16 2 P 

5 " __ J 1 2 /I "-3 
+-:;P2PZPP +4PzPP 

(A3g) 

[All terms involving PI have been omitted from Eqs. (A3c)
(A3g), since Eq. (A3b) implies thatpi = 0.] The formulas for 
e~, p" and (P - eo ® e~)e:_ I are obtained by projecting Eqs. 
(A3) onto the appropriate subspaces. 

Equations (A3) were generated by computer with a 
symbolic algebra program. If> The first four were verified by 
hand calculation, including the P, terms prototypical of the 
expansion to higher orders. 

APPENDIX B: EXAMPLE 

Let us consider the example treated in Ref. 1, 

o 
tC2+S' 

(t - l)CS 
(t - ~)CS)' 
tS'+C' 

C _cost, S sint, 1 < t < 00, C = 1T. 

(BI) 

This has a double eigenvalue, P = t, with a Kato basis of 
eigenvectors 

(B2) 
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and an eigenvalue p = 1 with Kato eigenvector 

(B3) 

The derivatives of these vectors are 

bll), = 0, b]2)' = b2, b; = - bI2). (B4) 

Applying the formulas in Secs. 2 and 3 of the present 
paper, one easily finds the adiabatic expansions correspond
ing to eo = b\ll,b\2), and b2, respectively: 

hll) = (2u) ... 112[t + O(u· 2)] - 1/4bll) 

xexp { -iu L [t'+u- 2 
1
5
6 (t,)-2+ 0 (U- 3)]1I2 dt '}, 

(BSa) 

h\2) = (2u)·· 1/2[t + O(u - 2)]- 1/4( b]2) + 2iu - It 1/2 

Jt (t')1/2 ) 
X (1 - t) - Ib2 + 4iu - I JT ~ dt 'bi2) + 0 (u .. 2) 

} 
112 

X + 0 (u· 3) dt' , (BSb) 

[ J'( S - t' )1/2] Xexp - iu 17 1 + U-2~ + o (u- 3
) dt'. 

(BSc) 
Here the integration constants Pe1(1T) have been taken equal 
to 0. 

Expanding quantities such as 

exp! -iuf~[t'+u 2~(t')-2]1/2dt'1 

exp[ - iu f~ (t ,)112 dt '] 

as power series in u·', one recovers from Eqs. (BS) the series 
expansions found for this example in Ref. 1, Sec. 4. (Note 
that the contribution from Ps + I is of the same order as that 
from Pe,; cf. Sec. 6.) Similarly, one can show that 
Ah\I)+Bh\2l,with IA 1'+ IB 1'= l,isequal(butonlyup 
through the terms of the indicated orders) to 
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+ Bb(2» + liu - lAB r (t') - 1/2 1 + 3t' dt' 
I 2 J17 1 _ t' 

X( - B ·bll) +A .b]2» + O(u - 2») 

{ . r [ (St' - 1 X exp - lU J17 t' + u - 2 I B 12 1 _ t ' 

S ) ] 1/2 } + 16 (t') - 2 + 0 (u - 3) dt', 

(B6) 

which is the approximate solution corresponding to 
eo = A bl I) + BbI2). Of course, the power-series expansions of 
oscillatory functions involved here are not uniformly valid in 
t. 

Incidentally, it is instructive to try to manipulate a lin
ear combination of expansions corresponding to two differ
ent eigenvalues,p and q, into a single expression like Eq. 
(B6). One encounters in the amplitude factors like 
exp[ - iu+1 f (pll2 - qll2) dt '], which cannot be expanded in 
power series in u- 1

• This shows why the assumption (12) 
forces Eq. (IS) to be true, even though the representation (9) 
is valid for any non vanishing function satisfying 
(h',h) - (h,h') = i. 

Finally, let us attempt to find purely local adiabatic ex
pansions by the approach of Sec. S. In the first nontrivial 
order, we must solve 

(B7) 

where (eb)1 is given by Eq. (46) with Eqs. (40) and (47). Since 
2 

P = P I I b iJ) ® b IJ)·, 
j=1 

we have 

P' = b2 ® bI2
). + b]2) ® b;, 

P" + (p')2 = 3b2 ® b; - b]2) ® bI2) •• 

(BS) 

(B9) 

(BlO) 

If eO<1T) = b\I)(1T), then eo(t) = b\I)(t) is a solution of 
Eq. (B7), and hence one simply obtains Eq. (BSa) as the type
B expansion for this essentially one-dimensional problem. 

If eO<1T) = b]2)(1T), then the ansatz that eo(t) equals 
bi2)(t) up to a phase leads to a solution. One verifies that the 
P - eo ® e~ term in Eq. (46) vanishes, since the bracketed 
vector is orthogonal to bl!), and so the problem reduces to 
calculating [cf. Eq. (4S)] 

(eo,(eb)l) = 4ip I/2(b2,(M - p) - Ib2) = 4it 1/2(1 - t) .- I 

and solving Eq. (B7): 

e =b(2)exp 4iu- 1 ---dt'+O(u- 2). ( i' (t ')112 ) 
o I 17 1 - t' 

Thus one obtains the expansion 

h = (2u) - 112[t + O(u - 2)] - 1/4[ [bI2) + 2iu - It 112 

X (1 - t) - Ib2] exp(4iu - I rt 

(t ')I/~ dt' + 0 (u - 2») 
J17 1 - t 
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] { r [ (5t' - I + 0 (u - 2) exp - iu J". t' + u - 2 I _ t' 

S ) ] 1/2 } + 1"6«(,)-2 + O(u- 3
) dt', 

whose relation to Eq. (BSb) is obvious. The case 
eo(1T) = b2(1T) is of course similar. 

(BII) 

These problems were so easily solvable only because the 
matrix (B I) is a direct sum of two nondegenerate matrices. 
The complications of the general case may be glimpsed by 
considering the initial condition 

eo(1T) = Ab\O(1T) + Bb\2}(1T), I A 12 + I B 12 = 1. 

Ifone sets 

eo(t) = A (t )W}(t) + B (t )W)(t), 

then a calculation using Eqs. (B9)-(B I 0) and 

P-eo®e~= IBI 2b\1)®b\I}*+ IA 1
2W}®b\2)* 

(BI2) 

(B13) 

_ AB *b\l) ® b\2)* - A * Bb\2} ® b\l)* 

yields the differential equations 

1209 

A' = ~ iu - I t - 112 St - I A (1 _ IA 12), 
1 - t 

B' = 2iu- I t 112(1_ t)- IB(1 + IB 12) 
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(B14a) 

+ 1 iu -It -112E(1- IE 12
), 

which we shall not attempt to solve. 

'S.A. Fulling, J. Math. Phys. 16, 875 (1975). 
'S.A. Fulling (paper stiII in preparation). 

(B14b) 

'F. W.J. Olver, Proc. Cambridge Philos. Soc. 57, 790 (1961); see also Ref. I, 
AppendixA. 

'N. Froman, Arkiv Fys. 32, 541 (1966). 
'N. Froman, Ann. Phys. (N.Y.) 61, 451 (1970). 
'J.A. Campbell, J. Comput. Phys. 10,308 (1972). 
'B. Chakraborty, J. Math. Phys. 14, 188 (1973). 
·S.F. Feshchenko, N.I. Shkil', and L.D. Nikolenko, Asymptotic Methods in 
the Theory of Linear Differential Equations (American Elsevier, New 
York,1967). 

'Correspondingly, the type-C expansions for second-order coupled equa
tions in Ref. 8, which apply only to the case of nondegenerate eigenvalues, 
must be closely related to the type-B expansions of the present paper, 
specialized to that case. See Appendix B of Ref. 1. 

lOJ.D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell, Wal
tham, Massachusetts, 1968), pp. 4-7, 79-80. 

"L. Parker and S.A. Fulling, Phys. Rev. D 9,341 (1974); T.S. Bunch, S.M. 
Christensen, and S.A. Fulling, Phys. Rev. D 18, 4435 (1978); S.A. Fulling, 
"Remarks on Positive Frequency and Hamiltonians in Expanding Uni
verses," Gen. ReI. Grav. (in press). 

"B.L. Hu, S.A. Fulling, and L. Parker, Phys. Rev. D 8,2377 (1973). 
"Close examination shows that Eq. (27) of Ref. I, for the integrand 

P[(Pa,),], contains all the terms of our Eq. (28) for P[(Pey] plus additional 
terms whose effects are taken into account by p, in the present approach. 

"Reference 8, pp. 66-73, 85-90. 
"See, e.g., S.G. Krein, Linear Differential Equations in Banach Space 

(American Mathematical Society, Providence, Rhode Island, 1971). 
"KFA FORMAC, Version 2A (S.I.U., 1973). 

S.A. Fulling 1209 



                                                                                                                                    

Asymptotic forms of radial wavefunctions and Jost functions for 
cutoff potentials 

w. J. Romoa) 

Department of Physics, Carleton University, Ottawa, Ontario, KIS 5B6 
(Received 21 September 1978) 

Rigorous asymptotic forms for the radial wavefunctions and the Jost functions are 
obtained for a broad class of cutoff potentials as the momentum k tends to infinity in 
the complex k plane. The asymptotic positions of the zeros of the Jost functions (S 
matrix poles) are also determined. It is found that the solutions of J;( - k) = ° for 
which Ikl is very large, form a finite sequence of families of the form 
k)m)::::: amN - i/3m log N with N ~ No> 1 and m = 1 to max with max a finite integer 
greater than or equal to one which is determined by the potential parameters. 

1. INTRODUCTION 

As is well known' the zeros of the Jost functionft( - k) 
in the complex k (momentum) plane give rise to poles of the 
S matrix. Those zeros offt ( - k ) that lie in the upper-half k 
plane fall on the imaginary k axis and are associated with 
bound states of the system which have binding energy 
- fz2k 212m. If the system can be described by a central po

tential that vanishes beyond a finite radius, then it is also 
known' that!1 - k ) will have an infinite number of zeros in 
the lower-half k plane. Only a finite number of zeros can lie 
along the negative imaginary axis. Such zeros correspond to 
virtual bound states of the system. In addition to the virtual 
bound state zeros!1 - k) will have an infinite number of 
zeros in the lower-half k plane for which both Rek and Imk 
are nonzero. By convention one associates these zeros with 
resonances of the system. 

We are currently involved in a study of the conditions 
under which matrix elements of the form <¢,IPa 1¢2), where 
Pa is the projection operator 

P ¢(r) = {¢(r), if Irl <a, 
a 0, if Irl>a, 

can be expanded in terms of the infinite discrete set of bound, 
virtual, and resonant states of a Hamiltonian H that de
scribes a system in which a spinless nonrelativistic particle 
moves in a central potential of finite range. In two previous 
papers, we first 2 established the validity of such an expansion 
for the s-wave channel of a surface delta-function potential 
VCr) = A8(r - R) for all a<R, and next,1 as a first step in 
extending the study to a wider class of potentials and to all 
partial waves, we established the convergence conditions for 
a Mittag-Leffler expansion of matrix elements of the type 

112 = <¢,IPa(E + iE -Ht'Pa 1¢2)' 

In principle the conditions under which < ¢,IPa I ¢2) can be 
expanded in terms of bound, virtual, and resonant states 
then follows from a careful examination of the limit 

a)Supported in part by a research grant from the National Research Council 
of Canada. 

lim (El'2)' 
E '>-OC 

However, in order to complete the study, in addition to the 
results of Ref. 3 one needs more accurate asymptotic expres
sions for the positions of the large momentum zeros and the 
resonant state wave functions associated with them, than 
can be obtained from the literature, for example as in Ref. 1. 
Since the mathematics involved in deriving the needed as
ymptotic expressions is both complex and lengthy, and the 
subject matter is somewhat divorced from the main line of 
study outlined above, we shall confine the subject matter of 
this paper to the derivation of the needed asymptotic expres
sions, and shall complete the program in a separate paper. 

In Sec. 2 we define the class of potentials that are to be 
considered and derive asymptotic equations for the radial 
wave functions and the Jost functions as k----+ 00. The applica
tion that we have described above requires that all asymptot
ic expansions be carried out at least to terms of order k -, 
relative to the leading term for functions of k only, such asft 
( ± k ), and to terms of order k -2 relative to the leading term 
of the expansion for functions of k and r, such as ¢{(k,r). In 
Sec. 3 the asymptotic expressions for fl ± k) are used to 
determine the positions of all large momentum zeros of the 
Jost functions. The results are discussed in Sec. 4. 

2. DERIVATION OF ASYMPTOTIC FORMS 

The regular radial wavefunctions, whose asymptotic 
forms are to be determined are solutions of the radial Schro
dinger equation 

d
2

¢{(k,r) +(k2_!(!+ 1) _ V(r»)tP{(k,r) =0, (2.1) 
dr'- r'-

where k 2 in appropriate units is the energy and! is the angu
lar momentum. The regular solution tP{ (k,r) also satisfies the 
boundary condition 

lim(2! + 1)!!r ~.{- ItP{(k,r) = l. (2.2) 
r---+O 

It will be assumed that the potential V (r) satisfies each 
of the following list of properties: 
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(a) VCr) = ° for r> R, whereR isa fixed positive radius. 

(b) Immediately below the cutoff radius, i.e., for 
R (1 - ~)~r$.R with ° <~<I, it will be assumed that 
V(r) = (1 - rlR ) °po(l - rl R ), where 0" ~ ° and Po(t) 

=I.t= IVj t j is a power series that converges for all t in the 
closed interval [O,~ l. 

(c) Near the origin, VCr) = r - YQk), where r < 2 and 
Qo(r) I.t= o1"j r j is a power series that converges for all r in 
the closed interval [O,ER] with ° < E « I. 

(d) VCr) is piecewise continuous and bounded and all of 
its derivatives up to some order L>O" + 2 are also piecewise 
continuous and bounded in the open interval (O,R ). 

(e) d L V (r)ldr L has n points of discontinuity in the 
open interval (O,R ). One defines R I' with 
€R <RI <R2 < ... <R" <R (1 - ~), to be such a point, and 
further defines m, to be the smallest integer for which 

dm'V(r)ldr"" is discontinuous at R , . 

(f) Finite right and left hand limits of d L V (r)1 dr exist 
at each of the points R I. 

Property (a) implies that 

,p{(k,r) = ~ik (- I [ftC - k )w{(kr) 

(2.3) 

for r>R, where w{( ± kr) are Riccati-Hankel functions4 

w{(z) = - tV rrzI2H)2llliz) (2.4) 

andft( ± k) are the Jost functions, whose asymptotic forms 
will also be determined in this section. We have defined 
,pf.,k,r) andiJ ( ± k) so that they agree with the definitions 
given in Ref. 1. 

In order to determine the asymptotic expansion of 
,p /..k,r) , we first define a radius p by 

p Ililoglk I, (2.5) 

where 11 is an arbitrary real positive number, and next we 
divide the line segment [O,R 1 into n + 3 subsegments ~j 
(j = - I,O,I, ... ,n + I) with ~_I-[O,P]' ~o=fp,RI]' ~j 
_[RpRj+ I] fori = 1, n - I,~" = [R",R -Ik I-I] and 
~,,+ ,=[R - Ik I-I,R ]. (The reason thatR - Ik I-I wascho
sen as the boundary between ~" and ~ n + I will be discussed 
in Appendix A.) For rin~j withi>O,,p/..k,r) can be written as 
a linear combination of irregular solutions of the radial 
Schrodinger equation and the asymptotic form of the irregu
lar solutions can be determined by the techniques outlined in 
Sec. 4.3 of the monograph by ErdeIyi. 5 These techniques can 
only be employed if kr---+ 00 as k---+ 00 , so a different approach 
must be used when r is in ~ _ I . 

To determine the asymptotic form of ,pI (k,r) when 
r E ~ _ " we shall employ the Born series expansion: 

,p/(k,r) = ! ,p y1(k,r), (2.6) 

where 
j=O 

,p ~O)(k,r) = k - 1- lu/(k,r) (2.7) 
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and 

,p y1(k,r) = f dr' g{(k,r,r') V (r'),p Y - ')(k,r') (2.8) 

for j> 1, with 

g/(k,r,r') = i( ~kl){[W{(kr)W{( - kr') - w{( - kr)w{(kr')]. 

(2.9) 

In the above equation u{(kr) is the Riccati-Bessel function 4 

u/z) = vi rrz/2J{+ Iliz). (2.10) 

The Born series is absolutely convergent fori every value of r 
and k. However, we shall only be concerned with determin
ing the asymptotic forms of ¢; ((k,p) and d,p /..k,r)1 dr at the 
boundary point p, where it will be matched with a linear 
combination of the two irregular solutions associated with 
the segment ~o. As k--+ 00 in S, where S consists of all points 
in the fourth quadrant of the k plane for which Ik I >K).R -!'p 
will tend to zero. Consequently V (r) can be represented by 
the leading terms of its small rseries expansions, given in (c), 
for all rinLI. On the other handp is sufficiently large so that 
Ik Ip---+oo as k---+oc in S. 

If one defines fY\k,r) by 

fy1(k,r) = (2ik tl f dr' w{(kr') V (r'),p y- l)(k,r') 

for j> I, (2.lla) 

f~O)(k,r) = (2ik { + I t l
, (2.11 b) 

then by Egs. (8) and (9) and the facti that ,p y - Il(k,r) is a 
symmetric function of k, one has 

(2.12) 

For the class of potentials being considered 

W(r)I<Cr--Yand W(r)-Tor-YI<C2rl-y (2.13) 

for all values of r. Using these bounds and the bounds on 

l,p y1(k,r) I and Iw{( ± kr)1 given by Newton,1 one can easily 
show that6 

\..YY)( ± k,p)I<lk 1- (- I [e/(Ik I) + o(e"'2IVIP/lk Ip)] 

X [c/(Ik I)F- 110 - 1)! (2.14a) 

for alIi> I as k---+ 00 in S, where v = Imk and 

/(Ik \) = {IOglk I/lk I, if r< I, 
IkI Y

-
2, if l<r<2. 

(2.14b) 

If one confines k to a subdomain D of S consisting of all 
points in S for which 

2+0" 
- Im(2kR )<A loglk 1= loglk I, (2.15) 

1-RnIR 

then Ivlp will be finite and the term o(e",2 IVIP/lk Ip) in Eg. 
(14a) can be ignored. Restricting our consideration at this 
time to k in D and employing Egs. (11) and (14) gives us 
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Ij = ~+ I fY)( ± k,p) \<0 (lf~O)(k,p)\ [f(\k \)]m + 1) 

(2.16) 

as k~ 00 in D. Jfthe integer min Eq. (16) is chosen to satisfy 

(r - 1)(2 - r)-' < m<;(2 - rt' for r> 1 

(2.17) 

m = 1 for r = 1, or m = 0 for r < 1, 

then the sum in Eq. (2.16) will be smaller than the product of 
\f~O)( ± k,p) \ times a factor of order o(lk 1-1). Since the only 
terms in the asymptotic expansions of k j fY'( ± k,p) that 
we must examine in detail are those whose magnitudes ex
ceed O(\f~O)\ \k \-1), it follows that we need only consider the 
terms for which)<;m. To shed further light on these terms we 
first note that the kernel ofEq. (S)can be expressed as (2ik Y' 
times a function of the two variable kr and kr', namely 

g, (k;r,r') = h (kr,kr')/2ik, (2.1Sa) 

where 

h (x,y) = ( - 1)' [w,( - x)w,(y) - w,(x)w,( - y)]. 
(2.18b) 

Iterating the defining equation for <p Y)(k,r) ) times, changing 
variables to Xi = kri and employing Eq. (13) gives 

fy)(k,p) = (2ik'+ IY1(2iky<Y-2)[d(/,),kp) + O(k-1)] 

as k~ 00 in D, where 

.W'(/,l,z) = - 4To [Z dx w,(x)(2ix) - Yu,(x), 
.0 

and 

.W'(/,),z) = 2i(2iTo'Y f dX1 w,(x1)(2ix l) ~ Y 

(2.19a) 

(2. 19b) 

(2.19c) 

for» 1. Combining Eqs. (5), (12), and (14)-(19) gives 

tP,(k,p) = (2ik /-r 1)-I{( - l)'w,( - kp) 

X [jto (2ik y<Y - 2).W'(/,),kp) + O(k -1) ] 

- w/(kp) [jto (- 2ik'Y(Y~ 2).rtf(l,j, - kp) 

+ 0 (k -1) 1 }. (2.20) 

Comparing Eqs. (19) and (14a) shows us that 

1.#(/,), ± kp)l<;const (Y:1::1), 
or 

Id(/,j, ± kp)l<;constXloglk I (r = 1) (2.21) 

as k~ 00 in D, for all 0 <j < m. The bounds given in Eq. (21) 
will be all of the information required ifj > 1 or r < 1. For the 
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j = 1 case the integral on the right hand side of Eq. (19b) can 
be evaluated and the result expressed in terms of functions 
with known asymptotic forms, then as k~ 00 in D, with p 
given by Eq. (5) one finds that 

.et(/, 1, ± kp) 

= b (/,1) + To( ± 2ikp) I - Y /(1 - r) + 0 ([kp] -- Y) 
(2.22a) 

if 1 < r < 2, and 

.#(/,1, ± kp) = Toflog( ± 2ikp) - ¢(/ + 1) + O([kp]-'j 
(2.22b) 

if r = I, where 

b(l,I) = (- lY+ ITo 

, 
X I 

m,n ::.-:::0 

(I + m)!(l + n)!r(1 - m - n - r) 

(/- m)!(/- n)!n!m! 

(2.22e) 
and 1/;(1 + 1) is a digamma function.' 

Applyingd /drto Eq. (S) and following the same proce
dure that lead to Eq. (19) gives 

d<p,(k,p) 

dp 

= (2ik 1+ It'( _ 1)1 dw,( - kp) [f (2ik)j(y~ 2) 

dp j=O 

X .et(/J,kp) + O(k-1)] _ dw,(kp) 
dp 

X [j~O ( - 2ik y(y - 2).W'(/j, - kp) + 0 (k -1) )). (2.23) 

Next we shall determine the asymptotic expansion of <p, (k,r) 
for r > p. Using a theorem given by Erdelyj5 one finds that in 
any region of space b 1<;r<;b2 for which the potential VCr) has 
continuous derivatives up to order N, the radial Schrodinger 
equation, Eq. (1), possesses a fundamental system of solu
tions Yl(k,r) and Y'I(k,r) such that 

Ya(k,r) = Y(ak,r)[1 +O(k -N)l, (2. 24a) 

and 

(2.24b) 

uniformly in rand argk as k~ 00 in S for a = ± 1, where 
N 

Y (k,r) = eikr I air)k~ J, 
j=O 

ao(r) = I, 

da I r) ( d 2a· (r) ) 
_j\_ = (21}1 p"-(r)a I(r) _ J - I 

dr J- dr 

7"(r) = 1(/ + 1)r2 + VCr). 

(2. 24c) 

(2.24d) 

for j> I, 

(2. 24e) 

(2.24f) 

(For simplicity the I dependence has been suppressed in 
these equations!) Clearly, d L V (r)/ dr Land all lower order 
derivatives will be continuous and bounded within.Ij (j = 1, 
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to n). Thus, pairs of solutions of the radial Schrodinger equa
tion can be obtained by applying Eqs. (24a)-(24f) with 
N = L to the segments 2j withj = 1 to n. The proof given by 
ErdeIyi assumes that 7/"(r) and all its derivatives up to the 
Nth order are 0 (1) as k __ 00, so the theorem as it stands 
cannot be applied to the segment 2 0, since r(J)(p) 

= O([loglk I]H 2), nor to the segments2n and 2" + I' when 
the potential parameter (T is not an integer. However, by a 
slight modification of Erdelyi's proof, asymptotic solutions 
similar to those given by Eqs. (24) can be constructed in 
segments 2 0, In' and 2" + I' as is done in Appendices A for 
20 and B for 2" and 2n + I' 

Since the set of all derivatives of V (r) up to order L 
changes from one segment to the next, the set of coefficients 
OJ (r) will also change, and thus the pair of solutions deter
mined in one segment will not be the same as those deter
mined in the next. On the other hand, a second-order differ
ential equation only has two linearly independent solutions, 
so that each of the solutions associated with 2) _ I will be a 
linear combination of the pair associated with 2)" The expan
sion coefficients can be determined by matching the func
tions and their derivatives at r = R). Let Yuik,r), with 
a = ± 1, be the pair of solutions associated with the seg
ment 2)' then 

with 

I 

YaJ - I(k,r) = L ji~fAk )Yt3J (k,r) 
t3= - I 

x {Wry __ t3./k ,r),Yt3./k ,r)]}-1 

(2.25a) 

(2.25b) 

for a andP = ± 1, where W[l,6 (r),¢(r)] is the Wronskian, 
defined by 

W[l,6 (r),t,b(r)] = l,6 (r)~t,b(r) _ dl,6 (r) t,b(r). 
dr dr 

Since the W ronskians are independent of the choice of r, one 
can choose r = R j to be the point of evaluation and use the 
asymptotic expansions ofYuik,r) and dYaik,r)ldr, which 
are valid for r = RJ + c and those for YaJ _ I (k,r) and 
dYaJ _ I (k,r)ldr which are valid for r = Rj - c as c-+o+ in 
both cases to determine the asymptotic expansions of the 
Wronskians. In Appendix C it is shown that if djr(r)ldrJ is 
continuous in some domain containing a point ro for allj<N, 
and if d N + 17/(r)1 dr"" + I has a discontinuity at ro, then solu
tions to the system of equations given by Eq. (24d)-(24f) can 
be constructed such that oJ (r) and dOj (r)1 dr are continuous 
throughout the whole domain for j < N + 2. It necessarily 
follows from this choice, as is shown in the Appendix, that 
do N + ir)! dr will be discontinuous at roo Consequently if one 
is given the solutions to Eqs. (24e) in the segment 2. _ I' call 

. I . } 
them 0 j - (r), he can construct solutions a {(r) for 2

J 
such 

that 

and 
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do1(r) I da~-I(r)1 c· 
--- = lor [<mj , 

dr R, dr R, 
(2.26) 

while 

da1", +l(r) I do1",-~I(r)1 
' =F ' . 
dr R, dr R, 

We shall choose solutions a ~(r) such that Eq. (26) is satisfied 
at each boundary point. For the three lowest coefficients one 
then has 

a ~(r) = - (20-Joo r(r')dr' 

= -(20-1[/(/+ l)rl+ LR dr' Vcr')]' (2.27a) 

[f OO ]2 r(r) 
a~(r) = - ~ r ds res) + -4-' (2.27b) 

a~(r) = _1_.[ roo ds J/'(S)]
3 + ~((oo ds J'~2(S) + r(r) 

481 J 8 J 

x ds res) + -- , foo dr(r») 
r dr 

(2.27c) 

for r in 2j and j = 0,1, ... ,n - I. With this choice one finds 
that 

W [y _ a./k,r),Ya,i _ I(k,r)] 

= W [Jj ( - ak,r),Jj_ I(ak,r)]r= R, + O(k - L+ I) 

= W [ Jj ( - ak,r), Jj(ak,r)] I r = R
j 

L-I + L pp[ak] -p + O(k -L+ I) (2.28a) 
P= m j + I 

for a = ± 1, where 

Pp= Pil (-I)qa~+I_q(r)( 2i[o~(r)-a{--I(r)] 
q=m,+ 2 

dai(r) da j - I(r») P + -q- - q + ( - 1 Y + I L (- I)q 
dr dr q=2 

j i_I da~_I(r)1 
X [a P + I _ ir) - a P + I _ q(r)] , 

dr r= R j 

(2.28b) 

where the last sum vanishes for p < 2. One also finds that 

W[Yaik,r),YaJ_I(k,r)] 

with 

= eXp(2iakR}C:~~ I rp(ak) - P + O(k - L+ I) ) 

(2.28c) 

P ( da i - I(r) daJ(r») 
rp= L a~_q(r) q -a~-=-~(r) q , 

q= 1 dr dr r=Rj 

(2.28d) 

and therefore 
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J(~a(k) = 1 + O(k --1',- 2) 
and 

(2.28e) 

forj= Iton-l,wherel'j =min[mj ,L-2J,ApplyingEq. 
(25a) repeatedly and then using Eqs. (2.28), (A21), and 
(A24) gives 

+1 

Ya.o(k,r) = I [JlI(k )Jl2(k ) ... Jlj(k )]apYp)k,r), 
p~ - I 

or with 

[JlI(k ) .... Aj(k)] ap 

= p + p t I 0 (k - I!p - 2) + p.~ I 

(p> q) 

+ i 0 [exp(2iakR p,)k - 1',. - 2] 
p~1 

P-I 

X P + q,~ I 0 (exp[ - 2iak (R q - Rr)] 

<q> r) 

(2,29) 

for j = 1 to n + 1. Since asymptotic expansions of the func
tionsYa)k,r) of the form given by Eqs. (24a)-(24f) with 
N = Land ap (r) = a ~(r) are only valid for ~j' Eq. (29) 
enables one to write an asymptotic expansion of Ya,o(k,r) that 
is valid in any segment ~j' The reason that this is useful is 
that one can express rPI(k,r) as a linear combination of 
Y + I,o(k,r) andy _ I.o(k,r), since they are solutions of the 
same second order linear differential equation as rP/,k,r). The 
functions will be matched at the point r = p, which lies at the 
boundary of ~_I and ~o, where Eqs. (20) and (23) are valid 
and where Ya,O (k,r) and dYa.o(k,r)1 dr can be replaced by 
Yo(ak,r) and dYo(ak,r)ldr, respectively. 

Writing rPI(k,r) as a linear combination of the 
Ya,o(k,r),s, i.e., 

+ I 

rPI(k,r) = I Ba.o(k )Ya.o(k,r), 
a~ - I 

(2.30a) 

and determining the expansion coefficients by the usual 
Wronskian techniques gives 

Ba.o(k) = W [y _ a.O(k,p),rPI(k,p)] 

X {W [y _ a.o(k,p ),Ya.o(k,p)]} - I. (2.30b) 

Employing Egs. (20), (23), (B7) and (27) one can calculate 
the asymptotic forms of the Wronskians on the right-hand 
side ofEq. (30b). After a considerable amount of algebra one 
finds that 

Ba,o(k) = !Oak) -1- I{ 1 + (2iak y- 2[&'(/,I,akp) 

+ 70(2iakp)1 - y I(r - 1)] 
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+ j~2 (2iak y<y - 2) &'(lJ,akp) + 0 (k -I) } 

if 1 <r<2 (2.3Ia) 

B a.O<k) = !(iak) - ,- 1[1 + 70 log(2iak )/2iak + 0 (k -I)] 

ifr= I,(2.3Ib) 

(2.3Ic) 

as k-+oo inD. Since Ba.o (k) is independent of the choice ofp, 
a fact that follows immediately from the definition of Ba.o(k) 
given by Eq. (30b), the various kp dependences on the right
hand side ofEq. (31a) must cancel. Furthermore, since this 
equation must hold for a wide range of values of k, the can
cellations must occur independently for each power of 
k Y - 2. On the other hand, there may be cancellations be
tween anyone of these terms and those terms which are 
lumped into 0 (k -I). One concludes that 

&'(1, l,kp) = b (1,1) - 7o(2ikp)1 - J/(r - 1) + o[ (kp) I .- 1'], 
(2.32a) 

&'(I,j,kp) = b (I,)) + o [(kp)j(2 - r) - I] for 2<J<m, 

(2.32b) 

where b (I,}) withj = 1 to m is a constant. We note that Eq. 
(32a) agrees with the explicit calculation of .w (1,1 ,kp) given 
by Eq. (22a). Combining Eqs. (31) and (32) gives us 

Ba.o(k) = !(iak ) - I - 1[1 + KI(ak) + 0 (k -I)], (2.33a) 

with 

{ 
f (2ik )j(r -- 2)b (I,)), 

K (k) = J~ I 
I 70 log(2ik )/2ik, 

0, 

for 1 <r < 2 

for r = 1, 

for r< 1, 

(2.33b) 

as k-+ 00 in D, where the integer m that appears in the defini
tion of K, in the case for which 1 < r < 2 was defined in Eq. 
(17). 

The asymptotic form of rPI(k,r) as k-+oo in D with r in 
~o is obtained by substituting Eqs. (33) and (B7a) into Eq. 
(30a). The asymptotic form of drP,(k,r)ldr is obtained by 
applying d Idr to Eq. (30a) and substituting Eqs. (33) and 
(B7b) into the resulting equation. 

To obtain asymptotic forms for rPl (k,r) and drP,(k,r)/dr 
as k-+oo in D and r in ~j withj> 1, one first defines coeffi
cients Baik) by 

I 

rPl(k,r) = I Baik )Yaik,r). (2.34) 
a"~ - I 

From Eqs. (29), (30a), and (33) it can be seen that 

+1 
Baik )= I Bp,o(k)[JlI(k)x· .. x.dj(k)]Pa 

p~ - I 

as k-+ 00 in D. Combining this equation with the asymptotic 
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forms of YaJ (k,r) and dYaJ (k,r)/dr previously derived yields 
the following result: For every r in .Ij with 1 <j<,n + 1 and 
forp = 0 and 1 

dPtP/(k,r) =l(-iak)-I-I{ 1 +KI(ak)+O(k-') 
dr 2 

d P [exp(iakr)L7~ rfJ {(r)(ak) -- S] 

X dr 
X [1+0(k- x,)] (2.36) 

uniformly for r in .Ij as k-+ 00 in D, where M j = Xj = L for 
j = 1 to n - 1, Mn = L, Mn + I = [a] + 1 and Xn = Xn + I 

= a + 2. ! By the zeroth derivative we mean the function 
itself and [a] = largest integer <,a. J 

Next we shall determine the asymptotic forms of the 
two Jost functions as k-+oo in D. To carry out this program 
we shall use the integral representations' for ft ( ± k), 

ftC ± k) = 1 + (± k)1 iR 
dr wl( ± kr)V(r)tP/(k,r). 

(2.37) 

If one defines I I± (k,p) and I l (k,p) by 

I I± (k,p) = f: dr wl( ± kr)V(r)tP/(k,r), (2.38a) 

I l (k,p) = LR dr wl ( ± kr)V(r)tP/(k,r), (2.38b) 

one sees thatft( ± k) is proportional to LJ~ // (k,p). Fur
thermore, by examining Eqs. (6), (1Ia), and (38a) one finds 
that 

II± (k,p) = ± 2ik f ,;rV\ ± k,p). 
j~ I 

It then follows from Eqs. (19a), (22), (32), and (33) that 

I I±(k,p) = (± k) -/[KI( ± k) + .)T/( ± k,p) + O(k-')], 
(2.39a) 

where KI was given by Eq. (33b) and 

{

TOPI - Y /2ik (1 - r), 
.)TI( ± k,p) = To logp/2ik, 

0, 

for 1 <r< 2, 

for r= 1, 

for r < 1. 
(2.39b) 

To evaluate the integrals I l (k,p) one combines Eqs. 
(38b) and (34) to obtain 

with BaJ(k) as defined in Eq. (35) and 

/ ;jJ(k) = (R" , dr wl( ± kr) V (r)Yaik,r), JR, 

(2.40a) 

for j = 0 to n - 1, (2.40b) 

/a~n(k)= iR 
drwl±kr)V(r)Ya,n(k,r). (2.40c) 

R" 
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Using the asymptotic form of Ya,j(k,r) for r in.Ij and the 
expansion ofwl ( ± kr) given in Ref. 4 one finds that 

L I fR
,. 1 / !Jk) = / I I (=F l)qaPk - p - q dr ei(a'F I)kr 

P~Oq~O ~ 

X V (r) Jj (ak,r)O (k- L) 

forj= I ton - 1, where 

bir) = (I + 4,q)( - 2ir) - q. 

(2.41a) 

(2.41b) 

[The j = 0 and j = n cases are dealt with in Appendices B 
and A, respectively.] Using the bound on Iwl(Z)1 given in 
Ref. 1, along with Eq. (13) and the following bound on 
1 Jj(ak,r)1 which holds as k-+oo in D 

1 Jj (ak,r) I <,const e"11'ir, 

one sees that the final integral in Eq. (41a) is bound by a term 
of order 0 [exp(2IvIRj+ 1)lk I- L

] for /~ I,/k), 
o [exp( - 2lvlR)lk 1- L] for/:t: I./k ),andO [Ik 1 - L]for 
the two remaining possibilities. The functions V (r), ap (r), 
and bq (r) areL, L - p + 2, and 00 times continuously differ
entiable and bounded in.Ij' Therefore, the function </>~ir) 
defined by 

(/J~ir) = V (r)a ~(r)b q(r) (2.42a) 

is Np times continuously differentiable and bounded in .Ij 

with 

N = {L' if p<,2, 
p L - p + 2, if p > 2. 

(2.42b) 

Integrating the pqth term by parts Np times gives 

(R" , 
J~ dre2iakrV(r)a~(r)bir) 

R, 

N,,-I dS(/Jj(r)IR 1 

= (2iak t' I (- 2iak) - 'e2iakr p,q , , 
,~O dr R, 

'iR' , , . d .'V,,</>j (r) + ( - 2iak) - .\,. dr e21ukr pq. 
R, dr''''' 

(2.43) 

Since the Np th derivative of (/J~q(r) is bounded, the last inte
gral on the right-hand side ofEq. (43) is bounded by 

C exp(2lvlRj + 1)lk I - Np for a = + 1 and C exp( - 21v1R) 
X I k I - L for a = - 1. Hence J 

LIN -I 
/~lik)=jI(2ik)-' I I k -p-q I (-2ik)-S 

p~Oq=O s=o 

(2.44a) 
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LIN -I 
= / ( - 2ik )-1 I I (- k) - p - q I (2ik) - S 

p=Oq=O s=o 

. dSl/>} (r) I R" 1 

Xe - 21kr pq + 0 [k - L exp( - 2ikR)]. 
dr' R, 

(2.44b) 
For the two remaining integrals one easily obtains 

,/! IJk) = f = IJk) = iliR' , 1 dr V(r)[1 + O(k-I
)] 

R, 

(2.44c) 

[Eq. (2.44c) is not intended to imply exact equality between 
,/! I,jand,/ = I,j' The two will differ in termsoforderk -I.] 
Equations (44a)-(44c) are valid for} = 1 ton - 1 ask-oo in 
S. The asymptotic expressions for ,/ a~o(k) and,/ !:n(k ) are 
given by Eqs. (Blla)-(Blld) and (A26a)-(A26d), respec
tively. Combining these equations with Eqs. (26), (29), (35), 
and (40a) yields 

I l(k,p) 

= (=F 2ik tlil { BOf' I,n(k )vJ(u + l)eOf'ZikR (=F2ikR )U 

n - I BOf'IJ_I(k)Llj exp(=F2ikR)( ± 2ik)-m, 
}=I 

II 

+ I [BOf'IJ _ I(k) - BOf' I/k)] V/ exp(=F2ikR) 
j~1 

_ B e0f'2ikp " N~ I (~)sdSl/>pq(P) 
Of' 1,0(k) L, L, 2 d s 

p = O.L s= 0 P 
q=O.1 

x [1 + O(k-I
)] + jiB ± I,o(k).r dr V(r)[ 1 + O( k~)] 

+ i~tl [B ± I/k ) - B ± I,o(k)] l~J 1 dr VCr), (2.45) 

where 

V/ - lim VCR} + E), 
• -->0 + 

From Eqs. (35) and (28e) one sees that 

Balk) -BaJ_I(k) 

= BaJ _ I(k )[vt1~a(k) - 1] + B _ aJ _ I(k )vtr'j _ aa(k) 

= B + 1,0(k)0 (exp[ i(1 - a)kRj]k -I', - 2). (2.46) 

If one now inserts Eq. (46) into Eq. (25), replaces the p de
pendent functions by their smallp expansions, and observes 
from Eqs. (33a) and (35) that 

B"J _ I(k) exp(2iakR) = Ba,O<k ){exp(2iakR) 

+ Da, + 10 [k -I exp(2ikR)] + ba. _ loCk -In, 
he obtains 

I l(k,p) 
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+ ilB ± I.o(k)[ C + To¢(P)] [1 + 0 (l/kp)], 

where 

{ 

-logp 

¢(P)= pl-r 

y-l 

if y= 1, 

otherwise. 

(2.47a) 

(2.47b) 

Finally, if one adds I I± (k,p) to I l (k,p) using Eqs. (33b), 
(39), and (47b), he obtains the asymptotic form of the inte
gral on the right-hand side ofEq. (37). Hence, 

ftC ± k) = 1 + (- 1)1 [l +KI(=Fk) + O(k-I
)] 

[ voR 2r(u + l)e Of' 2ikR (=F2ikR ) - u- 2 

- jtl Llj exp(=F 2ikR)( ± 2ik) - 2 - mj ] 

(2.48) 
ask-oo inDo 

Although the expression for the asymptotic form of 
¢/(k,r) which we have derived only holds for the domain D, 
this is adequate for our purposes as outlined in Sec. 1, since, 
as will be shown in the next section, the domain D contains 
all of the zeros of ft ( - k) in the right half-plane that lie 
beyond a distanceK<R -I of the origin. However, to complete 
our analysis of the asymptotic form off!.. ± k ) and thereby to 
prove the above assertion about the location of the zeros, we 
must also determine the asymptotic form offt( ± k) as 
k-oo inSwith - Imk < (2R tlA loglk I, that is in the com
plement of D inS. Fortunately, most of the work needed has 
already been done. For example, the asymptotic forms de
rived for ,/ a~(k ) with a = ± 1 and} = 0 to n hold as k_ 00 

in S. In fact, only the functions ,/Y)( - k,p) given by Eqs . 
(19), (22), and (32), and the asymptotic forms of the related 
functionsB _ 1,0 (k) and I 1- (k,p) were restricted to k-oo in 
D.7 However, rather than determining the asymptotic form 
ofthose functions in the complement of D, we simply employ 
the bound on the magnitude of ,/Y)(k,p) given by Eq. (14), 
which holds for all ofS, to obtain bounds on IB _ l,o(k)1 and 
11 1- (k,p) I as k-oo in S. From the resulting bounds one 
finds that the asymptotic expansions offt ( + k ) given by Eq. 
(48) holds uniformly in argk as k- 00 in S, and that Eq. (48) 
also holds for ft ( - k), uniformly in argk as k_ 00 in S if a 
term that is bounded by [Cf(lk I) + o(e 2)n)p Ilk Ip)] is added 
to the right-hand side of the equation. But such a term is 
down in magnitude by at least a factor of Ik I-I from the mag
nitude of the leading term of the expansion, namely 
voR 2r(u + l)e2ikR (2ikR) - u-2, when - 2vR >A loglk I, 
i.e., when k lies in the space complementary toD in S. Hence, 
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the added term can be absorbed into terms already present 
on the right-hand side ofEq. (48) as long as 
- 2vR >A loglk I. Combining this result with the previous 

derivation for the subdomain D reveals that Eq. (48) holds 
uniformly in argk as k_ 00 in S. Similar arguments show 
that Eq. (3.6) is valid uniformly in argk and rin.Ij withj = 1 
to n + 1 as k_ 00 in S. 

From Eq. (4.8) it follows that k-oo with k real 

!;( ± k) = 1 + K I( ± k) + 0 (k -1), 

and sinceSI(k) = exp[2iDI(k)] =!;(k)/!;( - k) one con
cludes that 

DI(k) = (21)-1 [KI(k) - K 1( - k) + O(k-1»), 

or employing Eq. (2.33b) that 

(21)-1 f b (/J) [(2ik y(r - 2) 

I~ 1 

- - (2iky<r- 2») + O(k-1
) 

- 70 log/2k + 0 (k -1), 

O(k -1), 

if y> 1, 

if y = 1, 

if Y < 1. 

One thus sees that the high energy phase shifts are entirely 
determined up to terms of order k -1 by the factor y, that is by 
the behavior of the potential near r = O. 

3. DISTRIBUTION OF ZEROS OF "( - k) 

In this section we shall determine the distribution of 
zeros of the Jost function!; ( - k) in the domain of the com
plex k plane for which Ik I>K:>R -1. To simplify the derivation 
we shall change variables from k to Z with 

z=2kR. (3.1) 

In terms of z Eq. (2.48) can be rewritten as 

Ao = 1, a o = /30 = 0; 

A tl + 1 = ( - lY + 2( - 1 )lvoR 2 r «(7 + 1), 

an + 1 = (7 + 2, /3n + 1 = 1; 

Aj = (- 1)/+ lJ1pR t i
, aj = 2 + mj, /3j = RjR 

for 1 <J<n. 

Property (c) of the potential given in Sec. 2 implies that the 
/3j'S are ordered as follows, 

0= /30 <fll < ... </3n </3n + 1 = 1. (3.3) 

Equation (3.2) holds for all z in the fourth quadrant of the 
complex z plane for which Izl:> 1. Thus, the solutions of 
Fo(z) = 0 yields the positions of those zeros of the Jost func
tion!; ( - k) which lie in the fourth quadrant far from the 
origin, while the solution of the equation Fo( - z) = 0 yields 
the positions of the zeros of!; ( - k) that lie in the second 
quadrant, again far from the origin. The positions of the 
corresponding zeros in the first and third quadrant can then 
be obtained by the well known reflection symmetry of the 
zeros,1 i.e., if kN is a zero offAZ), then - k;" is also a zero. 

1217 J. Math. Phys., Vol. 20, No.6, June 1979 

An examination of Fo( - z) reveals that thej = 0 term 
of the sum is identically equal to one, while other terms are 
o( 1). Hence, Fo( - z) has no zeros in the fourth quadrant of 
the z plane for which z- 00 • This result is simply a confirma
tion of the fact that!; ( - k) only has a finite number of zeros 
in the upper half k plane and each of these zeros lies along the 
positive imaginary axis within a finite distance of the origin. 1 

Next we wish to find the zeros of Fo(z) that lie in that 
portion of the fourth quadrant of the z plane for which the 
asymptotic formula applies, that is, for Izl >KR:> 1. Let us 
write z in polar form, i.e., 

z =xe - ie. (3.4) 

If sine> 0 is fixed and x_ 00, then the n + 1 th term of the 
sum onj will dominate all others and 1 Fo(z)1-00. Thus, we 
see that Fo(z) cannot vanish in the limit X-oo unless 8-0 
simultaneously. To simplify the discussion of this region of 
the z plane we shall introduce a new parameter A given by 

A = x sine /logx, 

in terms of which 

Z = x exp[ - i sin-1(A logx/x)]. 

For any fixed value of A the argument of the arcsin tends to 
zero as x- 00 and one gets 

z = x - iA logx. (3.5) 

In terms of x and A the magnitude ofthejth term ofEq. (3.2) 
is given by 

IAj eiz{J,z -- a'i = IAjlxA{J, - ex,. (3.6) 

When ..1< 2 the exponent of x will be negative for allj> 1, so 
that Fo(z)-1 as x_ 00. Therefore, Fo(z) can have no zeros in 
this region of the z plane. The smallest possible value of A for 
which the conditions for a root are possible corresponds to 
the smallest value of A for which one of the terms in the sum 
withj> 0 attains unit magnitude. This first occurs when 
A =..1 1 with 

AI = lim aj //3j -aN(l/flN(I)' (3.7) 
j(j> 0) 

where N (1) is the value of j that yields the minimum. For 
simplicity, it shall be assumed that N(I) is unique. (With a 
slight adjustment of the potential parameters aj and /3j a 
degeneracy can be removed.) From Eqs. (6) and (7) it is seen 
that the magnitude of the N (1)th term is IAN(l) I, which is 
o (1), while the magnitudes of all other terms with j > 0 are 
0(1) at A = AI' Thus, the condition for a zero becomes 

(3.8) 

as x- 00 and A is in the neighborhood of AI' A straightfor
ward calculation then gives 

= 2MTTfl ,,v(b - iA I 10gM + 0 (1) (3.9) 

for all integers Mfor which 2Mrr/3 N(b>KR:> 1. Equation 
(3.9) is seen to be a family of zeros. The superscript 1 labels 
z1 to be a member of the first family. 
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Since the magnitude of the N (1 )th term tends to infinity 
with x for A> A" it is convenient to consider a new function 
F1(z) defined by 

FI(z) = A N(Lexp( - iZ(3N(1»["I>Fo(z) 

N+I 
= I (A/ AN(I»exp[iz((3j - (3N(1»] 

j~O 

Xz",-a""[1 +0(1)], (3.10) 

rather than Fo(z) when A> AI' FI(z) has the same zeros as 
Fo(z) and it is better behaved in this region. The magnitude of 
the}th term of the sum on the right-hand side ofEq. (3.10) is 

I(Aj 1 A N(1» exp [iz((3j - /3N(I» ]z"\( I> - a'i 
=M(j·1· 1 x) = IA/A IxPU:

I.A ) - ,y', } N(I) (3.11 ) 

where 

(3.12) 

One first notes that P (j, 1,,1 ) is a decreasing function of A if 
} < N (1), an increasing function of A if} > N (1) and that 

P(N(1),I,A) = 0 (3.13) 

for all A. 

Let us examine the cases in whichI#N(1) in more de
tail. For} = 0 one has 

P(O, 1,,1) = - A/3N(l) + a N(1) = (AI - A )/3N(I) 

so that 

(i) P(O, 1,,11) = 0 and P(O, 1,,1 ) < 0 for A> AI' 

For 0 <} <N(1) and A>AI' one has 

(ii) P(j,I,A )<:P(j,I,AI) = (aN(I) _ a
j )f3j<:O, 

/3N(1) /3j 

where the final result follows from Eq. (7). 

To facilitate the discussion of the} > N (1) case one de
fines two new quantities A2 and~, 

. aj - aN(I)_ aN(2) - aNti) 
A2 = mm , (3.l4a) 

j U>N(I)]/3j -/3N(I) /3N(2) - /3N(I) 

where N (2) is the value of} (assumed to be unique) for which 
the minimum is achieved, and 

A,= min aj-aN(I) (3. 14b) 
. j U> N(I).UN(2)] /3j - /3 N(I) 

By the uniqueness assumption one immediately sees that 

A2<~' (3.15) 

Furthermore, by Eqs. (7) and (14) 
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For} = N(2) one has by Eqs. (12) and (14a), 
P [N (2), 1,,1 ] = (A - AZ)((3N(2) - /3N(I»'SO that 

(iii) P (N (2), 1,,1 ) > O( < 0) for A >Ai <A 2) and 
P(N(2),I,A 2 ) = O. 

Finally, for} > N (l) but }:;i:N (2) and A < I;, 

Hence, from Eq. (l4b) one has 

(iv) P(j, 1,,1 ) < 0, for every A <I; and every}> N (1) ex
cept} = N(2). 

Statements (i)-(iv) imply that all terms in the sum on 
the right-hand side of Eq. (10) are 0(1) in the interval 
Al <A <I; except the} = N(2) term and the} = N(I) term, 
which is identically equal to one. Thus the zeros of FI(z) that 
lie in this interval are given by 

exp [iZ((3N (2) - /3N(I»] 

=(A jA )zU""-U''''[1 +0(1)]. N(I N(2) (3.17) 

Rather than determining the family of zeros that result from 
Eq. (17) at this time, we shall pass on to the general case. In 
analogy to Eqs. (l4a) and (14b) one defines a sequence of 
Am's and x'n 's by 

. (aj - aN(m _ 1»)_UN(m) - aN(m - I) 
Am = mIn , 

j [j> N(m - III /3j - /3N(m _ I) /3N(m) - /3N(m - I) 

(3.1Sa) 

where N (m) is the} (assumed unique) for which the mini
mum exists, and 

- . (aj-aN(m_l)) Am = mIn , 
j Ij>N(m-I).j,t!V(m)] /3j-/3N(m--I) 

(3.1Sb) 

with m>2 in both definitions. For m = 2 one regains Eqs. 
(14a) and (14b). From Eq. (ISb) it follows that x'n >A"" 
while from Eq. (lSa) one sees that 

(aN(", -+ I) - aN(m - 1))I((3N(m + I) - /3N(m - I» 

> (aN(In) - aN(m _ 1)I((3N(m) - /3N(m - I) = Am· 

Multiplying both sides of this inequality by the positive fac
tor/ = ((3N(m -+ I) - /3N(m _ 1)((3N(m) - PN(m _ I)' then sub
tracting (aN(m) - aN(m _ 1»((3N(m) - /3N(m _ I» from each 
side of the resulting inequality, and finally dividing the result 
of the previous operation by the factorfyields 

1 _ aN(m + I) - aN(m) aN(m) - aN(m - I) = A 
/l.m+ 1- > m' 

/3N(m + I) - PN(m) /3N(m) - /3N(m - I) 

(3.19) 

which along with Eq. (16) implies that Am + I >Am for any 
m>l. 

W.J. Romo 1218 



                                                                                                                                    

One next defines 

F (z) = A - I e - iZ{3"""zu"""F. (z) m N(m) 0 

(3.20) 

The magnitude ofthejth term of the sum is given by 

M(j,m;A,x) = IA/AN(m)lxP(i.m.A) (3.21a) 

with 

(3.21b) 

We are now in a position to prove a theorem that will 
playa key role in the analysis. 

Theorem: The following statements hold for every 
m>l: 

(i)P(N(m -I),m,1m) = OandP(N(m - I),m,A ><0 
forA >Am' 

(ii) For everyj <N (m),j=:j=.N(m - I), P(j,m,1) <0 for 

A>Am· 

(iii)P(N(m + I),m,1 bOforA >Am + I,P(N(m + I), 
m,A m + I) = 0 and P(N(m + 1),m,1) <0 for A <Am + l' 

(iv)Foreveryj>N(m),but)=:j=.N(m + I),P(j,m,1)<O 

for A <x,n + I' 

Proof Clearly all four statements hold for m = I if one 
simply defines N (0)=0. It will be assumed that they also 
hold for some arbitrary m greater than unity and the validity 
of (i)-(iv) for the m + 1 case will be examined. 

From the definition of P(j,m + 1,1), Eq. (21b), it can 
be seen that 

P(j,m + 1,1) = P(j,m,A) - P(N(m + I),m,1), (3.22) 

for every j and A. Setting) = N (m) yields 

P(N(m),m + 1,1) 

= P(N(m),m,A) - P(N(m + 1),m,1). 

The first term on the right-hand side of this equation is iden
tically equal to zero, as is easily seen by Eq. (2Ib), while by 
statement (ii) of the induction hypothesis the second term 
vanishes if A = Am + I and it is negative if A >Am + I . This 
establishes the validity of (i) for the m + 1 case. 

Next one considers all values ofj less than N (m -!- I) 
that differ from N(m). From Egs. (3) and (2Ib) it follows 
that P(j,m + 1,1) is a decreasing function of 1. Hence for 
A>Am + I andj as previously defined 

P(j,m + I, A )';;;'P(j,m + 1, Am + I) 

= P(j,m)c" ,) - P(N(m + l),m,1m + 1)' 

The second term on lll" right-hal1d side of the equal sign 
vanishes by statement (iii) of the induction hypothesis and 
the first term is always negative, which follows from state
ment (i) of the induction hypothesis ifj = N (m - 1), from 
statement (ii) ifj<N(m) butj=:j=.N(m - 1) and from (iv) if 
N (m) <) < N (m + 1). Thus, statement (ii) is also valid for 
the m + 1 case. 
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To test statement (iii) we note that by Eqs. (18a) and 
(2Ib) 

P<N(m + 2),m + I,A) 

= A (fJN(m + 2) - fJN(m + I) - aN(m + 2) + aN(m + I) 

= (A - Am + 2)(fJN(m + 2) - fJN(m + I»' 

The second term in brackets in the last expression is positive 
byEq.(3). Therefore,P (N(m + 2),m + 1,1 ) is positive (neg
ative) if A is greater (lesser) than Am + 2 and P (N (m + 2), 
m + 1, Am + 2) = O. This establishes the validity of (iii) for 
the m + 1 case. 

Forj>N(m + 1) butfl=N(m + 2) one has 

P(j,m + 1,1) = [A - (aj - aN(m + I) 

...;- (fJj - fJN(m + 1»](fJj - fJN(m + I)' 

Since fJj - fJ N (m + I) is positive and 
(aj - aN(m + I)/~ - fJN(m + 1»>Xm + 2 for the values of) 
being considered, one sees that P (j,m + 1,1) < 0 for 
A <I'm + I' Hence, (iv) is valid for the m + 1 case. This com
pletes the induction proof. 

As an immediate consequence of the theorem it follows 
that in the range of A given by Am _ I <A <I'm' the)th term of 
Fm _ I (z) is 0(1) for every j except) = N (m - 1) and 
j = N (m). Thus, the condition for a zero ofF m (z), and hence 
of Fo(z), for which A lies between Am _ I and x:.. can be ex
pressed as 

{I + (AN(mIAN(m _ 1»eXp[lz(fJN(m) - fJN(m _ I»] 

xzu
"", n-

a ""'j[1 +0(1)] =0, 

so that 

ZM = 2M7TI(fJN(m) - fJN(m _ I» - iAm logM + 0 (1) (3.23) 

for all integers M for which 2M7TI(fJ N(m) - fJ N(m _ I» 
/KR> 1. Each value of m corresponds to a given family of 
zeros of Fo(z). A smooth curve can be drawn through each of 
these families. Equations (16) and (19) reveal that these lines 
move further and further away from the real z axis as m 
increases. Each time m is increased at least one value of) is 
removed from the set ofj values over which the minimum in 
Eq. (18a) is taken. Thus, the process must terminate after a 
finite number of steps m = max. Clearly N (max) = n + 1 
and max,;;;,n + 1. The case for which max = 1, so that a sin
gle family of zeros results, corresponds to the class of poten
tials considered by Humblet. 8 

Re-expressing our results in terms of the wavenumber k 
gives us all of the fourth quadrant zeros offt ( - k) for which 
Ikl~oo, 

kM = M7TI(RN(m) - RN(m _ I» - fAm 10gM 12R + 0(1) 
(3.24) 

with m = 1 to max, M~oo and where Ro = O. The third 
quadrant zeros are obtained by reflecting these zeros across 
the imaginary axis as previously mentioned. 

Finally, if we cast Eq. (2.15) into the notation of this 
section, we see that 

A = an + I an + I - aN (max - I) = 1 

f3 
> /l,max' 

1 - n 1 - f3 N (max - 1) 
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Thus, all of the zeros of J;( - k) that can be found in the 
fourth quadrant of the k plane with I k I;;'K will lie in the 
subdomain D as asserted in the previous section. 

4. COMMENTS AND CONCLUSIONS 

The results of the previous section are somewhat sur
prising. The article and book by Newton,' which are stan
dard references on the subject, report a single family of zeros 
of the form 

k n = n1TIR - i[(O' + 2)/2R] loglnl + 0(1) as n-+oo 
(4.1) 

for all potentials that satisfy properties (a) and (b) of Sec. 2 
and have finite first and second absolute moments, i.e., 

fuR dr r"1V(r)1 < 00 for n = 1,2. 

This is a much broader class of potentials than the one we 
have considered; in fact, it includes the class considered in 
this paper. Newton cites two references for his result, a paper 
by Humblet' published in 1952, and one by Regge' in 1958. 
Both Humblet and Regge obtained Eq. (4.1), but they are 
considering somewhat different classes of potentials than 
Newton. Expressed in our notation, Humblet was consider
ing potentials that satisfy properties (a) through (f) with 
y<O, n = ° and 0' an integer, i.e., the potential was assumed 
to be finite everywhere and to have continuous derivatives 
up to order L;;.O' + 2 for the half closed interval [O,R ). Clear
ly this corresponds to a subclass of the class we have consid
ered and it is seen that Humblet's result agrees with ours for 
that subclass. Regge was considering a class of potentials 
that satisfy (a) and (b) and have finite zeroth absolute mo
ments, i.e., f~dr I V(r)1 < 00. This class of potentials contains 
all of those that we considered for which y < 1, whereyis the 
potential parameter defined under property (c). Since our 
prediction of the possibility of a number of families of zeros 
off'( - k) did not depend on the value of y, Regge's result is 
at variance with ours. The source of the disagreement can be 
traced to an approximation that Regge makes in his deriva
tion, but one which, it should be stated, he clearly indicates 
he is making. He derives the asymptotic form offt ( - k ) for 
k belonging to the complement of Din S, where it is approxi
matelygivenby VoR lr(O' + l)e 2lkR(2ikR) - (7 -- 2. Although 
he acknowledges that this form is not valid near the real axis 
(in the domain D), he takes as an approximation forf,( - k) 
in D a sum of the above term plus the zeroth order Born term 
[/;0)( _ k) = 1]. Equation (4.1) follows immediately. Fi
nally, returning to Ref. 1, one finds that the same approxi
mation employed by Regge is employed, but without the 
clear warning given by Regge. 

The class of potentials can be slightly extended without 
requiring major revisions of the derivation. For example one 
could easily accomodate a finite number of delta function 
terms in VCr) between ° and R of the form sc5(r - b). This 
would result in the inclusion in the sum over j on the right
hand side of Eq. (2.48) a term with Llj = - s,Rj = b, and 
mj = - 1. One could also relax the constraints imposed by 
properties (d) and (f) to allow for potentials for which 
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{alRj - r/J for r<Rp 

ck-R/J for r>Rj 

for r in the neighborhood of Rj' where aj,bj>Cj> and dj are 
constants and at least one of the powers bj and dj is less than 
zero but greater than minus one for one of the j. The only 
modification this would entail is that in deriving the asymp

totic forms of YaJ- 1 (k,r), Yaik,r), /" iJ _ l(k), and 
/" iJ(k ), one would have to use techniques similar to those 
given in Appendix A. The asymptotic forms of the two Jost 
functions would be unchanged. 

In conclusion, we have derived expressions for the as
ymptotic forms of rP, (k,r) in D,ft ( ± k ) in S and for the zeros 
k" offt ( - k) for which k n ;;'K~R -'. From these results one 
can easily determine the asymptotic forms of rP,(k",r),ft(k,,), 
and dft ( - k )1 dk I k ~ k" as k n ---+ 00 , which is the information 
that is needed to complete the study of the completeness 
properties of the resonance sates which was outlined in the 
Introduction. Furthermore, we showed that the zeros of 
j; ( --- k ) that lie closest to the real k axis, are not necessarily 
those which are generated by the discontinuity of V (r), or 
one of its derivatives, at the cutoff radius R. Thus, if one 
truncates a potential with an exponentially decreasing tail, it 
does not necessarily follow that the dominants matrix poles, 
i.e., those closest to the real axis, will always be changed. 

APPENDIX A 

We have assumed that 

VCr) = (I - rlR )OpoO - rlR) (AI) 

throughout a 15 neighborhood of R given by R - c5<r<R, 
where Po(t) is a convergent power series, 0' = 11 + N, 
0<11 < I, and N is a nonnegative integer. It then follows that 

1"(r) V (r) + I (l + I)r' 
= (I - rlR )Opo(l- rlR) + P,(I - rlR) (A2) 

in the same 15 neighborhood, where P, is a power series ex
pansion of the centrifugal potential about the point r = R. A 
straightforward induction argument that employs the recur
rence relation for the expansion coefficients aj(r), Eq. 
(2.24e), and general properties of convergent power series'o 
then gives 

a/')=Pjo(t) + i t P (a+2)-jPjp(t), (A3) 
P=l 

for r in the 15 neighborhood, where t = 1 - rl R and the 
Pjp (t ) with p = 0 to j are a set of convergent power series. 
From Eq. (A3) and its derivatives with respect to r it follows 
that 

I d:;~) I <const[ 1 + (1 - rIR)" + 2 j. J], (A4) 

for all J;;.O, and r in the 15 neighborhood, where 
d oa/r)1 dr' a,(r). 

We now wish to determine a bound on the error made in 
approximating the two solutions Ya (k,r), with a = ± 1, of 
the radial Schrodinger equation, cf. Eq. (2.24a), by the as
ymptotic approximation 
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M 
Y (ak,r) = eiakr L aJ{r)(ak) - j, (AS) 

j= 0 

where M and the range of r over which Eq. (AS) is defined 
are to be determined. Defining Za (k,r) by 

y(,(k,r) = Y(ak,r)za{k,r) 

one has 

(A6) 

Ya{k,r) - Y (ak,r) =' Y (ak,r) [za(k,r) - 1]. (A 7) 

Hence, a bound on the error follows immediately if one 
canot construct a bound on IZa (k,r) - 11. Inserting Eq. (A6) 
into the radial Schrodinger equation yields a differential 
equation for Za (k,r). After two successive integrations and a 
suitable choice of integration constants one then obtains the 
integral equation' 

za(k,r) = 1 - L K (ak,r,t )F(ak,t )za(k,t) dt, (AS) 

where 

K(ak,r,t) = f P(ak,t)Y-2(ak,s)ds, (A9) 

and 

(
daM+1(r») . k M F(ak,r) = - 2i dr em r(ak) - Y-I(ak,r). 

(AW) 

The lower limit a of the integral on the right-hand side ofEq. 
(AS) must be chosen with care. It will differ in the two cases 
a = - 1 and + 1. We shall examine the a = + 1 case in 
some detail. 

Since I Y(k,t )!Y(k,s)I is bounded for all t <s and k inS, 
ifone chooses a<rfor all values ofrconsidered, then t<rfor 
all values of tin Eqs. (AS) and (A9). Hence 

IK(k;r,t)l<const(r-t) (All) 

for all sand t for which a<t <s<r and k-+oo in S. Setting 

Z + I(k,r) = f zV\r) 
j=O 

with z' 0 '(r) = 1, it follows that 

zV)(r) = - L K (k;r,t )F (k,t )zU - I)(t) dt 

and thus 

xl" 'IK(k;fj_l,t)F(k,t)ldtj . 

(Al2) 

(A13) 

(A14) 

From Eqs. (AW), (A4), and (AS) it follows that for k-+oo in 
Sand r in the /j neighborhood of R 

iF(k,r)I<C[l + (l - rlR)1' + N +M]lk I - M _Y(lk I,r). 
(AIS) 

Equation (A15) holds for all r for which Rn<r<R as long as 
M <L, since V (r) was assumed to have continuous bounded 
derivatives up to order L for R n <r < R, which implies that 
I daM + 1 (r)ldrl is bounded over the same interval. Combin-
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ing Eqs. (A14), (AIS), and (All) yields 

IzU)(r) I < [B(lk l,r)]1I;1 (AI6) 

with 

B(lkl,r) 

r (r + a2 

= J
a 

(r - t)Y(lk l,t)dt<C Ik I- M -2- - ra 

_ (R - r)"+ N+2 -M _ (R _ a)I'+N+2-M) 
(A17) 

(p, + N + 2 - M)R I' + N -- M 

and thus, 

IZ+I(k,r) - 11< f IzW(r)I<B(lk I,r) exp[B{lk I,r)]. (A1S) 
j=1 

If one takes M = N + 1, then aj (r), daj (r)1 dr, with)<M, and 
the term in large parens on the right-hand side of Eq. (A 17) 
are finite for all values of rE[Rn ,R ], even when r-+R. They 
are also finite for all values of M <L if r is bounded away from 
R. It is therefore convenient to divide the segment [Rn,R] 
into two subsegments Xn and Xn + 1 as defined in Sec. 2, i.e., 
Xn = [Rn,R -Ik I-I] andXn + 1 = [R -Ik I-',R]. Setting 
a = Rn and M = L>(7 + 2 in X n, and a = R - Ik 1-' and 
M = N + 1 in X n + I' then gives two separate solutions Y + 1 J 

(k,r) with) = nand n + 1 for which 

Iz + IJ(k,r) - 11 <B (Ik I,r) exp[B (Ik I,r)] 

<constXlk I -1'-N-2 (AI9) 
uniformly for r in Xj and k in S and for both) = nand n + 1. 
The constants of integration implicit in the definitions of the 
expansion coefficients can be chosen so that air) is continu
ous for all r and) for which Rn <r<R and)<N + 1. 

The case a = - I can be treated in a similar manner, 
the principal difference being that the fixed limit of integra
tion in the integral equation for Z _ lik,r) is taken as 
R - Ik 1-' for) = nand R for) = n + 1, while M = Lin Xn 
and M = N + 1 in Xn + I' just as in the a = + 1 case. One 
finds that Eq. (A 19) also holds when Z + lJ is replaced by 
Z _ lJ' Hence, 

Yaik,r) = ~(ak,r)zaik,r) = ~(ak,r) [1 + 0 (k - a - 2)] 
(A20) 

fora = 1,2 and) = n,n + 1 uniformlyforrinXj andargk,as 
k-+ 00 in S. Adapting the last two equations of Sec. 4.3 of 
Ref. 5 to this case yields a bound on the asymptotic approxi
mation to the derivative, namely 

dYaJ(k,r) dYJ(ak,r) 2 
-"---= [1 + O(k - a- )], 

dr dr 
(A20b) 

again, uniformly for rEXj and argk as k-+ 00 in S. 

From Eqs. (A20a), (A20b), and the asymptotic expan
sions ofYa.n _ 1 (k,r) and dYa.n _ 1 (k,r)ldr, which were de
rived in Sec. 2, one can determine the coefficients JI~tf..k ) 
[cf. Eq. (2.25a)J. The derivation is precisely the same as the 
one leading up to Eqs. (2.2Sa)-(2.2Se), only in this case the 
fractional errors made in replacingYaik,r) and dYaik,r)/ dr 
with) = n by their asymptotic expansions are 0 (k - U - 2) 
rather than 0 (k - L), as was the case for j < n. As a result, 
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one finds that Eq. (2.28e) also holds for j = n iflln is defined 
as follows, 

Iln = min[mn,a]. (A21) 

Next we shall determine the asymptotic forms of the 
integrals 

,/ a:ik) = IR dr w,( ± kr) V (r)ya.n(k,r), 
R" 

with a = ± 1. (A22) 

First we note thatYa.n(k,r) = ~ft~ _ l.Al~; l(k )Yp.n + l(k,r) 
with 

x I W [y _ p,n + l(k,r)'YP,n + l(k,r)] J -I. (A23) 

Choosing r = R - Ik I-I as the point at which the Wrons
kians are to be evaluated, employing Eqs, (A20a), (A20b), 
and (A4) gives 

.AI~: l(k) = 1 + O(k -u-2) 

and 

(A24) 

Combining Eqs. (2.41b), (AS), (A20a), and (A20b) leads to 

x air) exp(2ikr) + iR
;, , dr 'W,( - k,r)V(r)~(k,r) 

R, 

{ 
, N+2 lR + i' 2: 2: k - h - g( - l)g dr 

h=Og=O R-Ikl' 

x V (r)bh (r)air) + (R dr Wl( - k,r) 
JR -Ik I' 

X v(r)Yn+1(-k,r)[Z_I,n+l(k,r)-lJ}O(k -u-2e2ikR), 

(A2S) 

where G (n)=L, G (n + 1) N + 2, Rn+ 1 R - Ik I-I, and 
Rn + 2 R. 

From Eqs. (AI) and (A3) it can be seen that 
e2ik'V(r)air) bh(r) can be written as e2ikr(r - R)A - l¢ (r), 
where 0 <A < 1 and ¢ (r) is N g times continuously differen
tiable for Rn<,r<,R, where N g is defined in Eq. (2.42b). The 
first integral on the right-hand side ofEq. (A2S) can be eval
uated by using Eqs. 2.8(2) and 2.8(3) of Ref. S and the third 
integral can be determined by applying Eqs. 2.8(11) and 
2.8(12) of the same reference." Bounds can easily be con
structed on the contributions of the second, fourth, fifth, and 
sixth integrals, using Eqs. (AI), (A4), and (AI9). A some
what tedious but straightforward calculation then gives 
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I L Nh 

- i 1 (2ik )-1 2: 2: k - g - h 2: (- 2ik) - j 

g=Oh=O j=o 

Xexp(2ikR
n
)d

j

[V(r)ah(r)bir)] I O(e2IVIRlkl-U-2) 
drl r= R" 

(26a) 

uniformly in argk as k---1> 00 in S. Proceeding in a similar 
manner, one then finds that 

,/! l,n(k) = i1lR dr V(r)[1 + O(k-I)], 
R" 

(A26b) 

,/ = l,n(k) = iJR dr V(r)[ 1 + O(k -I)], 
R" 

(A26c) 

,/ ~ l,n(k,r) = i1voRe - 2ikRr(a + 1)( _ 2ikR) - u - 1 

I L 
X [1 + 0 (k -I)] + i1 (2ik yl 2: 2: (- k) - g - h 

g=Oh=O 

Nh 

X 2: (2ik) - j exp( - 2ikR n) 
j=O 

d
j

[ V (r)ah(r)bir)] I 
X . 

dr 1 r=R" 

+ 0 [exp( - 2lvlRn)lk 1- L] 
uniformly in argk as k---1> 00 in S. 

APPENDIX B 

(A26d) 

The derivation of the asymptotic forms of ,/ a:o(k ) is 
quite similar to the derivation of the asymptotic forms of 
,/ a:n(k ) carried out in Appendix A. This analogy will be 
exploited to abbreviate the derivation in this appendix. 

We have assumed that [cf. item(c) in the list of potential 
properties] 

V(r) = r- Y I 'Tj r j r- YPo(r) 
j=O 

(Bl) 

for r<'ER, where E is a small positive number and Po(r) is a 
uniformly and absolutely convergent power series, and we 
have further assumed that V(r) has bound and continuous 
derivatives up to order L for ER<,r<,R I. Adding the centrifu
gal potential to V (r) gives r(r), which is then used in con
junction with Eqs. (2.24d) and (2.24e) to determine the form 
of the expansion functions aJ(r) in .Io. An induction argu
ment then yields the following form for aJ(r) for r<'ER, 

(B2) 

where 9~1) is a (j - s)th order polynomial and P?)(r) is an 
absolutely convergent power series. [The polynomials and 
power series will of course depend on the parameter of r(r) 
such as I, y, 70, etc. For example, the logarithmic terms will 
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all vanish if r is an irrational number, and the polynomial 
9~J)(r) can be written as r times a (j - s - l)th order poly
nomial for s waves.] From Eq. (B2) it follows that 

I

dJa(r) I . 
d~ <constX[I+(r/R)~J-J] (B3) 

for all J',;;.O and r < ER. Since dJ'Y(r)/drJ is assumed to be 
continuous and bounded for all J <L if ER <r ~ R h it follows 
that Eq. (B3) also holds for all ~o as long asj + J<L + 2. 

The relationship between the exact solutions to the ra
dial Schrodinger equation denoted by Ya.O (k,r) with 
a = + 1 and their asymptotic approximations Yo(ak,r) is 
obtained by substituting L for M and adding the subscript 0 
where appropriate in Eqs. (A5)-(A 1 0). If one next special
izes to the a = ± 1 case, sets the lower limit of integration a 
in Eq. (AS) equal to p, and restricts r to lie in ~o, then Eqs. 
(AII)~(AI4) also apply to the present case. From the 
bounds given by Eq. (B3) and the definition of F(k,r) given 
by Eq. (AlO) one finds that 

IF(k,r)I<C[1+(r/R)~L~2]lkl-L 5'(lkl,r)(B4) 

for p<r<R1 as k-oo in S. Combining Eqs. (B4), (Cll), and 
(CI4), with a replaced by p, yields 

IzV)(r) I < {c L dt (r - t)[ 1 + (t /R ) - L ~ 2] Ik 1- L Y /Jl 

< [c'(p/R )~L~ Ilk I ~LF/Jl 

(B5) 

for any r in ~o and k in S. Thus, 

Iz + I.o(k,r) - 11 = I~I zV)(r) I<const(loglk I)L + 21k I ~ L 

J (B6) 

for r in ~o and k in S. The analog of Eq. (A20) becomes 

Ya,o(k,r) = Yo(ak,r)[ 1 + o(lk 1- L + I)] (B7a) 

uniformly in rand argk as k_ 00 in S. With the usual substi
tutions the counterpart ofEq. (A20b) becomes 

dYa.o(k,r) = dYo(ak,r) [ 1+ o(lk I ~ L + I)] (B7b) 
dr dr 

uniformly in rand argk as k_ 00 in S. 

Although we have only established Eqs. (D7a) and 
(D7b) for the a = + I case it can easily be established for 
the a = - I case as well. One need only choose the param
eter a to be R I> then it follows that 

IK( - k;s,t)l<constX(t - r) (BS) 

for all sand t for which a = R 1 ',;;. t > s',;;. r. The rest of the deri
vation is almost identcial to that of the a = + 1 case and it 
will not be repeated. 

Next we consider 

(R. 
,/a~o(k) = J

p 
drw,( ± kr)V(r)Ya,o(k,r). (B9) 

Substituting Eq. (B7a) for Ya.o (k,r) and replacing wA ± kr) 
and Yo(ak,r) by their expanded forms gives 
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+ lR. dr w,( ± kr)V(r)Yo(ak,r)[za(k,r) - I]. 

(BlO) 

The employment of bounds on I Yo(ak,r) I and IZa,o (k,r) - 11 
obtained from Eqs. (AS), (B3), and (B6) along with Eq. 
(2.13) and the bounds on Iw,( ± kr)1 given in Ref. 1, yields a 
bound on the last integral on the right -hand side of Eq. 
(BlO). To discuss the first terms on the right-hand side we 

consider two cases separately. For /':;: I,o(k) and 
/- :':: I,o(k) the integrals are of the form e ± 2ikr<pjh (r), where 

<Pjh (r) V (r)aJ(r)bh (r) is ~ times continuously ~ifferentia
ble in ~o and N is given by Eq. (2.42b), Thus, the (jh )th term 

j • . • 

of the sum can be Integrated by parts Nj times and the same 
bounds referred to above can be employed to place bounds 
on the remainder terms. One finds that 

(B lla) 

d '<P (r) II<· X Jh +o[k~L+lexp(-2ikp)] 
dr' p 

(Bllb) 

uniformly in argk as k_ 00 in S. 

A much less detailed expansion of /' = I,o(k ) and 
,,- ! 1.o(k) will suffice. One easily obtains 

f
R. 

(1~~_I,o(k)=il p drV(r)[I+0(l/kp»), (BI2a) 

(R. 
;-! Lo(k) = i'Jp dr V(r)[l + o (1/kp»), (BI2b) 

again, uniformly in argk as k_ 00 in S. 

APPENDIXC 

Theorem: Given that ao(x)-I, that a~(x) = (2itl 
X ['Y(x)a n _ I(X) - a; ~ I (x) ] for n',;;. 1, and that 'YV)(x) is 
continuous at every point x on a line segment L and for every 
j = 0 to N, then it is possible to construct solutions an (x) 
such that a~m)(x) is continuous at every x on L if 
O<m <N + 2 - nand n <N + 2. [In this Appendix we define 
F(O'(x)-F(x) and F(m)(x)_d mF(x)/dxm for m',;;. 1.] 

Proof As a preliminary to a proof by induction an es
sential equation is derived. Applying the defining equation 
for a~(x) repeatedly to eliminate all terms in which second 
derivatives of a's occur yields 

a~(x) = (21)-1 'Y(x)an _ I(X) - (21}2[ ,V(x)an _ ix)] / 
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+ ... - ( - 2i) - n7/(n)(x) 

n I (- 2i) - j[ p/'(x)an _ ix) 1 (j I) 

j~1 

Next, taking higher order derivatives of this equation then 
gives 

n 
a~m)(x) = I (- 2i) - j[ Y(x)an _ j{x)l(j + m - 2) 

j= 1 

(Cl) 

We now observe that the theorem holds for n = 0 and we 
assume it holds for all a~t)(x) with s<,n - 1 where 1 <,n<,N 
+ 2, that is we assume that a~1 )(x) is continuous for all x in L 

as long as s + t<,N + 2 and s<,n - 1. Examining the s = n 
case we see by Eq. (CI) that the highest order derivative of 
.r~(x) that appears in the expansion of a~m)(x) occurs in the 
term in whichj = nand k = 0 for whichj + m - 2 - k 
= n + m - 2. Thus, as long as m <,N + 2 - n, no derivative 

of ~V(x) of order greater than N will appear in the expansion. 
We next note that the sum of the upper and lower indices of 
a~"11 _ ix) equals n - j + k<,n + m - 2. Again, as long as 
m <,N + 2 - n this sum will be smaller than N + 2 so that all 
of the factors a~k2,{x) that appear in the expansion will be 
continuous for x in L by the induction hypothesis as long as 
m<,N + 2 - n. Thus,a~m)(x)willbecontinuousforallxonL 
if 1 <,m <,N + 2 - n. Now clearly if a~I)(x) a~(x) is continu
ous for x in L, then a~O)(x) an(x) will be continuous as well. 
So the theorem holds for the s = n case and the proof by 
induction is complete. 

Corollary: Suppose that the conditions of the theorem 
hold and an(x) with n<,N + 2 is constructed so thata~,m)(x) is 
continuous for all x on Land m<,N + 2 - n, then if 
y~N + 1 )(x) is discontinuous at a point Xo in L it follows that 
a~N + J - n)(x) is discontinuous at Xo. 

Proof From Eq. (Cl) one has 
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Since (n - j) + k <,N + 1, a~k 2 j (x) will be continuous at the 
pointxo by the previous theorem for every k in the sum. Next 
we note thatj + N + 1 - n - k<,N + 1. Thus, no term in 
the double sum except the one withj = nand k = 0 involves 
a derivative of as high an order as N + 1, and consequently 
all terms for which (j,k )*(n,O) will be continuous while the 
(n,O)th term equals 

- (2i) - ny(N + I)(X), 

which is discontinuous by our basic hypothesis. 
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"Since k will generally have an imaginary part in our application, while the 
variable x which plays the role of k in the theorems of Ref. 5 was assumed 
to be real, the equations referred to above cannot be directly applied. How
ever, a straightforward rederivation of these equations with x complex 
shows that all of these equations remain valid if the last term on the right
hand side of Eq. 2.8(2) and 2.8(11) are replaced by 0 (e ;,{3x N) if lnu < 0 
and by o (e""X A) if IllL\: > 0, where a and{3 are the lower and upper 
limits of integration, respectively, in the two theorems and it is assumed 
that a <f3. 
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Yet another formulation of the Einstein equations for stationary 
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We rewrite Einstein's equations for stationary axially symmetric gravitational fields, 
using a pair of noncanonical, intrinsically-defined coordinates. We show that both field 
equations of the Ernst formulation of this problem can be solved identically, by means 
of a new superpotential K. One more field equation remains to be satisfied, however. It 
can be expressed as a single fourth-order equation for K, or as a pair of coupled 
second-order equations. The approach works equally well for the wave metrics one can 
get from the stationary case via complex coordinate transformations. We illustrate our 
method by using it to derive a new class of wave solutions. 

r. INTRODUCTION 
This paper is concerned with the formulation and solu

tion of Einstein's equations, for the important case in which 
the field is stationary and axially symmetric. The results will 
apply equally well to the two types of wave metrics, which 
can be obtained from the stationary case by means of com
plex coordinate transformations. ' We depart from the tradi
tional approach by not using "canonical" coordinates. In
stead we use intrinsic coordinates, defining them directly in 
terms of the gravitational Newtonian potential/ and the 
gravitational twist potential n. 

We are aware of the main drawback of intrinsic coordi
nate systems: they are poorly adapted to a discussion of any 
limit in which the field is weak. In our case this will lead to a 
complicated condition for asymptotic flatness. Moreover, 
the static (nonrotating) case n-o will require special treat
ment as a limiting case. For certain other solutions,Jand n 
happen to be functionally dependent, and our coordinate 
system becomes completely degenerate. However, all solu
tions for which this happens are already well known.' 

Making up for these drawbacks is the considerably sim
plification that we have been able to achieve in the field equa
tions. Of the two field equations which constitute the Ernst 
formulation,2 we are able to solve both identically, in terms 
of a new "superpotential" K. This leaves only one more field 
equation remaining to be satisfied (one that had been an 
identity in canonical coordinates). It produces a single non
linear fourth-order equation which must be obeyed by K. 
Alternatively, if one prefers, the equation can be cast as a 
pair of coupled second-order Monge-Ampere equations. 
The latter version is particularly convenient when it is actu
ally the related wave metrics that one is dealing with. The 
Monge-Ampere equations are then hyperbolic, and the 

")Supported in part by NSF Grant GP-43844-X. 

method of characteristics can then be used to advantage to 
look for new solutions. 

Of course the hope in reformulating the vacuum equa
tions is that we will eventually better understand their struc
ture. In the meantime, there may be particular solutions 
which are simple in one formulation but complicated in an
other. In Sec. V we show how our method can in fact be used 
to find a new class of wave solutions. 

II. FIELD EQUATIONS 

We will consider first the general stationary axially 
symmetric metric in the canonical form introduced by 
Lewis] 

ds' = fed! + OJd¢)' - f-' [e2Y(dp' + dz') + p 2d¢ '], 
(2.1) 

where/, OJ, yare functions only of the two coordinatesp, z. 
The main Einstein vacuum equations may be written as two 
divergence equations for/, OJ': 

V'fp-' rV(P'j"' - OJ')] = 0, V·fp-'PVOJ] = O. (2.2) 

Here the gradient operator and the "dot" are covariant 
derivative and scalar product with respect to a 3-metric, 

do-' = g"/3 dx "dx (3 

= hAB dxAdx B + p'd¢ 2 

= e2Y(dp2 + dz2) + p2d¢ 2, 

a,(J = 1,2,3, A,B = 1,2. (2.3) 

That is. 

V· V = g - I 12(g Il2g u/3 V )./3' (2.4) 

In fact, Eqs. (2.2) are conformally invariant, in the sense that 
they do not depend on y. The remaining field equations re
quire that 

yp = [pi - 2(/; - I;) - p-1'(OJ~ - OJ;) ]/4, 

yz = [pJ"%fz - p-1'OJp OJz] 12. (2.5) 
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As shown by Harrison4 and Ernst, 2 the equations may 
also be formulated in terms of a twist potential a, defined by 

Va =p-lpe4> XVOJ, (2.6) 

where e¢ is the unit vector in the ¢ direction. Eliminating w 
in favor of a we can obtain an equivalent set of equations: 

'1.[1-2'1([' + a'») = 0, 

v·[I-2va 1 = 0, 

Yp = [pj-'(f; - f; + a ~ - a ;)]14, 

Yz = [pj-'(J;,fz + apaz)] 12. 

(2.7) 

(2.8) 

Equations (2.7) are what we call the Ernst equations. Once 
they are solved, Y may be found up to an additive constant 
from Eqs. (2.8). 

III. SOLUTION OF THE ERNST EQUATIONS 

We will now choose intrinsic coordinates (xl,x') and 
solve the Ernst equations. Define the conformal metric 

(3.1) 

Then Eqs. (2.7) written out are 

[pf-'h AB(f' + a '),B 1.A = 0, (pj-'h ABa.B),A = 0. 
(3.2) 

An advantageous choice of coordinates is (xl,x') 
= (f2 + a ',a). This choice is possible as long asfanda are 

functionally independent, which we assume. Eqs, (3.2) then 
become an equation for h AB 

(pf-'h AB),A = 0, B = 1,2. (3.3) 

The most general solution is 

P.I'-'h AB - ~cEBDK 
'J - ,CD' (3,4) 

where E AB = ± 1 is the alternating symbol, and K is an arbi
trary scalar superpotential. 

Taking account of the fact that h AB has determinant 
unity, we find 

h AB = p-f'K AB' 

p' = f 4det(K,AB)' 

The function OJ can now be determined from Eq. (2.6): 

p-f'h ABW,A = ~cap 

OJ.A = pf - 2h ABEH2, 

=K,lA' 

OJ = K,l + const. 

(3,5) 

(3.6) 

The constant can be removed by a coordinate transfor
mation of the form l-t + a¢. Thus, we take 

OJ=K,l' (3.7) 

To obtain this simple relation between K and OJ was why we 
chose to start with the field equations in the Ernst form, Eq. 
(2.7), rather than the original version, Eq. (2.2) (for which a 
superpotential could also be defined), 

From the remaining field equations we find 
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V'p =0, 

VAVBP -P,dy,At5~ + y,nt5; - y,jlCDiiAB ] 

- pF'[fA/B + a,Aa,B - hAtiiCD 

X (/C/D + a,cfl,D)/2]/2, (3,8) 

where V is the covariant derivative for the metric hAB . 

Summarizing our results to this point, we have 

ds2 = f(dt + K,ld¢)2 - j-l [e2riiAnd~dxB + p 2d¢ 2], (3.9) 

where 

f ' - Xl (')2 h- - A -IK - - x, AB - 41 .AB' 

..:1 detll'(K,AB)' p = ..:1f'. 

The remaining field equation is 

V'p=O, 

and Y is determined by Eq. (3.8). 

IV. DISCUSSION 

(3.10) 

(3.11 ) 

(3.12) 

Our main result is the pair of equations (3.11) and 
(3.12). Written out in detail, they are 

..:1 2 = K,llK,22 - (K,12)" 

RK.ll + 2SK,12 + TK,22 = 0, 

R = 2 [/'(lu..:1 ) 2] 2 - 4, 

S = [/'(lu..:1), d ,2 + [/'(1u..:1 ),2],1> 

T= 2fP(ln..:1),1 1.1' 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

If all of these are combined, one nonlinear fourth-order 
equation will result. An alternative method is to try to solve 
Eqs. (4.1) and (4.2) simultaneously. For example, if..:1 is as
sumed to be a"known" function of Xl and x', then Eqs. (4.1) 
and (4.2) are an overdetermined system of equations for the 
unknown function K. The equations are then two examples 
of the Monge-Ampere differential equation. 

The general Monge-Ampere equation has the form 

U [K,IIK,22 - (K. 12),] + RK,ll + 2SK,12 + TK,22 + V = 0, 

(4.6) 

where U,R,S,T, and V are all specified functions of 
xl,xZ,K,K,l ' and K,2 . This equation plays an important and 
distinguished role in the classical theory of partial differen
tial equations. In the method of characteristics, for example, 
a general nonlinear second-order partial differential equa
tions may be reduced to an equivalent set of eight ordinary 
differential equations.,·6 The Monge-Ampere equation re
quires only five such equations in its characteristic set. For a 
further discussion of its exceptional nature, see Forsyth,' 
Previous applications of Monge-Ampere equations have oc
curred in differential geometry7 and nonlinear elasticity.8 
Our case is a relatively simple one if we make the assumption 
that..:1(x l ,x') is known, since all the coefficients U,R,S,T, and 
Vfor Eq. (4.1) are then only functions of xl,x', and Eq. (4.2) 
regarded as an equation for K is actually linear. 

We should make some further remarks at this point on 
the origin ofEq. (3.12). This equation was used originally in 
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the reduction of the metric to its canonical form. Eq. (2.1), as 
a necessary condition to insure the existence of the coordi
natep. In canonical coordinates it is therefore satisfied iden
tically. However, when noncanonical coordinates are used, 
it must be explicitly retained as a field equation 

For example, Hoffman9 has considered the case when 
p = po is constant, and therefore cannot be used as one of the 
coordinates. It is easy to show that the solution of Eqs. (4.1) 
and (4.2) in this case is 

p=po (4.7) 

and that this is equivalent to Hoffman'S solution. 

As another example, we have found the superpotential 
for the Kerr solution to be 

K = - a[IJ 2 + (1 -/)2] - (4m 2IJ 21a)[IJ 2 + (1 _/)2]-1. 

(4.8) 

We will use it to illustrate the difficulties mentioned earlier 
that one encounters in the static limit. Taking the limit a-o 
With/, f) held fixed, we find thatK and all its derivatives tend 
to infinity. 

The obvious source of the trouble is that in the standard 
description IJ itselfis proportional to a. In the static limit the 
entire solution actually concentrates itself in a "boundary 
layer" along the coordinate line {) = O. We can therefore 
treat solutions with slow rotation by rescaling the twist 
potential, 

t1={)la, (4.9) 

and taking the limit with/, iJ held fixed. To keep all quanti
ties finite, it is necessary at the same time to rescale 

K=Kla, .1= aLl. (4.10) 

When this limit is applied to Eqs. (4.1)-(4.5) the equations 
which result are unchanged in form, with only one excep
tion. In the rescaled set, 

R = 2rJ20tu1) -] -.2 .2 (4.11 ) 

lacks the second term. 

V. THE CASE 4 = CONSTANT 

We now consider in detail the solution of Eqs. (4.1)
(4.5) for the particular case Ll = constant. The coefficients 
are readily found to be 

R = - 4, S = T = O. 

Then Eq. (4.2) reduces to 

K.ll =0. (5.1) 

Letting (XI,Xl) = (x,y) for convenience, the general solution 
of Eq. (5. I) is 

K=ax+b, (5.2) 

where a ,b are arbitrary functions of y. Using this result in Eq. 
(4.1) we find 

Lll = - (a'y (5.3) 

where the prime denotes differentiation with respect to y. 
This equation has no real solution except the trivial one 
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7 = Ll = O. We therefore look for possible transformations 
to alter the reality of some of our variables. 

Consider the complex coordinate transformation 1 

t = ip, P = it, t/> = i~. (S.4) 

In canonical coordinates the metric becomes 

ds2 =F1e2Y(di2 
- dz2

) - /(dp + (J}d~)2 - F l i 2dJ2, (5.5) 

where/, {J}, r are functions only of z, i, and r = r + itrl2. 
Physically the metric represents waves propagating in both 
directions along the z axis. 

The line element in the form we use, Eq. (3.9), becomes 

(5.6) 

where all hats have been dropped for convenience. The 2-
metric iiAB is now one with an indefinite signature, 

det(hAB ) = - I. 

After the transformation is performed, Eq. (5.3) becomes 

- Ll2 = - (a')2, 

with the solution 

a = ± yLl + /3, /3 = const. 

The superpotential K is then 

K = ± xyLl + f3x + b (y-). 

Using the gauge transformation 

K -K + Axl + Bx2 + C, p-.p + LltjJ, 

we can set /3 = O. The reflection 

y--y, b(y)_b( -y), 

(5.7) 

(5.8) 

(5.9) 

permits us to choose the ambiguous sign in K to be positive 
without loss of generality, and a rescaling, 

t/>-Llt/>, (S.lO) 

allows us to set J = 1. In terms of the function 

(5. I 1) 

the complete solution for the case Ll = constant is given by 

ds2 = - I(dp + ydt/> )2 - FI (e2Y(2dxdy + Bdy2) + /4d¢> 2 J, 
(5.12) 

where 

12 =x _ y2 (5.13) 

r= In(f2) + In(B+4y) _ J[B(Y) +4y]-1 dy. 
16 2 2 

(5.14) 

Note that the coordinatey actuaHy turns out to be a null 
coordinate, sinceg22 = O. From Eq. (5.14), we cannot permit 
B (y) + 4y=0. Other than this restriction, B (y) is an arbi
trary function of the null coordinate y, and so our solution 
has the appearance of a wave of arbitrary profile. 

The situation is somewhat clearer when we return to 
canonical coordinates. The metric is then 
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ds2 = f- le2Y(dt 2 _ dz2) - f(dp + Hd¢> )2 - Fit 2d¢> 2, 
(5.15) 

where 

f2 = t, (5.16) 

r= In~2) - f[HI(U)]2~U, (5.17) 

and H (u) is the arbitrary function. The coordinate transfor
mation from (x,y) to (z,t) is given by Eqs. (5.13), (5.16), and 
by 

u = f[B(v) + 4y]dy =Z - t. (5.18) 
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A relativistic Lee modela) 

Bernard M. de Dormale 
Department de Physique-Mathematiques, Universite de Moncton, Moncton, N.B.,Canada 
(Received 4 August 1978; revised manuscript received 5 December 1978) 

We construct a fully relativistic version of the Lee model in the S(I,I) sector. 

1. INTRODUCTION 

One of the main problems of relativistic quantum the
ory has always been the complete lack of well-defined rela
tivistic models exhibiting nontrivial phenomena as particle 
creation and annihilation. The attempts to provide such 
models have only succeeded in two- or three-dimensional 
theories, and the way those models are constructed is ex
tremely involved (see, e.g., Ref. 1). On the other hand, there 
exists quite simple models of quantum field theory, like the 
Lee model,2 which are easy to handle, but are not relativistic. 

The aim of this paper is to present a modified version of 
the Lee model which is both relativistic and simple (finite 
renormalization, etc.). The construction of this model fol
lows ideas introduced several years ago by Coester3 and oth
ers (see, e.g., Ref. 4 and references therein). 

2. STRUCTURE OF UNITARY 
REPRESENTATIONS OF THE POINCARE 
GROUP 

As it is well known,5 every irreducible unitary represen
tation (IUR) U mJ of the Poincare group g; with m > ° and 
2jEN can be realized as acting in ;!r mi = L 2(R3) ® C 2j + I in 
the following way: 

(U(A,a)1f/ )a(P) = (Wp./Wp)1I2 exp[i(wpao - p-a)] 

x IPa'a(R (A ,p»If/a,(P'), (1) 
a' 

where 
p' = (wp"p') = A -'p, P = (wp,p),wp = (p2 + m2)'I2, (2) 

D being the (2j + I)-dimensional IUR ofSU(2) and R, a 
rotation depending on A and p, 

It is also well known that every unitary representation 
(UR) U of .0/ in a Hilbert space ;!r can be decomposed in a 
direct integral of IUR, 

U(A,a) = I'll UmJ,~(A,a) df-l, 

with corresponding decomposition of ;!r, 

eW' = J'" ;!r mJ,; d{l, 

(3) 

(4) 

where; is a variable used to label the different representa-

alWork supported by a grant of the C.N,R.C. 

tions with same m andj (i.e" ;!r mJ,; = ;!rmJ and 
UrnJ,;= Urn). Now, form>O, 

/Jr mJ,; = L 2(R3
) ® V mJ,~' VmJ,; = e2i + 1. (5) 

Thus, ifO is not an eigenvalue of the mass operator M of U, 
one has6 

;!r = L 2(RJ) ® f'" VmJ,; df-l = L Z(R3) ®;!re.m (6) 

We shall call ;!re.m. the "center of mass" space. 

Let us now make some remarks about the decomposi
tion (6): 

(i) The generators of the translations (momentum) P 
acts in the first factor of the tensor product (6), i.e., its com
ponents can be written as Pj ® 1. 

(ii) The mass operator acts in the second factor ;!re.m., 
i.e" is of the form I ® M. 

(iii) If we restrict U to the rotation subgroup, one has 

(7) 

With U, acting in L 2(R3) in the usual way, while the action of 
U2 in ;!re.m., leaves M invariant; Uz can be decomposed in 
direct integral ofIUR ofSU(2) acting in VrnJ,{;' 

We are thus in a situation analogous to the usual Gali
lean decomposition in total momentum and center of mass 
system, M playing here the role of the internal energy, But 
the relativistic situation is more involved since one cannot 
decompose U as a tensor product (this decomposition is val
id for the Euclidian subgroup only). 

The most interesting feature about the decomposition 
(6) is that the representation U is completely determined by 
U2 and M. As a matter of fact, we have the following: 

Theorem: Let U2 be any UR ofSU(2) in a Hilbert space 
;!re.m, and let M be a self-adjoint operator invariant under 
U2 such that <cfJ,McfJ > > 0, 'i/cfJEDM' cfJ=I=0. Then, there ex
ists a unique UR U of g; on L 2(R3) ® ;!re.m., such that: 

(i) When restricted to the Euclidean subgroup, U can be 
decomposed as a tensor product 

U (R,a) = U,(R,a) ® U2(R ); (8) 

(ii) the mass operator of U is I ® M, 

Proof Mbeing invariant under U2, we have a decompo
sition of ~c.m. as a direct integral 

~cm = J" VmJ,; d{l, 

such that 

(9) 
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M= f'l> m dfJ- (10) 

with fJ-O 0 j) = 0, while U2 decomposes in a direct integral of 
IUR ofSU(2) in VmJ.~. We can use formulas (1) and (2) to 
define on L 2(R3

) ® V mJ,~ an IUR. U mJ,t of 9 and 

U = f"' U mJ.~ dfJ- (11) 

will be a UR of 9 on 

L '(R3) ® cWcrn. = f"' L 2(R3) ® V mJ.~ dfJ-. (12) 

It is then trivial to show that U has the claimed properties; 
unicity is immediate too. 

This theorem will enable us to construct very easily rel
ativistic models, since the problem reduces to the construc
tion of a rotation invariant mass operator in cWe.m .' 

The most natural way to do it is first to start with free 
particles and then to introduce an interaction, that is, 

(i) to take a free representation Uo of 9 in the Fock 
space of one or several massive particles, then to restrict Uo 

to the subspace cW orthogonal to the vacuum, 

(ii) to achieve the decomposition cW = L '(R3) ® cWe.m . 

and to compute the free mass operator Mo in cWe.m.' 

(iii) to add to Mo a rotation invariant perturbation M J to 
obtain the total mass operator M = Mo + M J . Of course, M 
has to be a positive self-adjoint operator in cWe.m ., 

We shall see an example of such a construction in the 
next section. 

3. COVARIANT LEE MODEL: BASIC 
INTERACTION 

As in the original model,3 we want to introduce a model 
where three scalar bosons, called, N, (), and V, interact ac
cording to the following scheme: 

N + ()+---+V. (13) 

Let c"7 be the Fock space obtained by tensoring IUR of 9 
corresponding to the respective masses m h m2, and m3 of the 
N, the () and the V (of course, the tensor products have to be 
symmetrized in the proper way; this will be tacitly assumed 
in the following). The usual creators and annihilators will be 
written as N *(p), N (P), () *(p), etc. They satisfy the canonical 
commutation relations. Let us define 

N, = f N*(p)N(p) dp + f V*(p)V(p) dp, 

(14) 

N, = f () *(p)() (p) dp + f V*(p)V(p) dp, 

and the (n ltn2) sector S (n hn2) will be the common eigenspace 
of N, and N2 corresponding to eigenvalues n l and n2• 

We have know to introduce our representation U of 9 . 
Because of the form of the interaction (13), each sector will 
be invariant under U, so that it is sufficient to define U in 
S (n "n,) for each pair of values (n "n2)' Let us start with 
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(15) 

The first space occurring in S( 1,1) is the space of one V state 
while the second is the space of one N and one () state. Let us 
represent such a state by the square integrable function 
1/1 (PhP2), where PI is the momentum of the Nand P" the 
momentum of the (). If we define 

ill = (pi + m~)I12, il2 = (p~ + m~)I12, 
(16) 

P = PI + P2, il = ill + il 2, 

then the restriction of the free mass operator to S( 1,1) will be 
given by 

(17) 

where 

(J) = (il 2 - p2)'12. (18) 

Let us now make in L 2(R6
) the change of variables 

(PI,P2)-(P ,q), (19) 

where 

is the momentum of the N in the c.m. frame of the N-() 
system. The inverse transformation is given by' 

(J)I n - (J) (P P PI = - P + q + -- oq) , 
(J) pl(J) 

(J), n - (J) (P ) P p, = - P - q - --- oq , 
(J) P'(J) 

(J)I = (q' + mf)I12, (J), = (q' + m~)l12, 
and the Jacobian of the transformation can be easily 
computed: 

J = I J(PItP,) I = ~ {lIn, . 
J(p,q) n (J)I(J), 

The transformation W defined by 

1/I'(P,q) = (WI/I)(P,q) =JII2I/1(P"P2) 

is a unitary operator 

W: L '(R6) __ L 2(R3) ® L '(R3). 

We thus have an isomorphism 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Since (J) = (J)I + (J), is a function of q, this isomorphism clear
ly achieves the decomposition 

S(l, 1) = L '(R3) ® Scm (1,1). (27) 

We have now to introduce an interaction term M/. Let us 
write it symbolically as 

M/=)., f V*(P)q?(q)N()(P,q)dPdq + h.c.; 

in terms ofpt and P2, we shall have 
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M1=Af V*(Pl + PZ) 

XqJ ( ~ [illPl - il1pz + ~~ PX(PIXPZ)]) 

(29) 

Thus, the total mass operator in Sc.m.(1, 1) will be defined on 
'/I = '/II Ell '/Il( q) by 

M'/I = [ m 3'/11 + A J qJ (q') '/Iz( q') dq' ] 

(30) 

Since <u(q):>ml + m z, it is clear that ('/I,M'/I > > ° if '/1=1=0 
provided A IlqJliz < min(ml + m2Jm3)' Moreover, H[ is 
bounded so that M will be self-adjoint. According to the 
theorem of the preceding section, M is thus the mass opera
tor of a representation U of q; in S(1, 1). 

We are now able to solve the "one-body problem": Let 
us suppose that m3 < m 1 + m z. Mo has then an isolated eigen
value and so will have M for sufficiently small A because M[ 
is bounded. 7 Ifwe call this eigenvalue m'" we shall then have 
m'l < m 1 + mz and we can check that 

m'l=ml+AlJ /qJ(q)/2 dq<mJ 
m'J - w(q) 

while the corresponding eigenvector is 

f/> = Z,,\ [1 Ell , qJ(q) ] 
m J -w(q) 

with 

Z~ = 1 + f IqJ(q)/2 dq. 
[m'3 - <u(q)f 

(31) 

(32) 

(33) 

As in the corresponding Galilean model,8 it is possible 
to compute generalized eigenvectors f/> q* such that 

M f/> qt- = <u(q') f/> q*' (34) 

f/> and! f/>,f I q'ER3 J being a complete set of generalized ei
genvectors. It is then possible to prove that M is unitarily 
isomorphic to the mass operator 

M'=m 3E1lw (35) 

of a direct sum of two free representations, the first one cor
responding to a mass m3 and the other one to masses m 1 and 

m 1• 

4. INTERACTION IN HIGHER SECTORS 

We would now have to define an interaction in the high
er sectors. Unfortunately, the work of Mutze4 proves that 
this cannot be achieved in any reasonable way using our kind 
of approach. The problem is the next one: Suppose that we 
want to define the interaction in9 

S(2, 1) = S(1, 1) ® L Z(R J), (36) 

i.e., the space of two N - 1 0 or one N - 1 V states. The 
more natural way to do it is 
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(i) First suppose that there is no interaction between the 
supplementary N and the rest of the system and compute the 
mass operator corresponding to the previous interaction in 
S(l,I) plus a free N. 

(ii) Then perform some kind of symmetrization on this 
mass operator to take the interaction with this N into 
account. 

But Mutze has proved that if we achieve the 
decomposition 

S(2, 1) = L l(R 3) ® Sc.rn. (2,1) (37) 

corresponding to free particles, the mass operator M" ob
tained in step (i) cannot be tensorized in the same way unless 
the S matrix in S( 1,1) is the identity operator. Of course, M " 
will be a mass operator since it corresponds to the tensor 
product (36) of two representations of P, but we are unable to 
tell if the operator we shall obtain in step (ii) will be the mass 
operator of some representation of P. Even worse, if there 
was both more than one N and one 0, there would be no 
cannonical way to perform the operation described in step 
(ii). 

It seems thus that the problem of interaction in higher 
sectors cannot be given a satisfactory answer at the present 
stage. 

5. CONCLUSION 

Even if we were unable to extend the interaction to 
higher sectors, we have at least succeeded in defining a truly 
relativistic Lee model in S(1, 1) and this has been achieved in 
a particularly simple way. 

The asymptotic theory of this model is, of course, very 
limited. Nevertheless, it seems to us that it deserves to be 
carefully studied, since it is the first time that objects like 
Feynmann diagrams, etc., could be computed in a nontrivial 
relativistic model with finite renormalization. 
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Dirac equations with fourth order self-couplings are investigated in one time and three 
space dimensions. Both stringlike and ball-like soliton solutions carrying nontopological 
quantum numbers are shown to exist, depending on the symmetries taken into account. 
The energies (per unit length) of stringlike solutions turn out to be always smaller than 
those of plane wave solutions. For ball-like solutions, it is shown that the region of 
values of the non topological quantum numbers exists in which the total energies of 
solitons are smaller than those of plane waves. 

1. INTRODUCTION 

Soliton solutions of nonlinear field equations have been 
studied in detail in the last few years. 1 They have finite spa
tial extensions and finite energies and are regarded as candi
dates for models of elementary particles. These soliton solu
tions are classified into two categories: topological and 
nontopological solitons.z,} The stability of topological soli
tons is expected to some degree from their topological quan
tum numbers, while U(1) charges play an important role for 
the stability of non topological solitons. We investigate non
topological solitons in this article. 

Models are given by Lagrangians (1.1) or (3.1), which 
describe systems of self-interacting Dirac spinors. The 
space-time is four-dimensional. Analogous models in one 
time and one space dimension have already been studied' 
and exact solutions are known. Also, in four-dimensional 
space-time, exact solutions can be obtained by introducing a 
peculiar interaction. s In the present case, however, we shall 
have recourse to computer calculations at the final step of 
the investigation. 

We start our discussions by considering plane wave so
lutions for the model 

5e 1 = ¢(io - m)¢ + gZ (¢¢)2, 
2 

(1.1) 

where ¢ is a four component Dirac spinoe Throughout this 
paper we are concerned with the case in which the force is 
attractive (i.e., gZ > 0) when ¢ is regarded as a quantized Fer
mi field. The equation of motion is 

(iiJ - m)¢ + gZ(ij,¢)¢ = o. 
The energy and charge density are given by 

cyp .7.( . i a ).,. g2 (.7..,,)2 
eN ! = 'I' - ly-. + m 'I' - - '1''1' , 

aX' 2 
p = ¢t¢. 

The lowest energy plane wave of the form 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

where u and v are constant two component spinors, satisfies 

(1.2) if 

t m-{j) 
u u = --z-, V = O. 

g 
(1.6) 

Here we have confined the whole system into a large cube of 
volume 11 and imposed the periodic boundary condition. 
The total energy and the total charge are given by 

m -(j) 
Q=pfl=--fl. 

g2 

(1.7) 

(1.8) 

Fixing Q and taking the limit 11---+ 00 , we obtain the expected 
result 

E=Qm. (1.9) 

Thus, for a given Q, the energy of a stable soliton must be 
smaller than Qm. 

In Sec. 2, we shall see that there exist stringlike solu
tions for the U(1) invariant model (1.1). Given a charge Q 
per unit length along the string, the energy per unit length is 
always smaller than Qm. In Sec. 3, ball-like solutions with 
finite spatial extensions in the three-dimensional space are 
found. The associated group is SO(3). Computer calcula
tions in Sec. 4 show that there is a region of Q in which the 
energies of solitons are smaller than Qm. 

2. STRINGLIKE SOLUTIONS 
A. Equation of motion 

In this section we solve Eq. (1.2) and seek cylindrically 
symmetric solutions, whose axis lies along the Xl direction, 
under the ansatz 

¢(p,t) = e - ivmt + in~(i~ !/J,(p) + ¢2(p»). 

2 2 
i= - I y'x i = I y'x i, (2.1) 

i= 1 i= 1 

where v is a real number whose sign we set to be positive. cp is 
the azimuthal angle around the Xl axis. In order that ¢ is 
single-valued, n must be an integer. p is the distance from the 
Xl axis:p = (xi + XDIIZ. ¢, and ¢2 are real functions ofp only. 
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For r matrices, we adopt the notation of Bjork en and Orell.6 

One may recognize that the appearance of the phase factor 
expin¢ in (2.5) is similar to the situation for the Higgs field in 
the Ginzburg-Landau type equation studied by Nielsen and 
Olesen. 2 However, we are interested in solutions which van
ish at infinity so that no topological quantum number will 
emerge. 

The substitution of (2.1) in Eq. (1.2) gives a complex 
coupled equation in 1/11 and 1/12' However, if 1/11 and 1/12 are 
eigenfunctions ofY' with the same eigenvalue, - P, Eq. (1.2) 
reduces to a simpler form owing to the equalities ¢ktl/11 = O. 
In fact, requiring the coefficients of expi( - vmt + n¢ ) and 
expi( - vm t + n¢ );1 in Eq. (1.2) to vanish independen tly, we 
obtain a set of equations 

~1/11 + ~1 + n~,)r/JI - m(l + VP)1/12 + g2(¢r/J)r/J2 = 0, 

dp P (2.2) 

~r/J2 - !!..~;tP2 - m(l - VP)tPI + g2(¢tP)tPI = O. (2.3) 
dp p 

Here.I, = (i/2)[y1 ,r2] and ¢tP = - ¢ltPI + ¢2r/J2' 

The simultaneous presence of the second tenns of (2.2) 
and (2.3) will, in general, hinder us from finding a solution 
nonsingular atp = 0 and nondivergent atp = 00. Therefore, 
we have to impose as a condition either n.I,tPI = - tPI or 
n = O. Since we see that the interchange of conditions 
! n.I, = - I,P l+--+! n = 0, - P I simply means the inter
change of tPI and tP2, it is sufficient to treat the case 
n.IJ = - 1 for both P = + 1 and P = - 1. For definite
ness, we set n = + 1. This means .I, = - 1 (note that tPI 
and tP2 must have the same eigenvalue of .IJ) and the fonns of 
tPk are 

tPI(P) = [ ~ ], 

f(p) 

for P = + 1, (2.4) 

¢,(p) ~ r~)l for P = - 1, (2.5) 

B. Special limit 

First, consider the case P = + I. Equations (2.2) and 
(2.3) can be rewritten in terms of/and has 

~/ - m(l + v)h + g2(f2 - h 2)h = 0, (2.6) 
dp 

~h + ~h - m(1 - v)f + g2(f2 - h 2) = O. (2.7) 
dp P 

Since it is not manifest whether or not these equations have 
nontrivial solutions, we investigate this point by adopting 
the tactics used in Ref. 3, i.e., we assume that solutions of 
Eqs. (2.6) and (2.7), if any, approach the plane wave solution 
as S = (m( 1 - V»II2-<J •. The following expansion in S turns 
out to be of much use for our purpose: 

/= Sa(r) + ... , 
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(2.8) 

where r=Y 2m Sp. Substituting (2.8) into (2.6), one finds 

da = (3, (2.9) 
d1' 

and from (2.7) 

d'{J 1 - + -(3 - a + g2a J = O. 
d1' l' 

(2.10) 

From (2.9) and (2.10), one obtains a differential equation for 
a, 

d 2a 1 da 2 J 0 --+---a+ga = . 
d1'2 l' dr 

(2.11) 

As mentioned in Ref. 3, Eq. (2.11) can be looked upon 
as describing the motion of a point particle in a potential 

1 2 v= _--a2 +~4, 
2 4 

(2.12) 

and under the action of a frictional force 

1 da 
Fj = ---. 

l' dr 

Soliton solution must satisfy the boundary conditions 

and 

da = 0, at l' = 0 
d1' 

a-<J, when 1'-00. 

(2.13) 

(2.14) 

Note that (2.13) together with (2.9) requires (3 to vanish at 
l' = 0 and assures the regularity of tP given by (2.1). (2.14) 
may be necessary for the sake of Lorentz in variance of the 
vacuum. 

An infinite number of solutions are known to exist, 
which are specified by the number of radial nodes. The solu
tion with the lowest energy (per unit length) has no radial 
nodes. The total energy per unit length of the soliton is the 
integration of the Hamiltonian density: 

(2.15) 
where Q is the total charge per unit length, 

(2.16) 

The second term on the right-hand side ofEq. (2.15) vanish
es identically. This can be seen in the following way. First, 
note that Eq. (2.10) is just the condition that the quantity A 
defined by 

A = rdr - - + --a2 
- !La-i "'" [ 1 (da)2 1 2] 

o 2 dr 2 4 
(2.17) 
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should be stationary under small variations of a, 

c5A = 0. 
c5a 

(2.18) 

Now, we scale a: a(r)-aPa(ar). Then (2.17) becomes 

A (a) = a2PK + a2p ~ 2Ll - a4p ~ 2L,. (2.19) 

K, L l , and L, are defined by 

K=- rdr-, 1 l'" (da)2 
2 0 dr 

Ll = ! rdra', L, = !L rdra'. 1'" , i'" 
o 4 0 

Since A (a) is stationary at a = 1, 

(2.20) 

Requiring (2.20) to hold for any p, we obtain the vi rial 
relation 

(2.21) 

Thus, the above statement is proved. At any rate, we see that 
E and Q approach definite quantities. It is these observations 
that motivate further numerical calculations in the region of 
finite 5. The results are given in Sec. 4. 

Finally, we coment on the case P = - 1. Equations 
(2.2) and (2.3) are rewritten as 

~f - mel - v)h + g'( - f' + h ')h = 0, (2.22) 
dp 

~h + ~h - m(l + v)f + g'( - f2 + h ')f = 0. (2.23) 
dp p 

For 5-+0., nontrivial solutions may be obtained from pre
sumptive expansions 

f=(52/V2m)a(r)+ ... , h=5{3(r)+ .... (2.24) 

The equations for a and {3 are 

da 
dr - {3 + g2{3 1 = 0, (2.25) 

d{3 + ~{3 - a = 0. (2.26) 
dr r 

A differential equation obtained from these equations is 

(2.27) 

(2.27) is analogous to (2.11) except for the third term in the 
left-hand side. However, the existence of this term is essen
tial. {3 (0) = 0 for the sake of regularity of the solutions. On 
the other hand, (d{3/ dr) I T = 0 need not vanish because singu
larities cancel each other in the combination 

~ d{3 -~{3. 
r dr r' 

Thus, a point particle starts from {3 = 0, the local maximum 
of the potential, with some initial velocity. It falls down and 
next proceeds to rise up the potential wall. After changing its 
direction of motion, it returns to (3 = 0 at r = 00 if the mag
nitude of the initial velocity is appropriate. This solution has 
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no nodes. The ones with nodes will appear if the initial veloc
ity is varied. For each solution, a(O) = 0 and a( 00 ) = 0. 
Contrary to the solutions for P = - l,Jis a small compo
nent of ¢ when 5 is small, as can be seen from (2.24). 

3. BALL-LIKE SOLUTIONS 

In this section we investigate a model which yields ball
like soliton solutions. Consider the model invariant under 
the group SO(3) as well as U(1), 

if, = Ir(itr - m)¢a + g2 (i[f~Y. (3.1) 
2 

The index a runs from 1 ~3 and the summation over repeated 
index is implied. The equation of motion is 

(3.2) 

The Hamiltonian density is 

$', = if/( - iY~ + m)¢a _ g2 (if/¢a),. (3.3) 
ax' 2 

Although we have seen that (3.2) will have stringlike 
solutions if two of ¢ a identically vanish, we seek another 
type of solution by setting up an ansatz 

X xax) + iy"-¢)(r) - -¢.(r) . 
r r (3.4) 

Here X - 2~ ~ I ]lxi. ¢k (k = 1 ~ 4) are assumed to be real 
functions of r only, r = (xi + x~ + X~)ll2. V is again a real 
positive parameter. We further assume that all ¢k have the 
same eigenvalue, - P, of 1'" for the reason mentioned in Sec. 
2. After substituting (3.4) into the left-hand side of (3.2), we 
set terms proportional to y", x a

, y"x, and x ax equal to zero, 
respectively. Then we obtain a set of equations: 

~¢, - ~¢4 - m(l - vP)¢) + g2(rfa¢a)¢, = 0, (3.5) 
dr r 

~¢, + ~ !!.-¢4 + ~¢4 - m(l - vP)¢, + g'(/fa¢a)¢, = 0, 
dr 2 dr 2r 

(3.6) 

~¢J + ~¢, - m(1 + vP)¢, + g'(/fa¢G)¢, = 0, 
dr r 

(3.7) 

~¢, - !!.-¢] - J..-¢l + ~¢l + m (1 + vP )¢, 
dr dr r r 2 

- -; (/fa¢u)¢. = 0, (3.8) 

where 

Although these equations are rather complicated to solve 
in a general way, we can simplify them greatly if we deal with 
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the case in which tP4 does vanish. Then, from (3.8), toghether 
with the boundary conditions tPz = tPJ = 0 at r = 00, we have 

tPJ = tPz, when tP4 = O. (3.9) 

From (3.9), we immediately recognize that Eqs. (3.5) and 
(3.6) become identical. In the end, two equations remain: 

d --tPl - m(l + VP)tP2 + g2(I/f'I/f')tPz = 0, 
dr 

(3.10) 

~tP2 + J:...tP2 - mel - VP)tPl + g2(/iI'tP°)tPl = 0, (3.11) 
dr r 

where ¢atP° = - ¢JtPl + ¢ZtP2' 

One may see that these equations resemble (2.2) and 
(2.3) with IJtPl = - tPl' The only difference is that the coef
ficient of tP2!r in (3.11) is double that in (2.7). Of course, this 
is a reflection of the difference of the effective dimension of 
space. By an method similar to that presented in Sec. 2 B, we 
see the possibility of the existence of soliton solutions, whose 
total energy and total charge now diverge as m(1 ± vP)= 
t 2--+0. These observations will be ..:onfirmed in Sec. 4 by nu
merical calculations. 

Before closing this section, let us consider the total an
gular momentum of the system 

M, and !I; are the orbital and spin angular-momentum op
erator, respectively. With the form (2.4) for tPl and tP2, we can 
show by straightforward calculations, 

(3.13) 

where Q is the total U(1) charge Sd)x tP at tP o. Now, the Som

merfeld's quantum condition is expressed in terms of tP° and 
its canonically conjugate momentum 1f' = itPut as 

f>dt stands for the integration over one period of time 
21T/vm. no is an integer. On the other hand, since we can also 
show for our soliton solution that n1 = n2 = n), (3.14) and 
(3.13) mean that Q = 3n (nis an integer) and that the magni
tude of the total angular momentum will take values ofinte
ger or half-integer. 

4. NUMERICAL CALCULATIONS 

We first solve equations which correspond to P = + 1. 
The case of P = - 1 can be treated in an analogous way 
mentioned below. 

A. String like solutions 

Equations to be solved are (2.6) and (2.7). The following 
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redefinition of variables is convenient: 

Equations (2.6) and (2.7) become 

~F - (l + v)H + (P - H 2)H = 0, 
dz 

~H + J....H - (1- v)F+ (F2 _H2)F= O. 
dz z 

The energy and charge per unit length are 

(4.l) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Note that Eqs. (4.2) and (4.3) can be derived from the vari
ational principle 8L, = 0 with v fixed, where 

1T l"" (dH dF 1 2 Ls=- zdz F--H-+-FH-(I-v)F 
gZo dz dz z 

(4.6) 

10 

5 

05 1.0 

FIG. I. E,=.(g'/rr)E, and Q,=.(mg'/rr)Q, for solutions of (2.6) and (2.7) 
(p= + I). 
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2! 

I 

- ___ 09 

_'--- ________________ 1 ______ ~ __ " _____ ~ __ ~ _____ _ 

° 1 2 3 X 4 

FIG. 2. (a) (g'/m),p \band (b)(g'/m)~,pforv = 0.5,0.7, and 0.9 (P = + I). 

By the same argument used in deriving (2.21), we have the 
virial relation 

K (5) = - 2 V~'l, V~S) = 0, 

where 

K (s) =!!..- ('xc ZdZ(F dH _ H dF + J.-.FH ), 
g2 Jo dz dz Z 

Thus, the energy (4.4) is expressed as 

(4.7) 

(4.8) 

Now, in solving Eqs. (4.2) and (4.3), we seek solutions 
which have no radial node. We start with an initial value of F 
at Z = 0 and investigate numerically whether F and H ap
proach zero at large Z or not. If they do and (4.7) is satisfied 
simultaneously with appropriate precision, we adopt them 
as solutions. Calculations were performed by the Runge
Kutta method with precision of about 10-4

• In Fig. 1, we 
/'0. '" 

show the behaviors of Es=(g2/1T)Es and Qs=(g2/1T)mQs vs. 
A A A""'" 

v. In the region v < 1, Es < Qs' and both Es and Qs ap-
proach the same value as v.-?1, as expected, which implies 
that our solutions have lower energies than that of plane 
wave solutions once Qs is fixed. We illustrate (m/g2)1/1 ttP and 
(m/g2)¢tP for some values of v in Fig. 2 (a) and (b). It is 
interesting to note that tP t tP has a peripheral structure for 
small v while ¢tP is always central. For large v, the quantities 
1/1 t 1/1 and ¢1/1 have similar behaviors. 
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B. Ball-like solutions 
The equations to be solved are (3.10) and (3.11). We 

again restrict ourselves to the case P = + 1. Furthermore, 
we can choose tPl and tP2 to be eigenfunctions of say,.IJ 

I.I; = (i/2)~jk [yj,y"] l due to the invariance of (3.10) and 
(3.11) under the operation exp(i/2)wl; on tPk' Let us set 
.I,tPk = tP k' Then tPk are expressed in a similar manner to 
(2.4). 

After changing variables 

z=mr, F= g f, H= g h. 
Ym Ym 

Equations (3.10) and (3.11) become 

d 
-F - (1 + v)H + (P - H 2)H = 0, 
dz 

d 2 
-H +-H - (1- v)F+ (F2 _H2)F=0. 
dz z 

The energy and charge are 

(4.9) 

(4.10) 

(4.11) 

i
oo 

41T i oo 
(dF dH 2 EB = 41T rdr?t'2 = -- z2dz H- - F- --F 

o mg2 
0 dz dz z 

(4.12) 

1 l j 
0.5 10 

/; 

FIG. 3. En=(mg'/61T)EB and Qn=(m'g'/61T)Qnforsolutionsof(3.1O) and 
(3.II)(P= + I). 
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r

·-- -_ .. -- ----.----~----.-.---~~- - , 
(0) 

v = 0.5 

,------_._---------- --~---~--.----~-~ 

I (b) 1 

~, o . ..----- -- - -- 2 . 3 4 

:x: 

FIG. 4. (a) (g'/3m)¢at¢d and (b) (g'/3m)¢al/f' fOT v = 0.5, 0.7, and 0.9 
(P= + I). 

Q8 = 417" f'" rdn(l't¢a = 417" foo z2dz(F2 + H2). Jo m2g2 Jo 
(4.13) 

As in Sec. 4 A, it is useful to derive the virial relation for the 

r~-~~--'------T 

I 
3 i 

1 

2 

/ I 

I 

(0 ) 

4 5 6 7 

r----~-----~~~-~~T"-\ 

I 11=0.5 
I 

/ I (b) 

I 

o 2 3 4 5 6 7 
:x: 

FIG. 5. E..:=(g'hr)E, and Q,:=(mg'/rr)Q, for solutions of(2.23) and (2.24) 
(p= - I). 
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r---~------- -- --- -- - ----l 

I Os I 

I - f, I 
/00 I . 

t\ ~ , 

50 ~ 

'~ 

'~ 

'or -, , 
L _.....L. __ ~ __ ...L..----L.._~ __ -'-I ---.J 

0.5 /.0 
/I 

FIG. 6. (a) (g'/m)¢ tl,band (b) (g'/m)¢¢for v = 0.5,0.7, andO.9 (P = - I). 

present case. The variational principle which produces 
(4.10) and (4.11) is 8L 8 = 0 with v fixed, where 

L8 = 217" foo Z2dZ(F dH _ H dF + l:..FH - (l - v)F2 
mg2 Jo dz dz z 

/00 

50 

/0 

Q. 
-- t. 

- .. --- ~l 

I 

I 
L-.~_~_~~ __ .L....._~ ___ .J 

0.5 /.0 

(4.14) 

FIG. 7. En:=(mg'/6rr)EB and On:=(m'g'/6rr)Qn for solutions of(3. 10) and 
(3.II)(P = - I). 
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2 

J 
0 2 :3 4 5 6 7 

x 

0.5 ( b) 

0 

0 2 :3 4 5 6 7 
X 

FIG. 8. (a) (g'/3m)l/I't¢" and (b) (g'/3m)¢Q¢" for v = 0.5, 0.7, and 0.9 
(p= - 1). 

Define 

K(B)= 2rr ("'Z'dz(p dH _HdP +2..PH ), 
mg' Jo dz dz z 

ViB) = 2rr (00 z'dz [ _ (1 _ v)P + (1 + v)H'], 
mg' Jo 

viB) =.l:!!...- f'>CO z'dz !(P _ H')'. 
mg' )0 

The following relation holds for these quantities: 

K(B)= -3viB), V\B) = ViB). (4.15) 
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Therefore, the energy (4.12) is related to QB by 

EB = vmQB + 2ViB). (4.16) 

The numerical calculations are performed in a similar 
way to that mentioned in Sxc. 4 A. The criterion is now 
(4.15). In Fig. 3 the curve E B (mg' /6rr)E B vs. v and the 
curve QB (m'g'/6rr)QB vs v are shown. They intersect at 
about v = 0.82. iB < QB for v < 0.82 and iB> QB for 
v> 0.82. These curves have minima and they occur at the 
same value of v, since (dEB/dv) = vm(dQB/dv).' From this 
result we recognize that soliton solutions for v < 0.82 are 
stable in the sense that their energies are smaller than that of 
plane wave solutions. The quantities if;at if;G and lifif;a are il
lustrated in Fig. 4 (a) and (b), respectively. if;Gt I/P has again a 
peripheral structure for small v, whereas ¢Gif;G is always 
central. 

The results of calculations for the case of P = - 1 are 
depicted in Figs. 5 and 6 (stringlike solutions), and Figs 7 
and 8 (ball-like solutions). Let us compare, as an example, 
Figs 3 and 7 fo;:. bal,klike solutions. W~ see that in the com
mon region ofQB (QB < 15,v<0.9),EB(P= -1)isalways 
larger than iB(p = + 1), which means solitons of P = - 1 
are unstable. We see also that a similar situation occurs for 
stringlike solutions. 
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Conserved densities for nonlinear evolution equations. I. 
Even order case 
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(Received 4 August 1978) 

This paper is a first attempt to analyze in detail the number and structure of nontrivial polynomial 
conserved densities for a nonlinear evolution equation u, = P, P an arbitrary polynomial in the spatial 
derivatives of u. Our attention is here focused on the even order case, where stronger conclusions can be 
derived. Several criteria for nonexistence of conserved densities are afforded. The coexistence of 
conserved densities is shown to severely restrict both the evolution equation and the functional structure of 
such densities. Finally for the case of second order equations the problem is completely worked out. 

I. INTRODUCTION 

The discovery of some amazing properties of the 
Korteweg-de Vries (KdV) equation, with the soliton phe
nomena on one side l and the existence of an infinite number 
of conserved densities on the other,2 has led to growing inter
est in the subject of the conservation laws for nonlinear par
tial differential equations, particularly of the evolution type. 
In a sense, the KdV equation seems rather exceptional; the 
simple consideration of the heat equation U r = U xx' for which 
the only nontrivial conserved density p(u,ux'''') is P = AU, 
leads one to suspect that the existence of infinitely many 
conserved polynomial quantities (with its physical implica
tions) is expectedly a peculiar situation. This feeling however 
bears more on the extraordinary soliton like properties of the 
KdV equation than on a profound knowledge of the role 
played by the conserved densities in the theory of nonlinear 
processes. A systematic analysis in that direction is still 
lacking. 

Most of the efforts devoted lately to this question have 
dealt with the relationship between conserved currents and 
in variance properties of the equations. The revival of Lie 
methods3 and their so called Lie-Backlund generalization' 
to include dependence of the transformations on derivatives 
has actually led to relevant results in this field. For instance, 
Ibragimov' has proved that any conserved current is noeth
erian for a suitable weak Larangian density. However this 
remarkable theorem does not seem useful enough from a 
practical viewpoint. For instance, the Lie in variance group 
of the KdV equation has only four parameters and yields 
four conservation laws. Even though the Ibragimov theorem 
and previous work by Kumei et a/. 6 guarantee that all KdV 
conserved currents in the Gardner et al. series2 can in princi
ple be obtained through the Lie-Backlund method, the actu
al calculation becomes too complicated with increasing or
der of derivatives to be efficient except for a few densities. 

To get further insight into the number and structure of 
the conserved densities for an evolution equation it might 
prove to be a natural path to attack frontally the problem. A 
previous analysis of the simplest situation, namely linear 
evolution equations, led us by means of the Gel'fand-DikiF 
algebraic algorithm to the exhaustive enumeration of all 
their polynomial conserved densities.8 This analysis revealed 

a striking difference between the odd and even cases, which 
suggests that we explore both instances separatedly. 

The aim of this paper is to analyze in some detail the 
question of polynomial conserved densities for general evo
lution equations of even order. In Sec. 11 we provide neces
sary conditions for the existence of conserved densities, 
which are strong enough to limit drastically our search, first 
to evolution equations linear in the leading derivative, and 
second, to conserved densities depending essentially on a 
small fixed number of spatial derivatives. Section 111 ana
lyzes in detail the remaining possibilites, and several criteria 
are given for nonexistence of conserved densities. The gener
al form of evolution equations which conserve a given densi
ty is afforded in Sec. IV, which incidentally shows that the 
bound on the order of derivatives found in Sec. II is optimal. 
In Sec. V we prove that the coexistence of two inequivalent 
conserved densities imposes severe restrictions not only on 
the evolution equation but also on the functional structure of 
two such densities. Finally the case of second-order equa
tions is completely analyzed in Sec. VI. 

Work on the odd-order evolution equations is in pro
gress and will be the subject of a forthcoming publication. 

A. Notation 

Given a real-valued function U = u(x,t ), x,tER, with 
partial derivatives U l JuIJx, ... ,uM=(JMuIJxM, we shall de
note by Y M the set of sufficiently smooth functions 
F(u,u!> ... ,uM ). Y will stand for the union u~ M' Given a 
polynomial PEY M, d (P) will stand for its degree in the vari
able uM . 

Similarly 

.Y'M={FEY M:Fu = JF =FO}, 
" JU M 

q" -{F q F - a2F --I-O} 
J M= EJ M: uwu ,,= Ju~ -:- . 

A function pEY N such that p(O,O, ... ,O) = 0, is called a con
served density for ur = F(u, ... ,uM), FEY M, ifPr 
=(d Idt )P=~jPupjF is a total derivative, i.e., if 
3QEY N _ 1 such thatpr = DQ. We shall write indistinctly 
(d Idx)f=Df It for any fEY. 
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Two conserved densitiesp,p are said to be equivalent, in 
symbolsp~p, whenever P - P is trivial, i.e.,p - p = QI> for 
some QEY. It is known thatp~p iff 

8p 8p 8_ 00 ·a 
- = -, where -= I (-IYDJ-. 
8u 8u 8u j~O aUj 

Henceforth, assertions concerning existence or nonex-
istence of conserved densities should be understood modulo 
trivial densities. A somewhat different convention will be 
used through Sec. V. 

Given u, = F, FEY, we shall write CN(F) for the set of 
its nontrivial polynomial conserved densities pEY;:', and 
C(F) = u~N(F). 

II. NONEXISTENCE OF CONSERVATION LAWS 
IN ARBITRARILY HIGH-ORDER DERIVATIVES 

Let us consider the generic (polynomial) evolution 
equation of even order M>2: 

u, = P( ... uM ) (1) 

with PEY ~ a polynomial in the variables 
U = u(x,t ), ... ,u M JMu/ axM. The aim of this section is to 
show that all conservedpEC N(P) for Eq. (1) can only depend 
on derivatives of fixed bounded order. This is the content of 
the next theorem, which makes a strong difference with the 
well-known behavior of the (third-order) KdVequation. 

Theorem l:pECN(P)=;.N <M /2 

Proof We must prove that every conservedpEY N' 

where N>M /2, is equivalent to somepEY N ~ 1 oflower or
der in the derivatives. First of all we observe that 

P ( I)MI2--N+j<p) p PU j j~ - u MI2~N+J N~MI2' 

Vj3N - M /2 <i<,N. 

Thus we have 

(2) 

Now ifp is to be conserved by (1), it is necessary that (2) equals 
a total derivative. Hence the derivative of maximal order in 
(2), i.e., UN + M /2> can only appear linearly. Therefore, the 
coefficient in (2) of u~ + M /2 must be zero, namely 
Pu,u,Pu" = O. So we concludepu,u" = 0 (by ,?ypothesis Pu " 

=1=0). Integrating by parts we can write p ~p ( .. ·u N ~ I)' 
(Q.E.D) 

A similar argument allows us to show that, generically 
speaking, equation (1) will not have any nontrivial conserva
tion law. Indeed, theexistenceofpECN(P), N <M /2, would 
require p,~(8p/8u)P to be a total derivative, let us say 

1240 

8p 
-P=QI> 
8u 
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(3) 

where QEY~~ I' sincepEY ~p/8uEY 2N' and 2N <M. 

If we compare the powers of u M in both members of (3) 
we arrive at the following conclusion: 

Theorem 2: Pu u =1= 0 =;. ~ (nontrivial) conservedp for 
" " (1). 

Therefore, in order to avoid the obstructions pointed 
out by these two theorems, we must restrict in the sequel our 

attention to those polynomials PEY~ - Y'M and to densi
titespECN(P) with N <M /2. 

It may be interesting to note that both theorems are 
optimal in the sense that there exist equations (1) conserving 
densities pECfI1 /2 _ I(P), and on the other hand one can ex
hibit examples of P linear in u M for which conserved densi
ties do really exist. For instance we will show later (Sec. IV) 
that the equation u, = (u' -+- 2u,)u. -+- (4u J + 1)(u J + uu 1) 

hasp = u7 - uJ /3 as a conserved density. 

III. SOME PRACTICAL CRITERIA FOR THE 
EXISTENCE OF CONSERVED DENSITIES 

Let us now analyze in some detail the case of equations 
(1) with P = a( ... uM _ I)UM + b (,,,u M ~ I)' with a,bEY M- I' 
We are primarily interested in deriving some simple neces
sary conditions on the form of P for the existence of a con
servedp( ... uN), N <M /2. 

As we already know, conservation of p implies the exis
tence ofQEY~_ 1 such that QtlP = 8p/8u. Since QtlPis in 
the range of the variational derivative, it must satisfy': 

K;,.(Ql/P) = 0, VAElR, 

where 

K;,. f [A j 
- (- I)1(D + A Yla u/ 

j ~~ 0 

(4) 

But as 8p/8u depends only on u, .. ·,uM ~ 2 the summation in 
K;,. (8p/8u) will run fromj = 0 toj = M - 2. A trivial calcu
lation yields 

K (Ql)=AM.-3[2a -(M-2)Da 1 Ql ;,. P u" , U" 1 P 

+ O(A M .4). 

Thus we derive the following necessary conditions on 
j(· .. uM _ 2) Ql/P = 8p/8u: 

(5) 

/u" = 0 =;. Qu" ,= af, (6) 

/u" ,=O=>Qu w ,=fPu" ,-(a/)I> (7) 

2/u" 3 = (M _. 2)D/u" ,. (8) 

If we differentiate (7) with respect to u M ~ l' we get 

fPu" ,u" ,= 2(jaL" z + (ja UM )1' (9) 

Finally from (8) it follows that 

(~ - 1) [P(Qu" ), - P1(Qu" )1 - P1Qu", 
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+ P(Qu" )1 - PU" ,Q2 - Ql(PU\1 )1 + 2jP1PU\1 ,] 

= P(Qu" )1 + PQu" • - Q1PU " ,. (10) 

The coefficient of u M + 1 in both sides of equation (10) repro
duces (9). To obtain new information we look at the coeffi
cient of u:tr, which gives the condition: 

au" ,[/au " l - a/u " ,J =/aau " ,u" " (11) 

Another useful piece of information can be obtained by reex
pressing P in the form 

P=auM +b=A1 +B, (12) 

where A =S~" 'a dUM _ 1 and B -P - AI' Clearly A, Bare 
polynomials in U'''''UM _ I' With this notation we have 

p, ~ fJp p ~ bp B _ ( op ) A. 
fJu fJu ou 1 

(13) 

Writing out the conservation condition for p, i.e, fJp,lou 
= 0, the vanishing of the coefficient of U 2M _ 21eads to 

(1 fJp) B u" ,u" , '" ( ) n - = , v p "·U M /2 _ 2 . 

au I Au u JU" I 

(14) 

An alternative formulation of the conservation of p in this 
context is to require 

( iu )B - ( ~~ }A = Ql' Q (,,,uM -- 2)' (15) 

Comparing the dominant powers of u M _ 1 in both sides of 
(15) yields the following two consequences: 

(a) 3pECMI2 __ I(P)~d(B)=d(A)+ 1, 
(16) 

(b) 3p(",uMI2-z) => either O'i=d(B)=d(A) 

or d(A)= 1, d(B)=O. 

To close this section we list below some elementary criteria 
which follows immediately from the above stated condi
tions. In practice they can be of great utility in order to rule 
out the existence of conserved densities for a given equation 
of type (1). 

A. Criteria 

a(",uM - 3) } 
(1) hu" ,u" ,:#=0 =>~P("'UM 12 - z), 

(2)a u " ,au" 2=Faauw ,u" 2~~P("'UM/2-z)' 
(3)a u,,_,,*O=auw ;~'tIP~P('''UMI2_z)' 

(4) Au" 

(5) Au" 

,u" ,:i=O=BUM_,u" ,=>'tIP("'UMI2 _z)-AU, 

= O~B =>~p( ... u \ 
,U\1 I -;- U M IUM I M/2-V' 

(6) 0# (B)#(A )=>~P('''UMI2-2) 

O#(B) - d(A):#= ± l~~p. 

The reader may check that they are obvious consequences of 
(9), (11), (11), (14), (14), and (16), respectively. 
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Examples: 

(i) ~ conservedp for u, = U. + uj [see (6)], 

(ii) The only p conserved by u, = UJu. are of the form 
p(u) [see (3)], 

(iii) ~P(U,Ul) conserved by the equations u, = U 6 + u~ 
[see (1)], u, = (u, + US)u6 [see (2)J, u, = U5(UI + u6) [see (4)] 
or u, = u4u, + uu~ [see (5)]. 

(iv) The only p(u) conserved by u, = U3(U. + 1) are of 
the form AU [see (4)]. 

IV. GENERAL FORM OF THE EQUATIONS 
WHICH CONSERVE A GIVEN p 

Let us consider again the decomposition (12), and de
fineF=B - [In(op/fJu)]IA. Then we havept~(fJp/fJu)F. In 
other words, p is a conserved density for the associated equa
tion u, = F(",uM _ 1)' Hence we deduce the following: 

Theorem 3: Let pEC.(F), FE. '7 r , S < M /2, r < M. Then 
pEC/G), where 

G(U, ... ,UM)=F+A1+(ln bp )A, 'tIAEYM_1• 
oU 1 

(17) 

Conversely each equation u, = G conservingp is ofthe form 
(17). 

Corollary: Let M be an even integer;;;.2. Then there ex
ists some GEY ~ such that (1) admits a conserved 
PECMI2 _ I(G). 

Proof: For M > 2 it is a consequence of the well-known 
series of conservation laws of the Korteweg-deVries equa-
tion. The result is obvious for M = 2. (Q.E.D.) 

Examples: u, = (u2 + 2U2)U4 + (u J + uu1)(4uJ + 1) is a 
4th-order equation which conservesp = ui - u J/3. It is ob
tained by applying the algorithm proposed in Theorem 3 

with the choices F = UJ + uU 1 (KdV), P = ui - uJ/3 (con
served by KdV equation) and A = (u2 + 2U2)UJ. 

Corollary: Letp( .. ·us), s <M 12, M even, be given. Then 
the most general M th-order evolution equation conservingp 
has the form 

U t = p[ln(t iu ) t /EY~ - l' (18) 

Proof: It is sufficient to writeF(fJp/ou) = Ql (conserva
tion of p under u, = F). The functionf::::::A + [Q l(op/fJu)] 
leads to the form (18). (Q.E.D.) 

For instance the equation of the previous example can 
be expressed in the form (18) with/ = (u2 + 2u2)(uJ + 1) 
+ A I(u· + 2U2), AElR arbitrary. Indeed 

oplou = - (u 2 + 2u2) in this case. 

V. UPPER BOUNDS TO THE NUMBER OF 
(INEQUIVALENT) CONSERVATION DENSITIES 
FORMEVEN >4 

As we already know from Sec. III, the existence of at 
least one (nontrivial) conservedp imposes severe restrictions 
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on the form of the polynomial P in (1). Hence we expect that 
the existence of two or more conservations laws for (1) will 
be compatible with a very narrow family of polynomials P. 
Throughout this section we restrict ourselves to analyze the 
case of only two simultaneous conserved densities. 

More explicitly we are going to investigate some neces
sary conditions on Pfor (l) to admit two conserved densities, 
say P and,o, inequivalent in the sense that,o -{Ap, AER. Thus 
let us assume that there exist F,GEY~ ~ I' such that 

P _ FI _ G, (19) 
- op/ou - o,%u . 

The functiona(",u M ~ 2)-(o,%u)/(lip/t5u) (=#= constant by 
hypothesis) satisfies the equation 

(20) 

If we define g(,,,uM ~ 2) aF - G, it follows from (20) that 

(21) 

Comparing the terms in U M ~ I in both sides of (21) we obtain 

au" ,= 0, i.e., a = a("uM _ 3) (22) 

and moreover Fhas to be linear in U M _ I' Thus we have the 
following: 

Proposition 1: 3 p,,oinequivalent EC (P)=>PU\lU" ,= 0. 

That is a way of saying that whenever Pu"u" ,=#=0 in (1), 
there exists at most one conserved density (essentially 
unique up to a constant factor). In the remainder of this 
section we implicitly assume Pu"u" ,= 0. 

Remark: For the sake of brevity we simply say "3p"o" 
to mean the existence of a pair of inequivalent densities in the 
sense explained above. 

Let us decompose F = S (· .. U M _ 2)U M _ I 

+ T(,,,uM _ 2)' P = a(,,,uM _ 2)UM + b ('''UM _ I)' Then the 
condition FI = P(t5p/t5u) reads 

a op = S (23) 
ou ' 

b iu =Su" ,u~-l + Tu " ,U M _ I +H( .. uM _ 2)' 

(24) 

Proposition 2: 

{
3P("'U M /2 _ I)ECM /2 _ l(P),,oEC(P)}---,-p 

---Y ,II" ,=#=0. P =0 U" 
U"U\1 .! 

Proof Since t5p/t5u is linear in UM _ 2' with nonvanish
ing coefficient, it follows from (23) that SU\l_ ,=#=0. On the 
other hand (24) shows that in consequence PUM ,u"., must 
be different from zero. (Q.E.D.) 

Proposition 3: 

(i) 
au", z=#=O=bu" rU"J=>~PECM/2-I(P), ,oEC(P), 

(ii) 
au" ,=O=#=bu" rUM ,=>~pECM!2_1(P), ,oEC(P). 

Proof In both cases the values of SUM 1 derived from 
(23), (24) are contradictory. (Q.E.D.) 
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Turning back to (22), if we use the explicit form 

(25) 

we get at once 

PU\I.! /u" 1 I R 
-----= - =a 

P"'" ,u" " R 

(26) 

from which we conclude that 

aE.7M !2_ 10 (27) 

For M> 4 the condition (27) is stronger than (22). 

On the other hand, given a density p( "·u M /2 _ J we 
have a = Ro'<P"", ,"".2 ,+ if). Therefore, (22) requires 

,ou" 1 ' ''''' ,to be zero. Hence it follows 

Proposition 4: 3 p("'UM /2 ~ J, ,o=>,o~P("'UM!2 0 •• 2)' 

In other words, there are just two possibilities: either 
C'v{ /2 _0 /P) = 0 or CM 12 __ I(P) = C (P). 

The criteria previously established are valid for M even 
;;;.4. The next two results, however, hold only for M even ;;;.6. 
Let us start by noting that 

~ - [Pu u u2n + n(pu u ),u2t1 - dEY 2n .0. 2' 
OU " " " " 

'rJp( .. ·un ),n;;;.3 

Using this expression we may write 
a 

Thus, if M;;;.8, it follows from (26) and (27) that 

P- =AP , AER. 
U_'U/l lU:W~! I U\1/! ,U\I/1 , 

Proposition 5: 

{
3P,p } -=> p - ApEY M /2 _ 2 for some AER. 
M even;;;.6 

The case M = 6 is handled by direct calculation [use au, = ° 
according to (27)]. 

Since the set C (P) of conserved densities for (1) is a 
linear space, the last two propositions imply together: 

Corollary: 

{
3PECM12 I(P)"o} -- => p = Ap for some AER. 
M even;;;.6 

We remark that this result does not admit generalization to 
M;;;'4, as it can be seen in the case of Ut = UZU4 + 2u~, which 

2 - 3 conservesp = u l andp = u 1• 

VI. MORE DETAILS ON THE SECOND-ORDER 
EVOLUTION EQUATIONS 

Let us consider in more detail the case M = 2, 

u t = a(u,ul)uz + b (u,u,). (28) 

We know from Theorem 1 that every p conserved by equa
tion (28) is of the formp = p(u). Furthermore the conserva-
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tion of p(u) requires (D/ou)(p'P) = 0, wherep'=aplau. 
More explicitly p is conserved if and only if 

u2[p'(2a + au,uI)]u - p'bu,u,u2 + uf[ap']uu 

+ [p'(b - u,bu)]u = 0. (29) 

Separating the U 2 terms from the rest this is equivalent to the 
following pair of equations: 

(p'[2a+a u,uJ)u=p'bu,u" (30) 

ui[p'aLu = [p'(u,bu, - b )]u. (31) 

Integration of (31) yields ui(P'a)u = p'(u,bu, - b) + h (UI), 
h arbitrary. Now we differentiate this equality with respect 
to U I and use (30) to conclude h (u l ) = a (constant). In other 
words the pair (30)-(31) is equivalent to the single equatior 

ui(P'a)u = p'(u,bu, - b) + a. (32) 

Let a(u,u,) = ~an<u)u7, b (u,u l ) = ~bn(u)u7 be the explicit 
polynomial forms of a,b. Making these subsititutions in (32) 
yields: 

bo(u)p'(u) = a, (33) 

(34) 

Since a, b, p are polynomials, (33) implies p = Au whenever 
a*O. Moreover in this case it follows from (32) that 

uiau + b - u,bu, = constant (*0). (35) 

Conversely, if a, b do not verify (35) then a = 0. There
fore the only possible situations for a given P = a(u,uI)U2-
+ b (u,u l ) are: 

(i) P satisfies (35) => Every conserved p is of the form 
p = Au, AER (conserved if and only if P is an exact 
derivative). 

(ii)Pdoes not satisfy (35) => Every conservedp must be 
a solution of the system: 

(p'an)u = (n + I)bn + lP', 'rfn;;'O. (36) 

Moreover bo has to be zero, see (33). 

Generically speaking, equation (28) does not admit 
(polynomial) conservation laws, because of the obstruction 
imposed by (36). 

To close this section we want to answer the following 
question: given a functionp(u), what is the most general 
equation (28) which has p as a conserved density? Since the 
special case p = Au, AER, has already been solved in (i), we 
only deal here with thosep such thatp"*O. 
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Let N I D be the irreducible fractional form of p" I p'. 
From equations (36) it follows that 

D [en + l)bn + 2 - a~] = Nan' 'rfn;;.O, (37) 

where a~=auan' But N, D are (by definition) mutually prime 
polynomials. Hence there exist polynomials q n such that 
an = Dqn' and in consequence 

bn + 2 = [lI(n + I)] [Nqn + (Dqn)u]' 

Finally, then, the most general equation (28) conservingp is 
of the form: 

U
n + 2 

QO n 00 1 
Ut = DU2 L. qn(u)u t + L. -- [Nqn + (Dqn)u] , (38) 

o 0 n + 1 

where qn(u) are arbitrary polynomials in u. 

Example: Let us takep = u3(u - 1)3. Then 
N = lOu2 - lOu + 2, D = u(u - 1)(2u - I). The choice 
qo = 1, qn = 0, 'rfn > ° leads to the equation 

Ut = u(u - 1)(2u - l)u 2 + (16u2 
- 16u + 3)ui 

which conserves p. 
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A convergent integral representation for the massive Feynman amplitude in complex 
dimension D is defined away from ReD equal to some rationals. The Feynman 
integrand is modified according to the technique of Zimmermann's forests but each 
subgraph is subtracted at zero external momenta and zero internal masses; the order of 
the Taylor subtractions depends upon ReD. The so defined regularized Feynman 
amplitude is a meromorphic function of D with multiple poles at some rationals, which 
satisfies field equations and Ward identities. These amplitudes may be used in the 
construction of a bare Lagrangian field theory. 

I. INTRODUCTION 

The existence of a dimensionally regularized massive 
Feynman amplitude has been proved by many authors. 1-9 

This kind of regularization is used extensively to study var
ious properties of gauge field theories and appears to be of 
practical interest in critical phenomena. A great advantage 
ofthis regularization is that it is the only one which preserves 
the field equations and satisfies trivially the symmetries of 
the system (at the exception of the well-known anomalies)IO; 
this property is due to an adequate definition of the so-called 
"D-dimensional covariants," i.e., the analytic continuation 
in D of the scalar products and of the tensorial contractions 
over Lorentz indices. 7

,9,11 Such regularized amplitUdes are 
meromorphic functions of D 1,4 and are defined as analytic 
continuation in D of an integral which converges for ReD 
less than the first ultraviolet pole Do. 

The purpose of this paper is to define an absolutely con
vergent integral representation for the dimensionally regu
larized massive Feynman amplitude and for any complex 
dimension D away from ReD equal to the poles. Such a re
presentation can be used directly to calculate any bare am
plitude for ReD> Do (away from the uv poles) without hav
ing to isolate the complete structure at the poles, that is, to 
perform explicitly the analytic continuation in D. 

This convergent integral representation is obtained by 
applying a new subtraction R operator upon the integrand. 
The subtractions are performed in a similar way than for 
BPHZ subtractions, but the main difference is that the sub
graphs are subtracted not only at zero external momentum 
but also at zero internal masses; of course, the number of 
subtractions depends upon the value of D. 

As expected, field equations and Ward identities, pre
served by dimensional regularization are not violated by this 
subtraction procedure; this is due to the fact that external 
momentum and internal masses are treated on the same foot
ing. Although it is beyond the scope of this paper let us men
tion as an application of our result, the definition, for the 
dimensionally renormalized amplitude, of an absolutely 
convergent integral representation at D = 4. Such a result 
defines for any graph a compact computable form for the so
called 't Rooft) minimal renormalization which is known to 
preserve field equations and Ward identities. 

To introduce the reader to our purpose, let us mention 
the well-known example of the Euler r(x) function. The 
Euler r(x) function is defined through an integral 
representation 

r(x) = 1""dAAx-1e- A. (1.1) 

The integral (1.1) is absolutely convergent for Rex> 0. 
There, we may split the integral into two parts and write 

r(x)= r""dAAx-1e- A + rldAAX-l(e--A_l)+~. 
JI Jo x 

(1.2) 
Away from the value x = 0, the representation (1.2) analyti
cally continue the function r(x) up to Rex> - 1. More
over, for - I < Rex < 0, we may use 

(1.3) 

to write an integral representation of r (x) for - I < Rex < 0, 

(1.4) 

More generally, for - (n + 1) < Re(x) < - n (n = 0,1,2,. .. ), 
the integral representation of r(x) is 

r(x) = 1"" dA A x- 1 (1 - T~ )e _.,t, (1.5) 

where T ~ is the subtraction Taylor operator of order n, 
around A = 0. In this publication, we define a subtraction 
operator R which does for a massive Feynman amplitUde as 
a function of the dimension D what (1 - T ~) does for the 
Euler r(x) function. 

The end of this introduction is devoted to notations and 
definitions. In Sec. II, we establish the meromorphy in the 
dimension D of a Feynman amplitude. In Sec. III, we intro
duce a set of subtraction operators and we study their prop
erties in Sec. IV. Finally, the integral representation for the 
dimensionally regularized Feynman amplitude is defined in 
Sec. V. Everything is performed in Euclidean space although 
it may be extended without difficulty to Minkowsky space 
via a Wick rotation. 

Given a Feynman graph G with da derivative couplings 

{k~', ... ,k~d} on each line a (p, are the vector indices), we 
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associate in dimension N = 4. a Schwinger integral of the 
type 

100 

)]ldka (exp - atlaam~) 

(1.6) 

w here I is the number oflines of the graph G and the function 
ZG is 

[ 

n - 1 ( I €.;z) 
X exp - L Pi + L V' a 

'J~ 1 a~ 12 aa 

In (I. 7). the incidence matrix €ia and the Symanzik functions 
PG(a) and [d G l(a)]ij are characteristic of the topology of 
the graph. A quadrivector za is attached to each line a in 
such a way that the derivative couplings may be taken care of 
by performing the corresponding a / az derivatives at z equal 
to zero. A Feynman amplitude is obtained by associating r 
and internal group matrices with expression (1.6). by con
tracting some Lorentz indices (for instance iJ or D) and inter
nal indices (trace of products of internal or r matrices). and 
by summing over different combinations of derivative cou
plings. In such a way. we obtain an integral of the form 

where l' remains the external dependence in Lorentz and 
internal group indices. The function SG depends explicitly of 
the dimension N = 4 of the space because of the presence of 
external variable like Pi' of the Lorentz indices in l' and im
plicitly by the various contractions over Lorentz indices 
(g!'Jl = 4 for instance). and by the different relations between 
the r matrices (see Appendix A). 

We remind the reader in Sec. II that absolute conver
gence of (1.8) around the variables a -0 (ultraviolet diver
gences) lies in the behavior of Pda). A regulator may be 
introduced in (1.8) by replacing [P da)] - N 12 by 
Pda)] - DI2. where D is complex and ReD small enough to 
ensure the convergence of(1.8). There is no need to change 
anything to the function SG to ensure convergence. Howev
er. we may do so in several ways provided that at D = 4 we 
recover the original function SG' The delicate problem at 
that stage is to know whether or not one could define such a 
function SdD) without breaking the field equations and 
their con!'equences: Ward identities. This problem was 
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solved in the past by several authors7
•
9

•
11

: We discuss briefly 
in Appendix A how to construct such a function SG (D). We 
thus define the analytic continuation of IG(Poma .1'.D): 

IG(Pi.ma,r.D) 

= Loo a~ldaa exp( - atlaam~)SG(Pi.1'i.aa.D) 

(1.9) 

II. MEROMORPHIC STRUCTURE OF THE 
DIMENSIONALLY REGULARIZED FEYNMAN 
AMPLITUDE 

To show the absolute convergence of (1.9). it is conve
nient to decompose the domain of integration (aa >0) into [!. 

Hepp's sectorsl2 defined as 

(11.1) 

where (a1 ..... a l) is an ordering of the [lines of G. We perform 
the change of variables 

(1I.2a) 
j~i 

I 

daa, = II P]-2f3flPi' (1I.2b) 
j~l+l 

so that the contribution of this sector (J' to integral (1.9) 
becomesll 

X III p 21 (R,)-DL(R')-d(R,)-1 SG(P.1'.fJ;.D) 
i = 1 I [1 + Q (.8 f) ] D 12 

(11.3) 

where Rij$ 2) and Q (.8 2) are nonnegative polynomials of pi 
•· .. ,{3T- l' Sc<P.1',{3f.D) is a continuous function ofPl ..... PI. 
polynomial1y bounded in PI whenProo and has a simulta
neous Taylor series in the {J's around Pi = O. The subgraphs 
Ri are defined by the lines {ah .... ail and have I (R i)( = i) 
lines. L (R) independent loops. In (11.3) we use the homo
genei ty property ofthe function S c<P .1'.a a.D ) as expressed in 
Appendix B. The quantity d (R;) is taken to be (Appendix B) 

d (RJ = 0 if L (R) = O. 

(
l)(R)) . 

d(Ri) = 2E -2- IfL(RJ=i=O. (11.4) 

where l) is the maximum number of derivative couplings on 
the lines of connected one particle irreducible parts of Ri and 
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E (x) means integer part of x smal1er or equal to Rex. We 
note that for a scalar amplitude, d (R) is nul1 and SG is equal 
to 1. 

Provided that m~, > 0, the integral (11.3) is convergent 
when Pr + 00. The convergence at P,~O is ensured if 

Re[ DL (R) + d (R) - 21 (R) 1 < ° V iE!1,l J. (11.5) 
Let us note D g: 

U • {2/(R)-d(R)} 
Do= ~ . 

R,L(R,)ifO L (R) 
(11.6) 

In every compact domain !iJ C ! D:ReD < D gJ, the inte
grand of(II.3) can easily be bounded in modulus by an inte
grable function independent of D. Since the integrand is an 
analytic function of D, the integral (11.3) is proved to be an 
analytic function of D in every domain !iJ; hence in the 
domain 

!iJU = {D:ReD <D g}. (11.7) 

We now prove that the function I,!;(p,m,7,D) so defined in 
!iJ U can be analytical1y continued in a merom orphic func

tion of D,. extensively noted I ,!;(p,m,7,D), in the whole com
plex plane, with poles only at some rationals greater or equal 

to D g. We introduce the operator 

1 = I IT (T;';) n(l - Td;)' 
Icll •.. ./! 'EI j/J 

(11.8) 

(where I also contains the empty element) which acts upon 
the function 

{ [
I~ I 

X exp -P1 Im~f3J"'P1~1 + 
J=I 

p;R ,fJP)pJ ] 
1 + Q((J2) ~' 

(11.9) 

inside the integral (11.3). In (11.8), T ;'; is the Taylor operator 

of degree n,. The integrand of (11.3) is decomposed in 

n, I I JI.B ;I(R,) + 2q, ~ DL(R,) ~ d(R,) ~ I 

Icll,11 q,=OiEl 

XJJP 21(R,) + 2nj ~ DL(R,) ~ d(R,) + I ~ {Jim;' F (p p 2 D) 
J e Iq"njl ,7, J' , 

j 1 

(11.10) 

where the FI q"njl'S are continuous functions of !Pj;irll J and 

satisfy the same properties as SaW, 7,P J,D ). 

The integration over the P/s (iEl) defines several mero
morphic functions of D in C with poles like 

1 DL(G)+d(G)~2q,~21(G) 

2 m a, 

xrC/(G) + 2ql- ~L (G) - d(G») 

if IEl, 

and 
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(11.11) 

[2/(R) + 2p,-d(R)-DL(R')r1 foriEl, i-=l=l. 
(11.12) 

The integration over the P/s (jU) is possible provided that 

Re[DL (R) + d(R) - 2/(R) - 2nj - 2) <0 V jV, 
(11.13) 

and gives, as shown for the integral (11.3), an analytic func
tion of D in the domain 

ReD < inf { 21 (R) + 2nj + 2 - d (R)}. (11.14) 

I jiJ L (R) 
L (R,)/-O 

By taking the n/s great enough, one could obtain explicitly 
an analytic continuation of I,!;(p,m,7,D) for every complex 
D. 

So I,!;(p,m,7,D) is proved to be a meromorphic func
tion of D in the complex plane, with poles only at rationals of 
the form 

2/(R) - d(R) + 2p 
D= I I , pEN, L(R)-=I=O. (11.15) 

L (R) 

If we sum the contributions of each sector a, we deduce 
finally, since each subgraph rp C G appears in at least one 
sector a, that the integral I G(P,m,7,D) defined by (1.9) is 
absolutely convergent and defines an analytic function of D 
in the domain 

g; = !D:ReD<DoJ, 

where 

Do = inf { 21 (rp ) - d (rp ) }; 

I (pCG L (rp) 
L('1,)-t- O 

(11.16) 

(11.17) 

this function defines by analytic continuation a meromor
phic function of D, which is noted I aW,m,7,D), in the com
plex plane, with poles only at rationals of the form 

D = 21 (rp ) - d (rp ) + 2p 
L (rp) , 

(11.18) 

where rp is any subgraph of G with L (rp )-=1=0, and p is a posi
tive integer. We prove in the next section that in fact only 
connected, one particle irreducible (IPI) subgraphs rp give 
poles of the form (11.18), so that the other poles found here 
must cancel out between the various Hepp's sectors. 

III. THE WSUBTRACTED AMPLITUDE 
In this section we define a class of subtracted ampli

tudes which are well defined for any dimension D. It may be 
shown that such subtractions satisfy Bogoliubov. Parasiuk 
scheme ofrenormalization. 12

,14 The introduction of this class 
of subtracted amplitudes allows us in Sec. V to define the 
integral representation for the dimensionally regularized 
amplitude as a limit. 

Definition: We define the,u-subtracted amplitude as 

I,(;(p"ma,7,D) = 100 

aUldaa exp( - atla,Ji~) 
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x([exp - at! aa(m~-Jl~)lSG(P;1',aa,D) 

Xexp{ - p;[d G l(a)jijP) X [PG(a)j- D/2. (III. 1 ) 

The subtraction operator R is defined in Ref. 15 as 

R = II (1-1';2/(<(',), (UL2) 
cpt;;;G 

where the product over tp runs over the (2 1 - l)subgraphsof 
G. The operator l' is a generalized Taylor operator defined as 
follows: given a function/(x) such that x - '1(x) (where v 
may be complex) is infinitely differentiable at x = 0, then we 

define ~ as 

(III.3) 

whereA> - E 'ev) is an integer, E'(v) is the smallest integer 
>Rev, and E = E 'ev) - v. The operator Tx is the usual Tay
lor operator at x = 0, and the above definition is A indepen
dent. We also define for a given sub graph tp 

(III.4) 

Although the 1'operators do not commute (overlapping sub
graphs), they do commute if the graphs are disjoint or nest
ed, and it has been shown l5 that the product in (III.2) is 
independent of the order of application of the l' operators. In 
fact, it has been shown that 

(111.5) 

where the sum runs over all forests of connected, one particle 
irreducible subgraphs (even if they are not generalized 
vertices). 

The presence of the subtraction operator R in (III. I ) 
makes the integral absolutely convergent for any D when the 
a's - 0, and whatever product of l' operators is applied, there 
is always an exponential damping (provided that ma andJla 
are different from zero) which ensures the convergence of 
(IlL 1) for large a's (see Appendix C). In momentum space 
representation, such an operator R would subtract the sub
graphs at zero external momentum and at m~ = Jl~. It is 
important to note that the function 1 ~ is not continuous in 
D. Let us find out the nature of the discontinuities. Given a 
forest .Y = ! tp I, if we dilate a a by 

(ilL 6) 

we get 

(III.7) 

where ji aCaa,O)=I=-O. Then, from (I1I.3) 

] (_1'cp-2I('1'» {exp [ - atlaaCm~-Jl~)] 
XSG(p;,1',aa,D)e - p,[d <i '(a)J.I'Jp G(a) - D/2} 

(III.8) 

is equal to 

II ( - l' - 21 + e(DL (cp ») {a ,p2 } I ('1') a cp P, = 1> 
cpE.7 

(II1.9) 

where the curly bracket! J now contains jiG instead of P G 

and admits a Laurent expansion in p~, the coefficients of 
which are the only dependence in D. Because the curly 
bracket in (I1I.9) is a function of p~, it is clear that (III.9) is 
analytic in D as long as E (DL (tp )/2) is a constant for any 
tpEY. Consequently, I~ is analytic in D as long as 
E (DL (tp )/2) is a constant for all connected, one particle irre
ducible subgraphs tp. Ifwe note that the operator R is equal 
to 1 for ReD < D p, where 

D I = inf { 21 (tp ) - d (tp ) } 
o «' L (tp) , 

(IlL 10) 

and inf runs over all connected, one particle irreducible sub
graphs tp, then I~ is continuous in D for ReD <D b, and has 
discontinuities for each value of ReD equal to 
[21 (tp ) - d (tp ) + 2p]1 L (tp ) for any subgraph tp kG connect
ed, one particle irreducibe, and for any nonnegative integer 
p. 

Let BAbe the band defined as 

B.1 = {DEC:E ( DL itp») = E ( tJL itp») (III. 11) 

for every connected one particle irreducible subgraph tp, 

tJ<;ReD }. 

We recall that 

tJ I = sup/ReD, DEB.1 J. 
(III. 12) 

Then 1 ~ and its integrand are analytic functions of Din B.1 , 
and can be analytically continued in the complex plane (see 
Appendix C): 

-the integrand is an analytic function of D, integrable 
ifReD<.1/. 

-I ~,m,1',D) in B.1 can be extended into a meromor· 
phic function of D, noted 1 I~/(p,m, 1',D), with poles only at 
some rationals >.1 /, and which coincides with the integral of 
the analytic continuation of the integrand for ReD <tJ /. The 
function 1,[/(p,m,1',4) have all the necessary properties of a 
renormalized Feynman amplitude and for strictly renorma· 
lizable field theory may be generated from a Langrangian by 
adequate Jl dependent counterterms. Especially, when all 
masses Jla are taken to be equal to rna , we recover the usual 
R operation of subtractions at zero external momentum. 

IV. EXTRACTION OF POLES BETWEEN TWO SUCCESSIVE BANDS 

In order to compare the analytically continued function I G (p,m,1',D) with I ~,m,1',D ), it is convenient to evaluate the 
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difference between the functions I ~J.(p,m, T,D ) and I ~t ;,m, T,O) originally defined in two consecutive bands. 

Let B J. and B J. be two consecutive bands defined as 

BJ. = {D:.1<;ReD<.1 ,}, 

B J. ' = {D:.1 '<; ReD < .1 "}. 

The difference between the integrands of I ~J. and of I ~J. ' evaluated for DEB J.' is 

exp( - Ia,.u~)~[ rt ( - T;: 2/(ip) ~- J. (ip» - II ( - T ip- 2/(ip» ]{exp[Iaa(,u~ - m~)] 
o ./ ipE./ ipE./ 0 

XSG(P,T,aa,D)e - pd" '(a)pPG(a) - on}, 

where the sum runs above all nonempty forests of connected IP! sub graphs in G. The quantity .1 (<p) is defined as 

(IV. I) 

(IV.2) 

.1 (<p) = 2 (IV.3) 

if <P gives a pole at .1 " i.e., if [.1 'L (<p) + d (<p ) - 21 (<p )] is a nonnegative even integer, and .1 (<p) is zero otherwise. We use a 
generalization of the technique used in the past\3,16 to prove Zimmermann's identity; we write, for each forest Y, 

. Ln (_Tip-2/(ip)-J.('I'» - ] (_T;:2/(ip» ] 

= III (T'I~2/(cr,)_Tcr~2/(ip,)-J.(ip.» II (_Tip-2/(ip)-J.(ip» II (_T;2/(ip». 

I cr, I i ipC<p, ipE[.7J 1•·. 1 

ipEJ 

(IVA) 

The sum runs over all nonempty families [<Pi l of disjoint elements of Y such that .1 (<Pi )*0, and [Y] lip,1 is the forest of all 
elements <P of ,7 such that, for all i, <P*<Pi and <PrKpi is ¢ or <Pi' We sum (IV.4) over all forests containing [<Pi l; we thus 
reconstruct the5'i of the subgraphs<piand the forests [Y] lip,1 of the reduced graph [G /UlPi]' In the sum over the forests Y i, 

the forests containing the graph <Pi itself contribute zero to the sum. We obtain 

I II {[ ( T 'I'~ 21 ('I''» - T ;; 21 (<p,) - J. (<p,) [I + I II (- T;: 21 (ip) - J. (ip l)]} [1 + I II ( - 1";: 21 (ip l) ]. 
lip,1 i iF,ipE.'fi, [5'J,<", ipE[.7], .. , 

(IV.S) 

Since the Taylor operators in (IV.S) commute, we evaluate in a first step 

('''', 2/(",) _ T;, 2/(cr) - 2) {exp [ ~(,u~ _ m~) ]sG(P,T,aa,D)e - pd ,. '(a)pp da) - on}. (IV.6) 

It is convenient to decompose (IV.6) as 

I II (,u~ - m~)1/" exp [ I ao(,u~ - m~) 
~=OE'P ~G~ 

] 
(,;, 2/(ip,) _ 'ip~ 2/(ip.) - 2) [II aZ"SG(P,T,a.D)e - pd (i '(a)pp G(a) - 012 } 

aE(jJ1 

(IV.7) 

where No is great enough to make the action of the ,operators to be zero. We now use the theorem (B2) of Appendix Band 
write (IV.7) as 

(IV.8) 

where 

(IV.9) 
aEip, 

The notations X K .Ym'. andY[G / J are explained in Appendix B. Ifwe apply the Taylor opertors relative to all subgraphs <Pi in ip ip Y. 

(IV.S). we get 

(IV.lO) 

In (IV.lO), (II aZ"~~(a.D) ] is homogeneous in a of degree 
GEq', 

HL (<p )(.1' -D) - 2/(<p )]. {IV. 11) 
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Now, we can evaluate the action of the other Taylor operators of (lV.S) on each term of (IV. 10). With the preceding 
homogeneity relation, it is easy to see from 

r"{xAxl'f(x)} = xAr" + E'(P) - E'(A + I'){xl'f(x)}, (IV. 12) 

wheref(x) has a Taylor expansion around x = 0, that if D satisfies 

Ll '<ReD < inf(Ll " ,L1 '''), (IV,I3) 

where Ll '" is the first singularity in D (larger than Ll ') of the 

reduced graph [G /LXp,], the product TI;[ TIaE'I'jaZa~~{a,D) 1 
passes through the Taylor operators T'I'- 21('1') with 

[ =] ( ) . - 2/(<p/U<p)' h flJE.:1' l<p,) fIJ-:JflJj, to glve (T[op/ucp,) ') actmg upon t e 
part of (IV. 10) relative to [G /LXp'] .. The T operators acting 
upon the part of (IV. 10) relative to fIJi is nothing but the R 
operator defined in the band B 4 , while the T operators acting 
upon the part of (IV. 10) relative to [G /LXpj] is theR operator 
in the band (IV .13). We may now integrate over the variables 
a for ReD < Ll ' and we obtain the following theorem. 

Theorem: 

I't/(p,m,T,D) - I't/' '(p,m,T,D) 

Na 4 
= L L L IF op.'71u'X.{ji,m,D)Irt;U<p,liv,,(p,m,T,D), 

lop,I7I" "Ix, I j 

(IV. 14) 

where I flJj J is any family of disjoint connected, IPI sub
graphs of G giving a pole of I G (p,m, T,D ) at D = Ll '. In 
(IV. 14) 

I~.'71,,,x'{ji,m,D) = II {ji~ - m~)71a 1" II daa 
OEqJ, 0 QE(fJ, 

xexp( - ~aJt~)R {I]aza~~{a,D)}, 

(IV.IS) 

with the operator R defined in the band B 4; it is a meromor
phic function of D with poles at rationals ;;;.Ll '. It is important 
to note that, from the homogeneity of the integrand (IV. IS), 

lim I~'71"'X.{ji,m,D) = ° for ReD>Ll', (IV,16) 
11',,)---0 ' 

the convergence being uniform for all m in a compact set of 
]0,00 [ and for D in a compact set of I ReD> Ll ',D away from 

poles of I!:71a,X'{ji,m,D) l. Of course, as we already said in 

Sec. III, Irt/~,ll\,,(p,m,T,D) is a meromorphic function of 

D with poles at rationals;;;. inf(Ll ",Ll '"), In (IV. 14), the poles 
at Ll '" are spurious and are absent on the left-hand side. This 
theorem is used recurrently in Sec. V to describe the analytic 
continuation of I~,m,T,D). 

V.INTEGRAL REPRESENTATION FOR THE 
DIMENSIONALLY REGULARIZED AMPLITUDES 

We now use the theorem of decomposition (IV .14) and 
we extract recursively the poles of any amplitude 
IG(P,m,T,D) between the band B - 00 and any band 
B4 = ILl<ReD<Ll 'J, We have, of course, 

(II(; - oo(p,m,T,D) = IG(P,m,T,D). (V. 1) 
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I 
We use the following notations: for any forest Y of connect
ed, IPI subgraphs of G, and for any subgraph ip of Y, we 
note by [ip]y the reduced subgraph obtained from ip by 
shrinking into points all the maximum sub graphs ip' of Y 
such that ip'Cip. In the same way, [G]y is the graph ob
tained by reducing all maximum subgraphs ip of Y in G (if 
GEY, [G17 is reduced to one vertex). From now on, it is 
understood that at each reduced vertex, we associate the ap
propriate set of derivative couplings characteristic of the 
graph which is reduced, 

Theorem I: For any Feynman integral, and for any ra
tional Ll 

IG(P,m,T,D) 

= L L II It~a)' ,17I,XI{ji,m,D)Ift)', (p,m,T,D), 
,/ f 71,X I <pE] 

(V.2) 
where we sum over all possible sets of indices 1/ a and X K, 

obtained from (IV. 14) over all forests of connected, lPI sub
graphs of G which are responsible for poles at ReD < Ll. 

The proof of this theorem is easy; we introduce a com
plete set of poles given by all rationals 2k /L [l<L<L (G)], 
where k is an integer such that 2k / L;;;.D ~ [the lower pole for 
G defined in (111.10)], These rationals take into account all 
the poles of the subgraphs and of the reduced graphs of G. 
We then apply (IV. 14) again and again from band to band by 
transforming 

If;]~/L(p,m,T,D). We note that: 

(i) Ll [op J/ attached to It~a{, means that the R subtrac-
tion operator is defined in the band B 4 , that [ip 1.'7 is 

'a' 
responsible for poles in D the lowest being at a rational on the 
right boundary of B 4 ; 

hI'! 

(ii) Ll attached to I f~4J, means similarly that the R sub

traction operator is defined in the band B 4 and that I f~41, 
has poles for ReD> Ll only; 

(iii) the family {Ll [op L} is strictly increasing with re
spect to the inclusion order in :7, and, of course, 

(V,3) 

We could from (V.2) extract all the poles of I~,m,T,D) 
between D ~ and Ll and we would obtain the expression of 
I ~,m,T,D ) for ReD < Ll and for ReDER 4 but different from 
some rationals (and this for any Ll). It is important to note 
that the right-hand side of (V.2) is necessarily p indepen
dent, and we intend to use this property to calculate the limit 
of p-+-O of (V.2) and prove the following theorem. 

Theorem II: For any Feynman integral I~,m,T,D) of 
the form (1.9) 

M, C, Berg~re and F, David 1249 



                                                                                                                                    

(a) l~il(p,m,7,D) converges uniformly when [1i~J-D 
tolG (p,m,7,D ) for min any compact set of]O, 00 [and for Din 
any compact set in B il ; the band B il is defined as ReD be
tween two consecutive poles (..1 being the lower one) of the 
type [21(cp ) - d(cp) + 2p]lL (cp ),p;;;.O,foranyconnected, IPI 
subgraphs cp of G. 

(b) Consequently I G(P,m,7,D) is meromorphic with 
poles at only the above rationals 

(c) We obtain the integral representation 

I G(P,m,7,D) = 100 

a~ldaa 

[ 

exp( - t aam~) SG(P,7,a,D)e - p,[d (i '(a)]'f'J] 
xR a-I 

PG(a)DI2 . 

(V.4) 

The above integral is absolutely convergent for any ReD 
away from the above rationals. 

Proof: In a first step, we prove the convergence property 
described in (a) for DEB.1 and different from the rationals 
2k / L defined in the proof of Theorem I (these extra poles are 
the spurious poles coming from reduced subgraphs). We 
prove the theorem by recurrence on the number of loops of 
the graph G. For a tree graph, I ~il(p,m, 7,D ) is Ii indepen
dent, and coincides everywhere with I G (p,m, 7,D). 

We suppose the convergence property true for all 
graphs with less than L (G) loops. Then, from Theorem I, 

I G(P,m,7,D) = l~il(p,m,7,D) 

+" " II lil[~[,"1/,xl,,, D)/ll-il (p D) ~ £.. ['PL. \f",m, [G L. ,m,7, , 
./ '1/.yl<pE,7' 

(V.S) 

where ,,/' is a nonempty forest. From (IV. 16), (V.3) and the 

recurrence for I '(Gil] , . (p,m, 7,D ), we prove (a) for DEB il but 
different from the rationals 2k /L. We now prove that the 
convergence property (a) is valid in the entire band Bil . We 
just state the following lemma: Let [f;. ;AE[O, I] J be a family 
of analytic functions of D defined in an open set fl of the 
complex plane D, and Do be a single point in fl. Iff;. con
verges uniformly in every compact set in fl - (Do J towards 
a functionfwhenA-D, thenf;. converges uniformly in every 
compact of fl, and the limit function (which coincides withf 
in fl - [Do j) is analytic in fl. 

Since l~il(p,m,7,D) is shown in Sec. III to be analytic 
in D for DEB.:1 , we apply the above lemma and prove (a) in 
the entire band B il . 

Now, this proof may be performed for any band B il . We 
already proved in Sec. II that the singularities for D = ..1 are 
poles. This achieves part (b). Moreover, we show in Appen
dix C that the integral (V.4) is absolutely convergent inside 
any band B.:1 . It remains to prove the equality between both 
sides of (V.4). We give the following arguments: from the 
uniform convergence of I ~il(p,m,7,D) to I G (p,m,7,D) for 
any finite nonzero m and from the continuity in m of 
l~il(p,m,7,D), we deduce that 
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lim/~il(p,(m2 + 1i2)112,7,D) = I G(P,m,7,D). (V.6) 
1'-_0 

If we denote by AIl-(m>,a) the integrand of I'/:/ given in 
(III. 1), 

(V.7) 

and of course limll--n4 ll-(m2 + 1i 2,a) = A O(m2,a), for any 
,nonzero a;. Then by Lebesgue's bounded convergence theo
rem, and since A O(m2,a) is integrable for DEBil , 

l
oo I 

lim/~il(p,(m2 + 1i2)112,7,D) = II daa A O(m"a), 
IL .. "'O 0 a = I 

(V.S) 

which proves with (V.6) the equal sign of (V.4). 

The expression (V.4) is the integral representation of 
I G (p,m, 7,D) for all ReD away from some rationals; the sub
traction operator R subtracts as many times as needed de
pending of ReD. Each subgraph is subtracted at zero exter
nal momenta and zero internal masses. Let us note that in 
each open band B il = [D:..1 < ReD <.::1 'J, when we make 
D-.::1 " the integral (V.4) diverges because of ultraviolet sin
gularities at a - 0, and when D_..1, the integral diverges 
because of infrared singularities at a- 00. So, it is remark
able that any pole..1 of IG (p,m,7,D ) appears in (V.4)as corre
sponding to UV divergences if D--+.::1-, and as IR divergences 
if D---+..1 + . We face, in that peculiar case, a very general type 
of equivalence between UV and IR singularities. 

VI. CONCLUSION 

Most of what is known about analytic continuation in 
dimension of Feynman amplitUdes is based upon its very 
existence, its respect offield equations and of Ward identities 
(except for well-known anomalies), and upon a recursive 
procedure which extracts the singularities at dimension four 
without breaking the symmetries of the system. We have 
given here, in a simple form, a convergent integral represen
tation for the massive Feynman amplitudes, which gives a 
sense perturbatively to the bare Langrangian field theory, at 
any dimension away from some rationals. 

It is expected that the recursive procedure of extraction 
of poles at dimension four, may be replaced by a subtraction 
operator, so that the so-called 't Hooft dimensional renor
malization may be formulated in compact integral represen
tation. Of course, for the applications to the gauge field the
ories, we need a generalization of (V.4) to massless Feynman 
amplitudes l7 (some results may be found in Ref. IS). 

The various renormalizations (p,.::1 ) at dimension four 
<J-t=l=O,..1 = 4), can also be considered as a regularization of 
the bare theory when Ii-D. This approach is also useful to 
study the implications of the renormalization group for a 
dimension between two and four. 

We finally mention that the result of this paper is not 
only applicable to Feynman amplitUdes but to any 
"similar"integrals. 

ACKNOWLEDGMENTS 
We wish to express our gratitude to Doctor Y. M. P. 

M. C, Bergere and F, David 1250 



                                                                                                                                    

Lam for helpful discussions during the early stage of this 
work. 

APPENDIX A 

The purpose of this appendix is to make a convenient 
choice for the function SG(Pi,r,aa ,D) which analytically 
continue for all D the function SG (Pi ,r,aa) introduced at 
dimension four in (1.8). As we already mentioned in Sec. I, 
SG(Pi ,r,aa ) itself could have been an easy candidate since 
the integral (1.8) with N replaced by D is ultraviolet conver
gent for ReD small enough. In fact, it is the very structure of 
Feynman integrands which requires for consistency another 
function. 

First let us recal1 how we obtain Sa<Pi,r,aa)' We first 
perform the derivatives 8/8z and setz equal to zero, then we 
use algebraic relations (denoted tll I) between objects like Y 
matrices (essentially anticommunication relations) to obtain 
some Lorentz tensor g"v. Then we contract dummy indices 
(using peculiarly g" I' = 4). 

However, in momentum space, several integrands de
scribe the same integral because of the following relations: 

(AI) 
a 

which expresses the conservation of energy-momentum at 
each vertex 

(A2) 

which simplifies the numerator and the denominator and 
has the effect of introducing a new graph [G fa] obtained 
from G by shrinking the line a into a point. 

Following Ref. 11, we know that, for convergent ampli
tudes, the field equations and the Ward identities are satis
fied, at each order of perturbation, provided that the rela
tions tll I,tll 2, and tll 3 are true at dimension four. 

Our first requirement for the choice of Sa<P,1",a,D) is 
such that whatever use we make of relations g; 2 and g; 3, the 
functions Sa<P,1",a,D) describe the same integral. The func
tion S a<P, 1",a) satisfies this requirement because we may ver
ify that 

[ 
1 82 za 8 2 d) -----+m +-

aa 8z~ 2aa JZa a daa 

X exp ( - ~aam; )ZaCaa'Pi,za) = 0, 

where ZaCaa'Pi,za) is given in (1.7). By application of 

(A3) 

(A4) 

« - uV:-) 8/8z) upon (A3) and (A4) at Z = 0, we obtain 

[p,sG(Pi,aa) + ~Ei~G.(pi,aa)] e - pP G '(a)pjp aCa) - N 12 

= ° (AS) 
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where Ga is the graph obtained from G by inserting on the 
line a a derivative coupling ka, and 

[s (p. a ) + m1 f: (p. ex )]e -l:a.m~ e - PP ci '(a)PJp (a) - N 12 
G(.u I' a (]"JG I' a G 

+ dd [SG(Pi,aa)e-l:a.m:e-p,d" '(a)PJPG(a)-N12] =0, 
aa (A6) 

where Gaa is the graph obtained from G inserting on the line 
a two derivative couplings k~.kal" and by summing over p 
from I to 4. Equations (A3) and (AS) remain valid when N is 
replaced by the complex number D; on the other hand (A4), 
(A6) are not valid anymore because (d /daa )[P G (a) - D12] 

gives a multiplicative factor D while the summation over It of 
k ~kal" still gives a factor 4. This situation forces us to define 
the analytic continuation So.JP;.aa,D) of the function 

SG",,(Pi,aa), by analytically continuing the trace g" u into D. 

However, it is difficult to define an "analytic continu
ation" at D=ft4 of the algebraic relations tll j • Following the 
previous rule, one would write yl'Y/-l as D.I, as it is well 
known that such a requirement is enough to ensure Ward 
identities, provided that there are no y5 matrices. We shall 
show that such a rule is enough, provided that we give a 
specific definition of what are dummy and external indices in 
the graph. We define the following procedure to choose 
Sdp,1",a,D): 

(i) We split the set of Lorentz indices which appear in 
the expresssion of any graph G into two parts: 

(a) dummy indices (denoted by Greek letters p,v,. .. ), 
which are: 

(1) indices summed inside the T product defining the 
Green's function corresponding to the graph; an example is 
given by (TA(tp)81'd"tpB(tp»; 

(2) indices given by internal propagators and vertex 
contributions (for instance gl'v,k I"k v,yI',yI'k/-l' with the ex
ception of the matrix y5

, 

(b) external indices (denoted by Latin letters a,b,..·), 
which are: 

(1) non summed indices inside the T product (like ex
ternal momentum); 

(2) indices introduced by replacing all y5 matrices by 

1 
Y5 _ ~,a,a,a,'V 1/ 

- 4! 'a,Ya" a,Ya" (A7) 

which is nothing more than its definition at dimension four. 
The tensor c,a,a,a. is the totally anti symmetric tensor. One 
could make summations about some external indices, for 
instance in gab(TA(tp)8a8 btpB(tp», the summation been 
made explicitly for a = 1 ... 4. Nonsummed external indices 
belong to the set 1". 

(ii) We make the derivations 8laza, and we take z = 0. 

(iii) We let the y's disappear in order to obtain the maxi
mum number of g's by using algebraic relations betweeny 
matrices and also by using 

(AS) 
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where a. is the set of all permutations in 11, ... ,4 J and €(a) is 
the signature of the permutation, 

(iv) We contract dummy indices (without contracting 
external indices) via the relations 

gl'VTv ... = TIl. ... , 

~vTv ... = Ta ... , 

(A9) 

(AW) 

where Tv ... is any tensorial object, so that the only depen
dence in dummy indices is reported in gI' j1.' 

(v) We make the final contraction 

gl'j1. = D, (All) 

which defines the analytic continuation, and, of course, we 
also make contractions about external indices, with 

gaa = 4, (AI2) 

Trl = 4, (AI3) 

YcPf =1;, (AI4) 

p;apja = P"Pi' (AIS) 

which are perfectly well defined upon four-dimensional ob
jects. Such a procedure defines in a unique way a function 
SG(P; ,r,aa ,D). The above procedure gives exactly the same 
results as those obtained by Speer" in momentum space and 
by Breitenlohner and Maison7 in the a space; these results 
ensure that we do not break field equations and Ward identi
ties, with the exception of the "anomalies" like the axial cur
rent anomaly in Gauge theory or the following "trace anom
aly," which shows the difference between summation over 
internal and external indices: if we consider a graph G with 
derivative couplings k :' on line a and k ~' on line b, we define 
the corresponding tensorial function S'd·a'(p;,r,aa,D) which 
usually contains the tensor ~,a,; then, by taking the trace 
S G(p; ,r,aa ,D), we get a factor 4 which is certainly different 
from the factor D obtained when k~kbll. is considered as a 
trace upon internal indices. The analytic continuation of a 
trace is in general different from the trace of the analytic 
continuation. 

APPENDIX B: DILATATION PROPERTIES OF 
DIMENSIONALLY REGULARIZED FEYNMAN 
INTEGRANDS IN THE a-PARAMETRIC 
REPRESENTATION 

We give or establish in this appendix some results need
ed in Secs. II and IV. The regularized integrand defined by 
the procedure of Appendix A is a combination of scalar 
integrands 

YG(P,a,D) = SG(P,a,D)e _. p,d G '(a)p'PG(a) _. D12, (BI) 

with coefficients which are matrices and external momen
tum denoted by r. The expression (BI) atD = Ninteger >4 
coincides with the corresponding Feynman integrand-
Y a<P,a) N calculated in a space of dimension N with the same 
scalar productsPtPj' It is clear thatSa<P,a)Nis a sequence of 
N, depending polynomially of N whileSa<P,a,D) is a polyno
mial in D. 
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Let <p be a subgraph of G. We call dilatation relative to q:; 
the change of variable 

a~ = a,p2 if aEq:;, 

a~ = aa if af.q:;. (B2) 

For any function of the a's, Z (a), we obtain a new function 
Z(a,p). We have in Ref, 13, the fundamental expansion 
theorem. 

Theorem B.I: For any integer N>4 and any subgraph 
q:; ~ G, after dilatation relative to q:;, the functionsYG (p,a,p)N 
have the expansion P 

YG(P,a,p)N 

= I P - NL(<p) - 8'('1') + K~'(a)NY[GI<p Jh(P,a)N' 
k =0 X, 

(B3) 

where {) '(q:;) is the number of derivative couplings on the 
internal lines of q:;, where the sum runs over all families X K of 
k external momenta to q:;, where for the sequence 

Xk = Ikt',···,k~'J 

Y~'(a)N = Jk Y<p(k,a)N I ' 
Jk t'···Jk j,' k = 0 

(B4) 

[in (B 4),k denotes external momentum to q:; which may be 
external or internal to G], and whereY(GI<p J" (a,p)N is the 
Feynman integrand for the reduced graph [G /q:;] withK de

rivative couplings I k t', ... ,k j: J around the reduced vertex. 

When we set k = 0 in (B4),Y~'(a)Nis found to be a sum 
over all contractions of tensorial indices (product of gj1.V 's) 
times a scalar function characteristic of each set of contrac
tions. It is then convenient to introduce the various sets of 
gll.v's into Y[GI<p J" and to reinterpret (B3) in terms of scalar 

quantities,la/ andY(GI 'J the summations over Lorentz in-
'I' 'I r. 

dices being made in [G / q:; ]. Let us now extend Thereom (B I) 
for any complex D. 

Theorem B,2: For any subgraph q:;~ G, after dilatation 
relative to q:;, the functionYG(P,a,D) has the expansion inp 

YG(P,a,D) = Ip-DL(<p)-8'(<P)+K~'(a,D) 
k=O x, 

XY[G 1'1' J,. (p,a,D). 

(BS) 

Proof The functions~'(a)N andY(GI<pjr.(p,a)N are of 
the form (B 1), and, using Appendix A, we may in a unique 

way define their analytic continuation in D:y;,,'(a,D) and 

Y (p aD) We now prove (BS). The expansion in p of (GI<pJ •. " . 
YG(P,a,D,p) is necessarily ofthe form 

P(GI<p J(a)D 12p<p (a)D12 

x[ Ip--DL(<P)-8'(<p)+KFK(P,a,D)] 
k=O 

M. C. Bergere and F. David 
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where F t/.P,a,D ) is a polynomial in D. From Theorem B.l, 
for any integer N;;.4 

Hence, for D equal to any integer N;;.4, 

Since both sides of (BS) are polynomial in D and are equal for 
an infinite number of values of D = N, they are equal for any 
complex D. This proves the theorem. 

To establish the expression (11.4) for d (qJ), we have to 
make the two following remarks: 

Y~'(a,D) = ° if 8'(qJ) - K is odd, (B9) 

since we contract the vectorial indices by pair, and 

J1.'(a,D) = 0 (BlO) 

if K is smaller than the number v of derivative couplings on 
lines which are not inside a connected, IPI component of qJ, 
since such derivative couplings generates in y<p(p,a,D) a ho
mogeneous polynomial of degree v in the external momen
tump. Thus, the maximum value otl8'(qJ) - K] which gives 
a nonzero contribution to (B5) is given by d (qJ ) defined in 
(11.4) [8(qJ) = 8'(qJ) - v]. 

APPENDIX C: THEOREMS OF ABSOLUTE 
CONVERGENCE 

1. Introduction 

The purpose of this introduction is to remind the reader 
how to express the subtraction operator R in Hepp's sector 
(II. 1,11.2). The R operator acts upon the a variables of each 
subgraph and does not recognize the subgraphs (except for 
the subgraphs R) when the integrand is expressed in the,8 
variables. Consequently, before performing the change of 
variables (II.2), we must introduce new variables which al
low the generalized Taylor operators 7'1' to recognize its sub
graph qJ after the change of variable a-,8 is performed. The 
R operator is expressed as a sum over all nests .. A/ of products 
of r operators. If we consider only one nest ,/V, the corre
sponding,8 integrals diverge, but we know ls how to con
struct, for each sector u. equivalent classes of nests r such 
that. for the sum over all nests in r, the corresponding ,8 
integrals converge. We now resume here the main features of 
this construction. 

(0 Each equivalent class r is characterized by its maxi
mal nest ,(if and its minimal nest .. :v ~ ff. 

(ii) every nest,/Y such that % <;;;.ff <;;;. ff belongs to r; 
each nest belongs only to one equivalent class r and the sum 
over all equivalent classes reconstruct the sum over all nests. 

(iii) The subgraphs of any nest ff which belong to r 
can be partitioned into the subgraphs of % and some sub
graphs of JY' = ;g - %. Consequently, 

At this point we consider a given sector u and a given equiv
alent class of nests r. 

In the construction of % and Jr' IS we define from the 
subgraphs Ri the subnests %i and ,~i for i = 1 •... ,1 such that 
U%i = % and uJYi = JY and we label the sub graphs of %i 
and JYi by K j and H j forj = 1, ...• r i - 1. Moreover. 

KjCHiCKj+ 1 CHJ+ 1 C··· and 

H j = K j + {1(R 'uK D. (C2) 

~-l , , ' L [/(Hi)-I(Kj)] =/(R) for i= 1 •... 1. (C3) 
j=l 

Let us remind the reader that,il("i is never empty. We now 
define the new variables upon which the 7 operators act. 
Given a line aEf(;. we dilate the varible aa-aa(ojY. and 
given a line aEH;. we dilate aa-aa(xD2

• Then, we perform 
the change of variables (11.2). 

Theorem: We denote by (ur) the transformation ofa 
function Z (aa ) into a function Z ur(fJi'oj.X~' Then, the func
tion Zur is of the form Z ur (ojl,8i',8X~' The proof is given in 
Ref. 15.) Consequently, in the (ur) transformation 

PG(a)----.. IT (ojl,8i)2/(K) IT (,8xJ)2L(H;l[1 + Q(ul/3,,8X)], 
K;E,)/' H;E1! 

(C4) 

SG(a)----.. IT (ojl/3;) - d(K;) IT (,8X}) - d(H;)SG(ul/3,/3X), 
K;E,r H;6?1 

where d (qJ) is defined in (11.4), 

pd G l(a)p-(fJiX~y!iJ(p,ul,8,,8X)' 

2 2IT 'f32IT '2 m;ao-ma (oj/;) (fJxD . 
K;3a H;3a 

(CS) 

(C6) 

(C7) 

The functions Q,:5;;, !iJ have a "simultaneous Taylor expan
sion" in the variables ul/3 and/3x around zero. We now ap

ply to the integrand (111.1) the operators 7 ;- 21 (K;) corre

sponding to subgraphs of %, by following the rules gi'/en in 
(III.3). We get a sum of terms of the form 

~-1 , 
I .l: [DL(K) + d(K j'} - DL(H~ - d(H) - a;J IT,8! ' 

i=1 

x IT (1- r;(Hj')A1a;j(fJx), (CS) 
H;E,?1 

where O<aJ<(i).:j (K j) provided that all graphs K; are diver
gent (otherwise we get zero for this equivalent class) and 
where the function A la;j(fJX) has a "simultaneous Taylor se

ries" in /3x around zero. In (CS) the degree of subtraction 
(i) il (qJ) is defined, relative to a band B il = (..:1 <ReD 
<..:1',E[DL (qJ)] = E[AL (qJ)] for every graph qJI, inside 
which the R-operator subtracts, as 

(i) il (qJ ) = ..:1L (qJ) - 2P (qJ ) + d (qJ ). (C9) L IT (-'1'1'-21('1'))) = IT (-'1'1'-2/('1') II (1-7",-21('1'). 

, 1'EnpE 1- qJEY <pEJt" A subgraphqJ is said to be divergent if liJ.:j(qJ);;;'O. We now use 
(Cl) the integral representation for the rest of the Taylor series 
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relative to the divergent subgraphs H j, and we transform 
(CS) into 

iI Pf' f II. [dXj (1 - XP,u,,(H;) (_B_. )W,,(H;) + I] 
i~ 1 0 H;EW w4(H)! B<PXj) 

w,,(H;»O 

XA1a;j<PX)j x;~ 1 l' 
ru,,(H;)<O 

(CIO) 

with 
r,-I 

Pi = 2: [DL (Kj) + d(Kj) - DL (Hj) - d(Hi) - ail 
j ~ 1 ) } 

2. Absolute convergence of I ~A for !-La > 0, 
rna > 0, ReD<4 or 0 in the band B il 

(CII) 

To simplify the formalism, we consider in this appendix 
equivalent classes of nests instead of equivalent classes of 
forests of connected, one-particle irreducible subgraphs. As 
a consequence, the bands 

B 4 = ! DEC:E [DL (qJ )] 

= E [LlL (qJ )] for every subgraph qJ, Ll <ReD J, (CI2) 

considered in this appendix are in fact subbands of the bands 
defined in Sec. III. For each sector, the use of equivalent 
classes of nests makes the subtractions different in each sub
band although cancellation occurs between equivalent 
classes and between sector so that the complete R operator 
subtracts exactly the same quantitites for all subbands of the 
same band of Sec. III. Everything which is proved here in the 
subbands B 4 using equivalent classes of nests could be 
proved in the band of Sec. III using the heavier formalism of 
equivalent classes of forests of connected, one-particle irre
ducible subgraphs. 

The function II(; defined in (III.1) is a discontinuous 
function which depends upon the band inside which the R 
operator is defined; we call I '(;4 the function I I(; with the R 
operator defined in the subband B,::I' Using the introduction 
of this appendix, we may decompose 1'(;4 into contributions 
corresponding to each sector a and to each equivalent class 
of nests r. We need to calculate 

II[ J ]a;II[_J ],U,,(H;)+I{}I 
K; J(aj/P) H; J<Pxj) a;~o 

= r/J (pi,m~ - f1~'PX) exp [ - 2: (m~ - f1~) 
aE[G/uK;l 

X H;~3a<Px~ y] exp [-P«~1i7(P,O,/3X)] (C13) 

where the curly bracket { ) is the curly bracket in (II. 1) 
when P G and SG are replaced by [1 + Q] and SG' and ex
pressed in terms of Px; and oj/Pi' The function r/J is a con
tinuous function of the variables Pi and is polynomially 
bounded whenProo. We thus obtain a finite sum ofinte
grals of the form 
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f" dPfJ;l+p,- l:tI:fdPfJ7i+Pi-1 

X II t dxj(I - Xjt,,(Hj) 
H; Jo 

X exp[ - P;M(p,a"ma"x})]r/J '(pi,m~ - f1~'PX)' (CI4) 

In (CI4), the function r/J' has the same properties than the 
function r/J in (C 13). The absolute convergence of (C 14) is 

proved if M(p,a"ma"X~) and Re(2i + Pi) for i = 1, ... ,/ are 
strictly positive. In the mass term, we focus on that line a 1 

which belongs to R 1 = G but is outside R 1- 1 and which 
corresponds to the largest a in the sector. If this line belongs 

to (uK j), then M (p,a"mal,X~) is f1~, > O. If this line does not 
belong to (uK j) from (C2), it does not belong either to any 

H ~ I for ;'=FI; then, M (p,a"mal,X~) is equal to 

[m~, (x;)2 + f1~, (1 - X;n which is always positive if ma, and 
f1a , are positive. Now, by (C3) and (C9), 

rr~ 1 r, - 1 

Re(2i + p;)';p 2: [ - W4(Hj») + 2: (1) 
j~1 j=1 

w,,(H;) <0 ,u,,(H;»O 

r, - 1 

+ I [L (Hj) - L (Kj»)(Ll - ReD). (CI5) 
j~1 

For ReD.;;;Ll, since H j-::JK j that is L (H»L (K ), we have 
clearly (from the fact that 7[i is never empty) 

Re(2i + p) > O. (CI6) 

Now, for DEE,::I, the right-hand side of (CIS) is larger or 
equal to 

~-I ~-I 

2: [1 +L(H)(Ll- ReD)] + 2: [-wD(Hj»). 
j= 1 j= 1 

(CI7) 

Now thebandBD is such thatE [DL (qJ)] = E [LlL (qJ )]forall 
subgraphs qJ, that is, for divergent sub graphs 

ReD·L (Hj) <LlL (H) + 1, 

and for convergent subgraphs 

wD(H) <0. 

(CISa) 

(CISb) 

Again, )It''i nonempty makes Re(2i + Pi > O. This achieves 
the proof of absolute convergence of I '(;4 for ReD < L1 and 
for DEE4 . 

3. Absolute convergence of I ~ = O,A for 0 in the 
band Bil and ma>O 

We consider now the contribution to I I(; = 0,,::1 of one sec
tor a = ! aa, < aa, < ... < aa, J 4 and of one equivalent class of 
nests r. We now suppose that the lines a I,a 1 _ P "',a k + 1 be
long to the (uj( p and that ak does not belong to this union. 
By construction of the sectors, R i < K does not contain the 
line a k and since K ~,~KI does not contain a K , H ~,~\ does not 
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contain aK either. On the other hand, 

R i>K .. A'i G 
uij"' j= , (C19) 

and also, from the convention K~, = G ' :::J G IS and from 
(C2), 

(C20) 

Since the line a ,..ERi>K, a ~:,-~ I' Because all the subgraphs 
H j and K j form a nest, we conclude that H:'-~ I :::J (u;j( j) and 
then, by (CI9), (C20), H:'-~ I is the graph G itself. So, we 
have from (C2) 

(C2I) 

and thenK:,-~ I is nonempty ifi=l=1. Thepintegrals may now 
be written 

(00 dPd3;1 +p,- l'fi r'dP;!3 ~i + p, - I 
Jo i=IJO 

X II t dxj(1 - XJta(H;J¢ '(p,m,{Jx) 
Wd(H;»cJO 

xexp{ - iD}PX~'-1)2[m;K + l&'(m,p,{JX)]}, (C22) 

where l&'(m,p,{J,x) is nonnegative and is continuous in the 
variablespx· From(CII)and fori = /, sinceJY I = ! G I and 
,%1 = [G',¢ l,ts 

Re(2l + PI) = 21 (G) - ReDL (G) - d (G) > 0 

if Gis CV, (C23a) 

I > Re(2l + PI) = L (G )[.J - ReD] + I > 0 

if Gis DV. (C23b) 
The integration over PI may be performed; we get 

I-Ill I-I II dPi II p;i +p, - 21- p,- I IIp;i+P, - I 

i=IO i=K i<K 

X II rldxj(I-xjt~(H) iI(x~i_I)-(21+P') 
wJ(Hj'»O Jo i = K 

x¢ '(p,m,{Jx)[ m7
K 
+ l&'(m,p,px)J - {21 + p()/2. (C24) 

The X J integrals which occur only for divergent subgraphs 
H J (since X J = I for convergent subgraphs H j) are conver
gent by (C.23b). The Pi integrals for i < K are convergent by 
(CIS), (CI7), (CI8). Now, thePi integrals for K<i.;;;;l- I are 
convergent if [Re(2i + Pi) - Re(2! + PI)] is strictly positive; 
we have since Hi>K = R 1= G , r,- I , 
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r,-l . 

Re(2i + Pi) - Re(2l + PI» - L L (Kj)(J - ReD) 
j= I 

+ 
r, - 2 . 

j ~I [I + L (H ;)(.J - ReD)]}. (C2S) 

By (CI8), the curly bracket [ I in (C2S) is positive, or null if 
JYi = [H~, _ I I. On the other hand, K ~,_ I is never empty 
for K <i <l [see (C21 )]; since all K j are divergent, L (K j) is 
> 0 [otherwise by (11.4), {j).:1 (K j) = - 21 (K j) < 0]. Conse
quently, for DEB.:1' 

Re(2i + p) - Re(2l + PI) > O. (C26) 

This achieves the proof of absolute convergence of I ~ = 0 . .:1 

for DEB.:1' It is interesting to note that the ultraviolet condi
tions of convergence [Re(2i + p;) > 0] are conditions on the 
right boundary of B.:1' while the infrared conditions of con
vergence ! Re(2! + PI) < I, [Re(2i + p;) - Re(2! + PI)] > 0 I 
are conditions on the left boundary (ReD =.J) of B.:1' 
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An algorithm to construct evolution equations with a given set 
of conserved densities 

A. Galindo 

Department of Theoretical Physics, Universidad Compiutense de Madrid, Madrid-3, Spain 
(Received 4 August 1978) 

This paper provides a simple formula to construct evolution equations 
Ur =!(u,u;,uij"") having a prescribed finite set !p(l), p(2)"",p(N)j amongst its 
conserved densities. Besides its usefulness as a constructive algorithm, such a formula 
can also yield valuable information on the structure of the set (c(f) of all conserved 
densities under a given evolution equation U r = f 

I. INTRODUCTION 

In recent years a considerable effort in the study of non
linear partial differential equations has produced most re
markable results both at the classical and quantum level, 
with the development of new and powerful techniques such 
as the inverse scattering method, 1 nonperturbative analysis 
of extended systems,2 or the systematic application of Lie
Backlund invariance arguments, J amongst others. The phys
ical interest of the subject is wide, ranging from nonlinear 
optics to hadron physics. Mathematically, this research area 
represents a real challenge where hard functional estimates 
usually combine with geometrical and physical insight to 
establish results which are not only rigorous but interesting 
as wel1. 4 

An important aspect in the theory and applications of 
nonlinear PDE's is the analysis of their conservation laws. 
Prominent equations, as the Korteweg-de Vries or the non
linear cubic Schrodinger equations, are known to possess an 
infinite number of conserved currents. S That this may be 
exceptional should not surprise, since for instance such a 
simple evolution equation as ur = Uxx has essentially just 
one conserved density (namely p = U),6 whereas the (nonlin
ear if n>2) equation U r = Uxx + un has none.' 

The aim of this paper is to provide a simple formula to 
construct evolution equations 

(1) 

having a prescribed finite set f!ll = !p (l), ... ,p (N) I among its 
conserved densities. Apart from the clear interest it has as a 
constructive algorithm, such a formula can also yield frag
mentary, yet valuable, information on the reciprocal, rel
evant and obviously more difficult question: Given (1), de
termine the set C(; (I) of all its conserved densities and 
properties thereof. 

In Sec. II the notation is set up and our problem is pre
cisely formulated. In Sec. III we derive and illustrate the 
algorithm for the simpler (1 + I)-dimensional case; in addi
tion, several applications are presented which partially bear 
on the aforementioned converse problem in some specific 
instances. Finally we generalize our algorithm to (n + 1)
space-time in the last Sec. IV. 

II. FORMULATION OF THE PROBLEM 

Let u(x,t), x_(x1"",xn )ElR n, tElR, stand for a (real val
ued) function which will be tacitly assumed sufficiently 
smooth (C 00 if necessary). We shall write Ur au/at, 

U;, ... ;, arU/aX;, ... axi, for its partial derivatives. 

Let .'7 In ' m >0, denote the quotient field of the ring of 
all (real valued) functions g(u,u" ... ,ui, ... i) depending (also 
smoothly) on the partial derivatives of u up to order m. Any 
/E.r;- m=.7 m -.7 m _ 1 will be called of order m. We shall 
write .7 _um.Y m' The subsets of :T m ,Y m ,.7 obtained 
upon restriction to functions/(.,., ... ) with polynomial depen
dence on their arguments will be denoted by 9 m' q; m' .CjJ 

respectively. 

It is plain that the operator a/axi(i = 1, ... ,n) extends 
naturally to :T as the total derivative opertor D; in the X; 

direction 

D; I (2) 
il .. ·it 

Similarly, given an evolution equation (1), with/E.7, the 
associated total derivative operator Dr in the time direction 

au; .... ;, a 
Dr I--

;, ... ;, at au;, ... ;, 

(3) 

Clearly 

[D;,Dj] = [D;,D r ] = 0, 'if ijE! 1, ... ,n]. (4) 

An element pE.'F is called a conserved density for the 
evolution equation (1), where/E.'7, and we shall then write 
PEC(; (f), whenever there exists a-(ah ... ,a n )EY(i.e.,ajE.'F) 
such that 

Dylp = D·a( IDja) 
j 

for every solution u(x,t ) of (1). 

(5) 
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It follows from (4) that D.bE~(f),'VbEY, and hence 
from those pEY which are total divergences represent con
served densities for alII Such densitiesp in the range ofD are 
called trivial, and we will write p - O. When sufficiently small 
at infinity, a trivialp leads to vanishing total charge fp d nx. 

Both ~ (I) and RanD are linear subspaces of Y. The 
linear dimension ofthe quotient C (I) CIJ (f)/RanD can be 
interpreted as the number of essentially linearly independent 
conserved densities for U t =1 And so, dimC (u xx ) = 1, dim
C (u xx + un) = 0, whilst dimC (u xx + uUx ) is infinite. 

In terms of the variational derivative 

4- L (-lt D;""i
k

-a a 
uU i]'··;J.. U i1 "' ik 

(6) 

it is well known8 thatpECIJ(f) if and only ifj(8p/8u)-0. 
Therefore, since (8!8u)Dj = 0, ifpE~(f) then 
(8/8u)[(8p/6u)] = O. Conversely/if/(6p/6u)EKer(6/6u) 
and 1(0,0,..·) = 0, then pECIJ (f). 

Let now .%'=[p (l), ... ,p (N)J be a finite subset of Y. The 
question arises which is the most general lEY such that 
.%' C CIJ (f). This will constitute our main problem to be dealt 
with in the sequel. Clearly no generality wiII be lost by as
sumingp (l), ... ,p (N) to be essentially linearly independent [_ 
linearly independent modulo Ker (8/6u)]. 

For latter use the following notation will prove useful: 
Given.%', and taking first n = 1, let us recursively define 

(7) 

where D =D I (total derivative with respect to the single spa
tial variable XI -x), and i,j(=I=I), ij (=I=ik ifj=l=k) are elements 
of [ I, ... ,N J. Since p (I), ... ,p (N) are supposed essentially lin

early independent, no r;;,.J", can identically vanish. 

Similarly, for n > I, and a;, ... ; .. arbitrary elements of Y, 
define 

.= (6/')) -1 ',- , ou ( 
r. ) - 1 

rij= D --;. aij aij' 
J 

(8) 

Again the expressions within parenthesis will not identically 
vanish for generically chosen a·s. 

III. THE (1 + 1)-DIMENSIONAL CASE 

As announced in the Introduction. we shall now derive 
an algorithm to construct an evolution equation ut = J, 
lEY, such that ~(fr~.%' = [p(l) •... ,p(N)J,U = u(x,t),xER. 
and p(I), ... ,p(N) are essentially linearly independent. 

Lemma I: p(z)E~ (f)<;::?1 = r; Dqi' q,EY. (Evident 
from our discussion in Sec. II.) 
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Lemma 2:p(z),p(j)E~(f),i=l=j¢1 = riD [rijDqij],qijEY. 

Proof (~) Lemma 1 implies 

1= r; Dq; = rjDqj 

and hence 

Dqj = (r/r)Dqi' 

Therefore, qj = (r; / rj )q; - q ij' with 
Dqij= [D(r/r)]q;. 

whence q; = rpqij. 

(9) 

(<=) Iff = riD [rij Dqij]' then (9) holds withq;_rijDqij' 
qj (r/r)r,jDqij - qij' It suffices now to apply Lemma 1. 

Lemma 3: Let (ih ... ,im ). m>2, be an arbitrarily ordered 
subset of (I, ...• N). and let q;, ... ;.. ,EY. The following state
ments are equivalent: 

(a);, ... ;",:3q;",EY such that 

riP [r;,ip [r;,;,;p [ ... D [r;, ... ;", ,Dq;, ... ;", I] ••• j ] j = r;,pq;", 

(b );" .. ;",:3q;, ... ;",EY such that 

q;, ... ;", I = r;, ... ;",Dq;, ... ;"" 

Proof For m = 2, it is a mere consequence of Lemma 2. 
Let us proceed inductively, and suppose thus that 

(a);, ... ;", 2;",¢(b );""i", ';,,; 

(a);, ... ;",=:,,(b );" .. ;",: 

If q;, ... ;", 1 r;, ... ;", ,Dq;, ... ;", " then 3q;, ... ;", i", , 

such that 

It suffices now to define 

_ r;, ... ;", I 

Qi1"'i",= r.. . qij ... i", 1- qij ... i", im-
11,"'", 2

'
m 

(b );, ... ;",=:"(a);, ... ;,,,: 

If 

q;, ... ;", 

we get 

and hence 3q;", such that 

riP [r;,;p [ ... D [r;, "';", ,Dq;, ... ;", 1 j ... ]] = r;",Dq;,,; 

This completes the proof. 

Theorem 1: .%' C ~ (f) if and only if 

1= r;,D [r;,;p [r;,up [ ... D [r;, ... ;Pq; .... ;,l···jjj, 

where (ih ... ,iN ) is an arbitrary permutation of (l •... ,N). 

(10) 

Proof For N = 1,2 the claim follows from Lemmas I 
and 2. Let us argue by induction, assuming thus that our 
assertion holds when.%' has N - I elements. 

"if": Writing q;, ... ;, ,=r;, ... ;,Dq;, ... ;" the induction hy-
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pothesis yields immediately p(i,), p(i'), ... ,/iv .. ')E'G' (f), and 

Lemma 3 impliesl = riPqiJor some q;,,> so that (Lemma 1) 
/i')E'G'(f). 

"only if": From p(j,), ... ,p(;' ')E'G' (f) we have 

1= rjp [rj,j,D [ ... D [rj, ... j, ,Dqj, ... j, ,] ... ]] 

while /j')E'G' (f) implies 

1= r;pqj,' 

Lemma 3 shows then that qj, ... j, 

qj, ... j,EY. 
, = rj, ... ;,Dqj, ... ;, for some 

The proof is complete. 

A. Examples and applications 
(l)Let8f = !(m!) -Ium, l<m<NJ. Then (7) leads to 

r1 = 1, r12 = I/Du, .. ·, rI2 ... N = I/Du 

and hence (10) yields 

1= D [~ID [ ... D [~l DqI2 ... N ] ... ]] (11) 

as the most general expressionforlsuch that 8f C 'G'(f). (We 
write un D nu.) 

In particular, if 

qIZ ... N = lUdVllv'dV2· .. lvV 'dvNg(VN), 

then I = g(u)u l. Besides, ql ... NEYr,r> D-:::::?/EYr+ N' 

Therefore, 

Corollary 1: 9 oC 'G'(f)¢:;,/ED.7o• 

For the purpose of illustration, we present the result of 
(11) for several simple choices of q I ... N ( q for short) and N: 

q = !ui, N = 2-+/= u J, 

q = !u~ + ~u\ N = 2--+/ = U J + uul(KdV), 

q = uiu2, N = 2-+1 = u1u. + 5u2uJ, 

q = !ui, N = 3-1 = u1u. + 5u2u" 

q = ~u~, N = 4---+1 = uius + 13u1u2u. + 35u~uJ + l1ulu~, 
q = u7u2, N = 4---+1 
= uiu6 + 24uiu2uS + 55u~uJu. + 165ulu~u. + 280UIU2U~ 

+ 315u~uJ' 

(2) Let 8f =! - [em + I)!] -lu;n+I, l<m<NJ. 
Then (10) leads to 

Thus, for example, if N = 2 and ql2 = !ui, then 

1= u2u. + 2u~. 
The choice 

ql ... N = lU'dVllv'dV2 .. ·1vN 'dvNg(VN) 

(12) 

yieldsl = g(u l), whereas ql ... #Y"r> 1=>/EYr+ N' and 
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ql ... #Y h (JIJu)ql ... N"1=D-:::::?/EY 1+ N' SO we have 

Corollary 2: 'G'(f) contains all polynomials in U1 if and 
only if I = I(u l). 

(3) Let 8f = ! u, - !u~ J. Now (10) becomes 

1= D [(l!U J)DqI2]' (13) 

In particular 

q = !u~-+I = uJ, 

q = u~u.-+I = UJU6 + 5u.us• 

Furthermore, it is easy to see from (13) that ~/EfJj. 
such that UI,UiE'G'(f). 

(4) Let lEY M' M>2, 8f = !p(I),p(2)J cY M' where 
M=[M /2 - 1]([s] denoting the integer part ofs). In order to 
have 8f C 'G' (f), Theorem 1 shows that necessarily 

I = riD [r12Dql2] 

with ql2EY M _ 2' i.e.,: 

1= aUM + bU~_1 + CUit_1 + dUM_ I + e, 
(a'u M _ I + b')2 

(14) 

wherea, ... ,e,a',b 'EY M _ 2 ,anda' = D-:::::?b = O. In particular, 
if we impose in addition thatfbe polynomic, then necessarily 

l=auM+bu'it_1 +CUM_ I +d (15) 

with a,b,c,dE7 M _ 2. Therefore, we have 

Corollary 3: 8f = !p(l),p<2)J cY Mn'G'(f), lEY M 
(resp. fJj M ),M>2, only if/is of the form (14) [resp. (15)]. 

Remark: For M even>2, it is known7 that 
.'7 M n'G'(f) = 'G'(f) modulo RanD, and thus (14) [(15)] 
gives the most general expression for/EY M (fJj M ) such that 
ut = Imight have at least two essentially linearly indepen
dent conserved densities. 

(5) Let 8f = [p(t),I<i<N J cYo.1t follows from (10) 
that 

(a) ql ... NEY o=>/ED.'7o. 

Conversely, it is clear that YoC {{f (I) for any IEDYo. 

(b) ql ... ~L7 M _ N' M> N=>I = aUM + b, aEY M _ N' 
bE.7M . 1 

Therefore, given/EYM , M>2, the maximal number of es
sentially linearly independent conserved densitiespEYo un
der u t = lis M - 1. This bound is optimal, even for polyno
mials: if8f = {(m!) - IU m, l<m<N J, N>2, then the choice 
ql ... N = (2(N - 1» - lui(N - I) leads to a polynomial 

1= ul(·· 2UN + I + (lower order terms); besides, UE'G'(U2)' 

Similar arguments show finally that if/EY M' M>2, the 
maximal number of ess.l.i. conserved densities p(u l ) under 
U t = lis again M - 1. However, for/EfJj M' such bound is 
M - 2, which is also optimal. 

IV. GENERALIZATION TO THE (n + 1)
DIMENSIONAL CASE 

It is rather straightforward (so we omit the proof) to 
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extend the previous theorem to the case where xER n,n > I, 
with the result 

Theorem 2: fYi C C(j if) if and only if 

f = r;,D.[C;,;,D.[C;,;,;,D' [ ... D,[c;,···(vD·q;'···;N]··· J] J, (16) 

where q;""(vEY, (i1o ... ,iN ) is any permutation of (1, ... ,N), 
and the c's are obtained through (8) for some set of a's. 

Let us illustrate (16) with a couple of examples: 

(I)fYi = {U,1u 2 j. Then (16) becomes 

So, if 

al2 = (..1u)Du + D(Du.Du), ..1 =D·D, 

ql2 = (Du·Du)Du, 

(17) yields 

f = (..1U)2 + 3Du·D..1u + 2"2JD!Jp)2 
ij 

(17) 

(18) 

which is invariant under SO(n). Simplerf's can be obtained if 
this rotational invariance is not required: 

al2 = sERn, q12 = !(s·DuYs---+ 

f= (s·D)Ju 

a l 2 = sERn, ql2 = .!..(s.Du)Js---+ 
3 

f = [(s.DYuJ2 + (s·Du)[(s·D)JuJ. (19) 

By averaging (19) over all directions ofs the expression (18) 
results. 

(2) fYi = {u, - !Du·Du J. Then (16) leads to 

(20) 
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which is the same as (17) with u replaced by ..1u. Therefore, 
just as for (18), we get 

f = (..1 2U)2 + 3D..1u·D..1 2U + 2~:<D!Jj..1U)2 (21) 

and so on. ij 
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New expressions for the eigenvalues of the invariant 
operators of O(N) and Sp(2n) 
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In the spirit of the recent work of Popov for u( n). we derive a direct expansion of the eigenvalues of the 
invariant operators Cp for the orthogonal and symplectic groups in terms of the power sums with 
completely specified coefficients i3p (v), which are easy to compute. The resulting expression. which is a 
complete analog of the u( n) results, is closed, simple and manifests the general structure of the C

p
. It is 

now possible to say for what value of p a particular combination of the Sk'S begin to appear. Explicit 
applications of these results in computing the Cp for p:£ 8 illustrate fully their simplicity. Thus our work 
simplifies and unifies the treatment of this aspect of the problem for the semisimple Lie groups. 

I. INTRODUCTION 

The unitary, orthogonal, and symplectic groups which 
form the various series of the semisimple Lie groups, play an 
important role in the understanding of several branches of 
modern physics. The invariant operators of these groups 
(also called Casimir, Gel'fand operators) are useful in this 
respect. Their eigenvalues are used to label the irreducible 
representations of the groups, and can be identified with the 
quantum numbers of some physical observables. The prob
lem of constructing generalized Casimir invariants for the 
semisimple Lie groups now seems completely solved. The 
colateral problem of finding simple methods of computing 
their eigenvalues continues to receive attention. H 

A remarkable simplification was introduced into this 
problem by Perelomov and Popov2 who working in tensor 
basis (rather than the complicated Cartan basis), were able 
to express the eigenvalues of the operators Cp as sums of 
elements of a matrix raised to power p. By diagonalizing this 
matrix for u(n) they obtained a closed expression for the 
eigenvalues of the Cp in terms of the integers Ai which char
acterize the irreducible (tensor) representations. A similar 
closed form [Eq. (2.2)] was obtained for the orthogonal and 
symplectic groups by Rashid and the present author? (also 
see Ref. 9). These forms though convenient for studying the 
structures of the Cp do not manifest its polynomial depen
dence on the A./s. Moreover, practical calculations using 
them (even for small values of p) appear tedious for any but 
very low values of n. 

Further simplification to this problem was achieved3
•
8 

by introducing suitable generating functions, which enable a 
polynomial expansion of the Cp in terms of power sums S k 

defined as functions of the A/s [see Eq. (17) of Ref. 3 and 
(5.3) of Ref. 8]. However, these expansions are expressed 
indirectly through the quantities B q, introduced in the text. 
In this form a great deal of work needs to be done to obtain, 
for instance, the coefficient of an arbitrary S k (or an arbitrary 
combination of the products of Sk'S) in the eigenvalue of Cp 

"Permanent address: Department of Mathematics, University of Benin, 
Benin City, Nigeria. 

for any p. Moreover this form of the expansion lacks coher
ence and conceals the general structure of the Cpo Realizing 
these defects, Popov, in a recent paper,'o developed further 
the applications of the generating functions technique to the 
case of the unitary groups, obtaining a direct expansion of 
the Cp in terms of the power sums Sk (and various combina
tions of products of Sk) with easily obtainable coefficients 
(3lv) [Eq. (3.24»). This results in considerable simplification 
of the calculations and clarifies the general structure of the 
Cpo 

In this paper we aim at solving the corresponding prob
lem for the cases of the orthogonal and symplectic groups. 
We obtain in Eq. (3.22) a direct expansion of the eigenvalues 
of the Cp in terms of power sums with completely specified 
coefficients (3l v), which are relatively easy to determine. 
This equation is the complete analog of the expansion of 
Popov for u(n). The simplicity of our results is illustrated in 
the particular cases treated. Specific values of the Cp for p< 8 
computed using this equation are displayed in Table II. Thus 
our result simplifies and unifies the treatment of this aspect 
of the problem for the semisimple Lie groups. 

A brief summary of previous results needed in what 
follows, together with some definitions, is provided in Sec. II 
of this paper. Section III contains the derivation of the main 
expansion, the applications of which are illustrated in Sec. 
IV. Section V gives the concluding remarks. There is an ap
pendix which demonstrates the proof of a useful identity. 

II. SUMMARY 

We define the invariant operators of order p of the orth
ogonal group O(N) (N stands for 2n or 2n + 1) and the sym
plectic group Sp(2n) by 

(2.1) 
il.i" .... i!' 

where X; (ij = - n, ... ,n) are the infinitesimal generators of 
the groups whose commutations relations are specified in, 
for instance, Ref. 7. Here the indices i,} include zero only for 
the case of the O(2n + 1). There are N (N - 1)/2, n(2n + 1) 
independent generators for the O(N) and the Sp(2n), 
respectively. 
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The irreducible (tensor) representations of these groups 
are characterized by n integers/; (ordered such thatfn>fn _ 1 

> ... >J;), which correspond to the eigenvalues of the n-inde
pendent diagonal generators on the highest weight of the 
representation, n being the rank of the group. It has been 
shown that the eigenvalues of Cp for the 0(2n), Sp(2n), and 
0(2n + 1) in this order, can be written in the form7

-
9 

Cp = r Af 
j= - n 

Ai - n + 1 

Ai- n +! 
Ai - n - 1 

Ai- n -! 
Ai - n -! 
Ai - n - 1 

(2.2) 

where the summation and the product include zero only for 
the 0(2n + 1). In Eq. (2.2) 

f/; + n + ~ - (I + E), for the 0(2n) 

Ai = t + n + I, for the Sp(2n) 

/; + n + i - eOi' for the 0(2n + 1) 

(2.3) 

where 

Ei= 1, -1,0 fori>O,i<O,andi=O,respectively, 

and 

eji = 1 (0) for j <i 0>/). 
We define the power sums Sk' for nonnegative integers 

k,by 

n 

S k = I (A 7 - p~ (So = SI = 0), (2.4) 
i= -n 

where 

Pi = Ai - /; = n + i - (I + Ei ),n + i,n + i - eOi' (2.5) 

for the 0(2n), Sp(2n), and 0(2n + 1) groups, respectively. 
This definition is related to that of Ref. 2, p. 1127, Eq. (19), as 
follows, 

Ai = Ii + a and Pi = r i + a, (2.6) 

where a = n - 1, n, n --}: for the 0(2n), Sp(2n), and 
0(2n + 1), respectively. The definitions of this reference has 
the advantage that the symmetry of the Weyl S group (the 
group of reflections in hyperplanes perpendicular to the root 
vectors) can be most conveniently applied only when Cp is 
expressed in terms of the variables 1;. However, our defini
tion has the advantage that thep/s are precisely the values 
assumed by the A /s for the identity representation. This 
property is used in the derivation of the results below. 

III. DERIVATION OF THE EXPANSION 

From now on we concentrate on the case of the 0(2n) 
and Sp(2n) groups. The final results for the 0(2n + 1) are 
obtained from those of the 0(2n) by II replacing n by n + !, 
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according to the ansatz prescribed on p. 1389 of Ref. 8. The 
upper (lower) sign stands for the 0(2n) [Sp(2n)] throughout. 

Equation (2.2) can be transformed into a contour inte
gral in the A plane, 

C = _ _ l_!dAApA-n± 1 
p 21Ti J A - n ± ! 

(3.1) 

the integration being taken in a positive sense along any large 
circle with origin as center and containing all the poles of the 
integrand. The additional term takes care of the poles at 
A = n =F 1 that have no corresponding terms in Eq. (2.2). 

On making the substitution A = liz, Eq. (3.1) becomes 

C = __ 1_! F(z)dz + l(n=Fl)p 
p 21Ti J z p -+- 2 - 2 2' 

(3.2) 

where 

F(z) = 1 - (n=F l)z IT (1 _ z ) (3.3) 
1- (n=F!)z i= -n l-AiZ' 

The integration in Eq. (3.2) is in a positive sense along any 
small circle with center at the origin but excluding all the 
poles of F (z). 

From Eq. (3.3) 

F(z)=ln[I-(n=Fl)z]-ln[1-(n=F!)zJ 
00 Zk n - L - I [(Ai+ 1)k- A 7J· 

k=l k i=-n 

The sum l:7= _ n[(Ai + l)k - A 7J. can be expressed8 in the 
form 

= :t~ e)s[ + (2n =F l)k + nk - (n =F 1)\ 

so that 

+In[I-(2n=Fl)zJ+ln[l-nzJ. (3.4) 

Now letf(z) be defined by 

F(z) = Fo(z)f(z), (3.5) 

where Fo(z) is the function F(z) for the identity representa
tion given by Ai = Pi' [For this representation Sk = 0 for all 
k.] 

For the 0(2n), 

1 - (n - l)z nn (1-Fo(z) = ---'--~ 
1 - (n - ~)z i = - n 

so that 
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InFo(z) 

=In[1-(n-l)z]-ln[I-(n-!)z]+ i 
i= -n 

{In[ I - (n + i - €j )z] - In[ 1 - (n + i-I - €j )z]) 

= In[1 - (2n - l)z] + In[1 - nz] -In[1 - (n - !)z]. (3.6) 

Similarly for the Sp(2n) 

lnFo(z) 

= In(1 - (2n + l)z] + In[1 - nz] - In[1 - (n + !)z}. 
(3.7) 

Equations (3.4)-(3.7), for both cases, result in 

00 Zkk_l(k) 
Inf(z) = - L - L S/. (3.8) 

k=lk/=o I 
The right-hand side of Eq. (3.8) is the same as 

- L Zk f (k)SI 
k> I k '=0 / 

= - f ZkSkI (k+l\~ 
k=O 1=1 k Jk+l 

= - f S~k + l¢;k(Z) (So = SI = 0), 
k=2 

where 

¢;~) = f (k + l)!z' = ~ [(1-Z)-k -1]. 
1= 0 k 1(1 + 1)1 kz 

(3.9) 

Therefore, 

f(z) = exp{ - k~2 S~k+l¢;k(Z)} 

(3.10) 

A typical product term of the form S ~'S 3'··o8~· occurs in the 
expansion of Eq. (3.10) with a factor 

(- )V [¢;2(Z») V'[!fJJ(z») v, ••• [¢;k(Z)],,'z'" + 1, 

[v!] 

where vz, Vh"',Vk are nonnegative integers satisfying 

K + 1 = 3vz + 4vJ + '" + (k + l)vk (3.11) 

and 

11 = V2 + VJ + .. , + Vk' [v!] = v2!vJ!"'Vk!' 

so we can write 

(3.12) 

where QI(V) is defined by 

I Q,(V)ZI = [¢;2(Z)]V'[¢;J(z)]V'···[¢;k(Z)]'" (3.13) 
'=0 

and (v) means the set of nonnegative integers satisfying the 
constraint (3.11). 

1262 J. Math. Phys., Vol. 20, NO.6, June 1979 

We next introduce the Casimir operator Cp by means of 
the generating function G (z) defined by 

G(z) = f CpzP 
p=o 

which, by virtue of Eq. (3.2), implies the relation 

zG(z) = f CpzP+ 1 
p=o 

= 1- F(z) ±! f (n=F!YzP+ 1. 

p=O 

Thus 

1- f [C/F!(n=F!Yl zP + 1 

p=o 

= F(z) = Fo(z)f(z) 

= [1-(2n=Fl)z][1-nz] fez) 
[1 - (n =F !)z] 

[the last step follows from Eqs. (3.6) and (3.7)]. 

Now from Eq. (3.12) 

[1-(2n=Fl)z](I-nz) fez) 
[1 - (n =F !)z ) 

= 1 ( I L (- )V 
[1 - (n =F !)z] 1 = 0 (v) [v!] 

- (3n =F I)Qm _ leV) + n(2n =F I)Qm _ iv)] 

(3.14) 

x(n=F!i-m}Zk+I+1 (Q-l = Q-z =0). (3.15) 

Thus comparing coefficients ofzP + I in Eq. (3.14), using Eq. 
(3.15), we get 

Cp = ± !(n=F!Y - L{3/V)S~'S3""S~' (P;;.O), (3.16) 
(v) 

where 

+ n(2n=F I)Qm _iv)](n=F·D'- m (/ = p - K;;.O). 

(3.17) 

Equation (3.16) is the preliminary form of the expansion we 
set out to derive. Before casting it into its final form, we need 
to consider first some particular cases. 

First, from the definition (3.13) 
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Qo(v) = 1 for all (v), Q,(O) = 0 for all I> 1. (3.18) 

For p = 0 only (v) = (0), i.e., Vk = 0 for all k is a solution to 
(3.11) corresponding to K = - 1 or I = 1. Thus from 
(3.16)-(3.18) 

Co = 2n. (3.19) 

It is not difficult to prove that for all p > 1, the contribution to 
Cp in Eq. (3.16) corresponding to the zero set (0), i.e., to 
K = - 1 vanishes. 

Indeed, for this case 1= p + 1 >2. The contribution due 
toK = - 1 is 

Cp(K = -1) 

= ± !(n ::qy - [(n 'f'!y + 1 - (3n'f' 1)(n 'f' lY 

+ (3n 'f' l)(n 'f'!) - n(2n - 1)] 

=0. (3.20) 

As a corollary, since only K = - 1 contributes whenp = 1, 
it follows that 

C! = O. (3.21) 

Incorporating Eq.s (3.20) and (3.21) into Eq. (3.16) we final
lyobtain 

Cp = - LPp(v)S~'S~, .. .s~A (p>K>2), (3.22) 
(v) 

wherep/v) is given by Eq. (3.17) and can be recast in the 
more covenient form: 

'-2 ) + n(2n'f' 1) m~o Qm(n'f'~)'-m-2 

= \~!~v {[Qo(n'f'!)'-2+Q!(n'f'~)'-3+"'+Q'_2] 

x [(n 'f'~)2 - (3n 'f' l)(n 'f'~) + n(2n 'f' 1) ] 

that is, 

1= p - K, p>K>2, Q_!(v) = 0. (3.23) 

Equation (3.22) together with (3.23) is the main expansion 
we seek. The problem of finding the eigenvalues of the Cp for 
the O(2n) and Sp(2n) is reduced to the problem of finding the 
coefficientsp/v). The results for the O(2n + 1) are obtained 
by replacing n in the O(2n) expansion by n + !. These results 
may be compared with the corresponding results ofPopovlo 

for the u(n), 

Cp = - LP/v)Sr'S~' .. .s~' (p>K> 1), (3.24) 
(v) 

where 

and 

K + 1 = 2v! + 3V2 + ... + (k + l)vk' 

Thus our result ties together the treatment of this problem 
for the semisimple Lie groups. The practical uses of these 
equations are illustrated in Sec. IV below. 

IV. COMPUTATION OF THE COEFFICIENTS 
(3p(v) 

(a) The terms of layer K: The first step towards the com
putation ofP/ v) is to determine the sets (v) which satisfy Eq. 
(3.11) for any given K satisfying 2 <,X <po This is easily done 
by solving Eq. (3.11) directly. For example, for K = 2 the 
only solution set is V2 = 1, Vk = 0, k=/=2. While for K = 7, the 
solution sets are v, = 1, V k = 0, k=/=7; V 4 = 1, V 2 = 1, vk = 0, 
k:i=4,2 and VJ = 2, vk = 0, k=/=3. Thus for K = 2 only the 
terms S2 appears in the Cp ' while for K = 7, there are three 

terms S,' S2S" and S~. The terms appearing for values of K 
up to 10 are shown in Table I, where use is made of the 

TABLE I. All terms on and above the line K = p appear in the coefficient p'p. The total number of such terms is denoted by n p' while n, denotes the number of 
terms appearing for each value of K. 

K Terms oflarger K n, np 

2 2 I 1 
3 3 I 2 
4 4 I 3 

p 5 5 2' 2 5 
6 6 (3,2) 2 7 
7 7 (4,2) 3' 3 10 
8 8 (5,2) (4,3) 2' 4 14 
9 9 (6,2) (5,3) 4' (3,2') 5 19 

10 10 (7,2) (6,3) (5,4) (4,2') (3',2) 6 25 
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abbreviation, 7 for S7, (2,4) for S,S., and J2 for S~, etc. [Note 
that this table lO is the same as that for the SU(n).] 

(b) The coefficients Q{(v): The next step is to calculate 
the coefficients Q{(v). To do so we need to use the identity 
(established in the Appendix) 

¢k,(Z)¢k,(z)"'¢k,(Z) 

1 
= k k k r r- 1 {(k 1 + k, + ". + kr)¢k, + k, + ... + kJz) 

I ,'" Z 

(4.1) 

where com. means all combinations of khk"".,kr for each 
term in the square bracket. Equations (AI) and (A4) are 
examples of (4.1) for r = 2,3, respectively. 

From Eqs. (3.9) and (3.13) the coefficient ofz' in the 
Taylor series expansion of (4.1) is 

Q{(Sk,Sk,,,,sK) 

= 1 [ (kJ + k, + ... + kr + 1+ r - I)! 

k,k,,,·kr(l + r)! (k, + k, + ... + kr - 1)1 

_ (k, + k, + ... + k, _ I + I + r - I)! 

(k, + k, + ... + k r _ I - I)! 

(k,+k,+ ... +kr_2+I+r-l)! 

(k,+k,+ ... +kr_ 2 -1)! 

+ .. , + -) + com.k"k" .. ·,kr . ( [(k,+l+r-l)! )) 
(k, - I)! 

(4.2) 

Here, Ql(Sk, .. ,sk) stands for Q[(v) for the particular set (v) 

given by vk , = vk, = ... = Vk, = 1, all other v's vanishing. 
This notation will be used whenever convenient. For 
example: 

(i)Forr= 1, set k, =k, 

Q (S ) - 1 (k + I)! (4 3) 
1 k - (/ + 1 )! k ! . . 

(ii) For r = 2 

Q,(Sk,Sk) 

1 ( (k, + k, + I + 1)\ 

kJk,(l + 2)\ (k + k, - 1)\ 

_ (k, + I + I)! _ (k, + I + I)! ). (4.4) 
(k 1 - I)! (k, - I)! 

In particular if k, = k, = k, 

Q(S2)- 1 (2k+l+l)! _ 2(k+l+l)!). 
{ k - k '(I + 2)! (2k - I)! (k - I)! 

(4.5) 
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(iii) For r = 3 

Q{(Sk,Sk,Sk) 

1 ( (k1 + k, + kJ + I + 2)! 
- k,k,kJ(l + 3)! (k1 + k, + kJ - I)! 

(k1 + k2 + 1+ 2)! 

(k 1 + k2 - I)! 

(k, + kJ + 1+ 2)! 

(k, + kJ - I)! 

(k, + kJ + I + 2)1 + (k, + 1+ 2)! 
(k2 + kJ - I)! (k, - 1)1 

+ (k, + 1+ 2)1 + (kJ + 1+ 2)1 ). 
(k2 - I)! (kJ - I)! 

If in this case, k2 = kJ = k 

Q{(Sk,Si) 

(4.6) 

1 ( (2k + k, + I + 2)! (2k + I + 2)! ) 
= k 'k,(l + 3)! (2k + k, - 1)! - (2k - 1)1 

_ 2(k + k, + I + 2)! + 2(k + I + 2)! + (k 1 + I + 2)! ) 
(k + k, - I)! (k - I)! (k 1 - I)! . 

If further, k, = k, = kJ = k, (4.7) 

Q[(Sf) = ----
1 ( (3k + I + 2)! 

k J(l + 3)! (3k - 1)1 

_ 3(2k + 1+ 2)! + 3(k + 1+ 2)! ), 
(2k - I)! (k - I)! 

(4.8) 
and so on. 

Equations (4.3)-(4.8) give all the Q{(v) needed for com
puting all thepp(v) and hence the Cp for p< 10. We illustrate 
this with a few examples. 

(c) The coefficient Pp(Sk): From the solution set to Eq. 
(3.11) (or from Table II), the term Sk appears for the first 
time in Cp , when p = k. The maximum value of K, Kmax 

= p = k, so that I = O. Therefore, from Eqs. (4.3) and (3.23) 

f3p(Sd = - 1, p = k. 

It is economical to determine immediately also the coeffi
cient of Sk for p > k. In this caseSk appears only when K = k, 
so that I = p - K~ 1, andf3p(Sk) is given by Eq. (3.23) with 
Q/(Sk) determined by Eq. (4.3). In this way we get, for in
stance, PJ(S,) = 2(n - 1), (2n - 1) for O(2n), Sp(2n), 
respectively. 

(d) The coefficient P/Sk,Sk): Similarly, from Eq. (3.11) 
or from Table II the term Sk,Sk, occurs for the first time in 
Cpo whenp = k, + kz + 1, and 1 =p - k, - kz - L 
f3/Sk,Sk) is given by Eqs. (4.4) and (3.23). In particular for 
k, = 2, k, = 3,p~6, andP6(S2SJ) = 1,P7(S,SJ) = 4 - 2n, 
(3 - 2n) for the O(2n) [Sp(2n)]. For kJ = k2 = 2, fJiSD oc
curs for p~5 withP5(S~) =!. Just one more example 
follows. 

(e) The coefficient Pp(Sk,Sk,Sk): This appears for 
P~kl + k2 + kJ + 2, 1= p - k, - kz - kJ - 2, with coeffi-
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TABLE II. Upper (lower) entries and signs in ( 1 apply to the O(2n) (Sp(2n)]. Common middle terms in (] apply to both. To obtain the results for the 
O(2n + I) replace n by (n + 1) in the corresponding results for the O(2n) according to the ansatz of Ref. 8. 

K C, C. 

s, 2 I 

s, 

s, 4 

s, 

Sj 

S, 6 

S,S, 6 

S, 

SZS4 

S~ 

S. 
SlS\ 
S,s, 
S; 

C, 

.e[5 - 5n] 
2 2 -7n 

C, 

1[13-15n ,] 
- ±2n 
• 4 - 21n 

1 [49 - 42n] 
12 25 - 54n 

C, 

.e[31 - 35n ± 4n'] 
, 8 - 57n - 12n' 

--'-[ 151 - 148n ± 12n'] 
2465-196n 

.e[12 - 9n] 
2 7 - lin 

~[~ - 4n] 

-±[~ -4n] 

-I 

cients given by Eqs. (4.6) and (3.23). In particular, if 
kl = k2 = kJ = 2, /3pCSi) occurs for p»8, with/3s(Si) 

1 
= - 6' and so on. 

v. CONCLUDING REMARKS 

(a) The examples (c), (d), and (e) of Sec. IV exhaust the 
possible types of /3p occuring for p< 10, and sufficiently illus
trate the ease with which these coefficients can be computed 
in a systematic way. It is now possible to say for what values 
of p a particular combination of the S k'S appears and with 
what coefficients. The eigenvalues of the Casimir operators 
Cp for p<8 are displayed in Table II for the orthogonal and 
symplectic groups. these results agree with those particular 
cases that were also treated in Ref. 8. The corresponding 
results for the Su(n) due to PopovlO are also reproduced in 
Table III for completeness and for purposes of comparison. 
The explicit values of Sk in terms of the partition numbers/; 

TABLE III. Cp for the SU(n). for p<: 8 (Ref. 10). 

K C, c c, c, 

S, -n+~ -l.n + 2 
2 - 2n +% 

S, -n+2 -2n+~ 
S, 4 -n+f 
S, 5 

S' 2 -j 

S, 6 

S,s, 

S, 
SlS4 
S; 
S. 
S2Sj 
S,s, 
si 
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C, C, 

--,-[73 87n + IOn' 4n' ± 8n'] 
" 16 - 145n - 46n' - 28n' 

I [167 199n + 8n' + 24n' 16n' ± 16n'] 
" 32 - 352n + l44n' - 120n' - 64n' 

1 [425 - 430n + 12n' ± 24n'] 
" 161 - 624n - 84n' 

1[43 - 37n ] - ± 2n' 
• 22 - 47n 

.!.[33 - 22n] 
• 21 - 26n 

_.!.[15-lIn] 
• 9 - 13n 

[: - 2n] 

- [: - 2n] 

-I 

I [1143 - 1216n + 88n' 8 ] 
% 385 _ 1840n ~j- 376n' _ 192n' ± 4 n' 

.e[139 - 127n + 4n' ± 4n'] 
, 64 - l73n - 16n' 

.!.[ 135 - l04n ± 4n'] 
, 77 - 128n 

_ .e[27 - 23n ± n'] 
• 14 - 29n 

.!.[65 - 39n] 
o 44 - 45n 

_ .!.[S9 - 39n] 
o 38 - 45n 

~[~ -4n] 

-+[~ -4n] 

-±[~ -4n] 

are given in Ref. 8, for some particular representations and 
there is no need to repeat them here. 

(b) We have considered here only the tensor representa
tions. In addition to these, there exists two inequivalent 
spinor representations for the O(2n). But the eigenvalues of 
the Casimir operators corresponding to these have already 
been elegantly worked out using the Weyl reflection symme
try in Ref. 2b with the result 

C
n 

= ( - yl2(n - 1)2nn!l1!2"'!n' (5.1) 

where Ii is defined in Eq. (2.6) of this paper. 

(c) Our definition of the Casimir operator Cp in Eq. 
(2.1) is only one of the many possible ways of contracting the 
indices. However, owing to the commutation relations satis
fied by the infinitesimal generators, any other contraction 
can be expressed as a linear combination of Cp and Casimir 
operators of order less than p. In some cases this relation is 
quite simple. For instance, if the definition 

C, c c. 

- 5nl2 + 3 - 3" + ~ - ~n + 4 

-~n+ 5 - 5n + 7 -7n +~ 
- 5nl2 + 5 - 5n +7 -711+ 14 

-"+3 -.1n + 7 - 7n + 14 

+ !en - 3) + jOn -~) --j(fn - II) 

- (n -~) 
7 'K --n +~ , , 

-I +(n -~) + (~n -~) 
I - (n - 4) 
-I + (n -4) 

- j + !en - 4) 
I 
-I 
- I 

I 

0 
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is adopted, a relation of the form 

C~=( - YCp 

is obtained. 

(5.2) 

(5.3) 

(d) Finally, we have not found it necessary to express 
the quantities Q/(v) in terms ofthe functions y/(k,v) intro
duced in Eg. (3.18) of Ref. 10 for the case of the u(n). This is 
because the use of these functions is distracting and makes 
computation cumbersome. For instance, for I = 5, and for a 
set (v) containing three distinct nonvanishing terms, there 
are as many as 21 terms in the expansion of Q,( v) using this 
equation. Thus our method here is by far the simpler. 
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APPENDIX 
The proof of the identity (4.1) can be done by induction. 

For r = 1, Eq. (4.1) is identically true. For r = 2, using the 
defining Eq. (3.9) 

ifldz)iflk,(Z) 

= _1_ [(1 _ z) - k, - 1][(1- z) - k, - 1] 
klk2Z2 

= _1_ U (1 - z) - k, - k, - 1j - {(1 - z) - k, - 1 J 
klk2Z2 

Assume the identity (4.1) true for r. To show it is true for 
(r + 1) consider the product 

iflk,(z)ifldz)"'iflk, , ,(z) 

Using Eq. (A 1 ) on the first term of the right -hand side of (A2) 
we get 
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1 
= -k-- [(kl + k2 + ... + kr+ \)iflk, +k,+ ... +k (z) Z r. I 

r+ 1 

and the first term in the square bracket, for instance, gives 

1 
--- [(k 1 + k2 + ... + k r_ 1+ kr+ I) 
kr+\z 

Xiflk,+k,+ ... +k, ,+k",(Z) 

- (k 1 + k2 + ... + k r _ I)iflk, +k, + ... +k, ,(z) 

- kr+ liflk" ,(z»), 

and so on. Thus collecting the terms in Eq. (A2) 

iflk,(z)ifldZ)"'iflk, , ,(z) 

which proves the identity. 

For r = 3, for example, 

(A3) 

(A4) 

'M. Mieu, Nue!. Phys. 60, 353 (1964); M. Umezawa, Nue!. Phys. 48, III 
(1963); 53, 54 (\964); 57, 65 (1964). 

'A.M. Perelomov and V.S. Popov, Yad. Fiz. 3, 924,1127 (1966) [Soviet J. 
Nue!. Phys. 3, 676, 819 (\966)]. 

'A.M. Perelomov and V.s Popov, Yad. Fiz. 5, 693 (1967) [Soviet J. Nue!. 
Phys. 5, 489 (1967)]. 

'J.D. Louck and L.e. Biedenharn, J. Math. Phys. 11,2368 (1970). 
'So Okubo, J. Math. Phys. 16, 528 (\975). 
'MX.F. Wong and H.Y. Yeh, J. Math. Phys. 16,1239 (1975). This refer
ence contains more comprehensive references on the literature. 
'e.O. Nwaehuku and M.A. Rashid, J. Math. Phys. 17, 1611 (1976). 
"C.O. Nwachuku and M.A. Rashid, J. Math. Phys. 18, 1387 (1977). 
'S.A. Edwards, J. Math. Phys. 19, 164 (1978). 
IOV.S. Popov, Theor. Mat. Fiz. 29, 357 (1976) [Theor. Math. Phys. 29,1122 
(1976), translated August 1977]. 

II It is important to note that this ansatz cannot be applied to equations of the 
form (2.2). 

C.O. Nwachuku 1266 



                                                                                                                                    

Mayer equations for Bose field theoretical modelsa) 
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We present a simple proof that volume and ultraviolet cutoff boson Hamiltonians with unbounded entire 
type self-interacting terms are essentially self-adjoint operators on the Fock space. We present the 
rigorous derivation of Mayer equations in the considered Bose field theoretical models. A new proof of the 
divergence of the Feynman perturbation expansion is presented. 

INTRODUCTION 

Euclidean methods of the quantum field theory devel
oped in the last years have caused considerable progress in 
our understanding of models constructed in super-renorma
lizable quantum field theory. 

The present mathematical techniques seem to be insuf
ficient for the study of the more singular models containing 
nontrivial ultraviolet divergencies. 

The principal techniques used in the construction of 
two- and three-dimensional boson field models such as: 
P(ip ):" :coshaip:,,:cosmp:,,:ip4:3 modelsaretheclusterexpan
sion of Gilmm and Jaffe and of Spencer1-3 and the lattice 
approximation. The basic problem of these models is the 
thermodynamic limit. In the lattice approximation in higher 
dimensions, d> 2, the thermodynamic limit can be con
trolled in these models" The aim of this paper is to show in 
new cases how the modern Euclidean methods simplified 
many of the problem of the constructive field theory. We will 
consider here a large class ofbosons self-interactions with 
ultraviolet and volume cutoff. In Sec. 1 we show the simple 
proof of the essential self-adjointness of the doubly cut-off 
Hamiltonians including also a certain class of nonpolyno
mial and unbounded self-interactions; we just simplify and 
generalize the results of Refs. 5 and 6. In Sec. 2, following the 
ideas of Ref. 7, we rediscover after Symanzik8 that the struc
ture of the peturbation theory for bosons is very similar to 
that encountered in the theory of classical gases. 9 We present 
below a rigorous derivation of the system oflinear, integral 
equations with almost the same structure as Mayer equa
tions in the theory of classical gases which hold for so-called 
correlation functions. In particular, we consider the Kirk
wood-Salsburg type equations and we conclude that due to 
the unstability of the potential, the fixed point method can
not be used in general. Only in the bound self-interaction 
case can it be used to control the thermodynamic limit. This 
fact was used in Ref. 7. From the instability of the potential 
we deduce the divergence of the doubly cut-off Feynman 
perturbation expansion for bosons interacting via an un
bounded function of the field. As to the construction of the 
thermodynamic limit, the cluster expansion must be used 
and this will be the subject of a subsequent paper. 

alI acknowledge the assistance of the U.S. National Science under Grant 
GF-4l959. 

1. Doubly cut-off interactions 

Let {S ;(R d).2!d/io J stand for the probabilistic space 
with the following identification: S ;(R d) S ;ealR d) is the 
weak dual space of the real Schwartz space S (Rd),.I is the (7-

algebra of the Borel sets and djio is the Gaussian, probabilis
tic, cylinder set measure given by mean zero and covariance 

S x = dk. 
- 1 e,kx 

() R" (k2 + m')!12 
(1.1) 

It is well known that this probabilistic space can be viewed as 
the spectral representation of an Abelian algebra generated 
by a time-zero, free, scalar boson field ;Po with mass m > O. 
The free scalar field is given by: j;o(x) = Je'kX[a+(k) 
+ a( - k)](k2 + m2) - 1/4d k where a+,a are ordinary cre

ation and annihilation operators, respectively. 

By Segal's isomorphism' its action may be represented 

on L ~o (S,.2,df..lo) as a multiplication by coordinate func
tion ¢o(f). The free vacuum is the function fl = 1. Letis stand 
for the map (see Ref. 1) 

is:Hl/2 3 J-+(J, J) = 8 (xo - s)f(x) (1.2) 

and Js is its biquantization.' It is shown that Js are isometries 
from r (H - !) to r (H,).' 

Later we use the following ultraviolet cutoff. Let X E be a 
net in C O'(R d) weakly converging to 8 as E-+O and such 
that: (i) 0< Ix.1 < 1 means the Fourier transform, (ii) for XERd 

such that Ai I xd > 0,1:x .(x)=O, (iii) X E is rotational invar
iant. [The assumption (ii) is made in connection with the 
thermodynamic limit problem.] 
Define 

ipix,O) j;/x) (ip*X E)(X) 

= r q; (y)X/x - y)dy, JR'i (1.3) 

because the suitably smeared sharp-time free field is essen
tially a self-adjoint operator on the Fock space. Equation 
(13) defines the family of self-adjoint operators indexed by 
points XERd, In the diagonal representation described above 
the q;,/x) stands for the multiplication by the function 
S' 3UJ~(UJ*X E)(X), Since the convolution of the distribution 
with the test function is a smooth function, we observe that 
the field ipE(X) in the Schrodinger representation is multipli
cation by a well-defined function. Thanks to that, no difficul
ties appear in the definition of the local powers of such 
fields.! I 
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The mean of the random process fP. is zero and the 
covariance is 

(1.4) 

The local powers are defined in the following way: 

S;3w--(fP;(x»(w) [w.(x)]' (1.5) 

In connection with additive renormalization procedures we 
also define the Wick powers as the following random 
functions: 

S I 3w __ (:m r:(x»(w) = [is (0)] r/2£, [ wlx) ] (1.6) 
r "r • 2 • r (2SiO» 112 

Here cW'" stands for the nth Hermitean polynomial. Now let 

V(z) I (C,/n!)zr 
n=O 

be the entire function such that 

(i)infV(x)=B v > - 00, 

~ '" C ~ 
(ii) V(cp.)(x) L -f-<P :(x)EL ~,,' 

n == () n. 

or 

(i') inf: V:(cp )(x) > - 00 

qll~() ~; [~S:(O) r12~" [ (2S.~0»112 ] > 

~ 00 C 
(ii') :V:(cp£)(x)_ L -f-:Cp ~:(x)EL ~,,. 

II ~O n. 

- 00, 

We define now the doubly cut-off interaction Hamiltonians 
Hint 

,1,( 

(1.7) 

Here;l is the major coupling constant, A bounded region in 
R d

, I I stands for Vor: V: when (i), (ii) or (i'), (ii'), respective
ly, hold. 

Our main result in this section is Theorem 1.1 which 
states that the full Hamiltonian Ho + H :~,t£ is an essentially 
self-adjoint operator on the Fock space. In the case of the 
polynomial self-interaction terms such a result was obtained 
earlier in Ref. 5 by somewhat difficult functional analysis 
arguments. 

Theorem 1.1: Let;l ;;.0, IA I < 00 ( IA I means the volume 
of A) and Vbe such that (i), (ii) or (i/), (ii') hold. 

Then the full Hamiltonian 

(1.8) 

where Ho is the free-field Hamiltonian, 

(a) is essentially a self-adjoint operator on the Fock 
space [the domain COO (Ho) of analytic vectors for Ho is a core 
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for H£,A]' 

(b) is bounded from below, 

H.,,1;;' -;l IA IBv, 

and the following identification holds: 

exp[ - t (Ho + H~~~)] 

= Jiexp [ -;l f dxoi dxJx"H~l~.]JO' 

(1.9) 

(1.10) 

As a corollary of this theorem, by use of the Lie-Kata-Trot
ter formula or the arguments along the line presented in Ref. 
2 in the P /cp /2 theory context, we obtain 

Theorem 1.2 (Feyn man n-Nelson-Kac formula): Let 
j;, ... j"ES (R d

) and GO, ... ,Gr be cylindrical functions on S; 
which are polynomially bounded. Then for 

- 00 <So <SI < .. , <Sr<S < 00 

1, df..lo(cp )Js"GO .. ·JSPr exp [ --;lis dxof Jx"H~~£] 
s,/, I So ;1 

= (flo,Goe - (S, - S,,)H, ' ... e - (8,- s" ')H.,,1GJJo). (1.11) 

Note also that the cut-off Gell-Mann-Low formula holds 

IS" _l~~ .ooJ df..lo(cp )J,,,Go· .. Js,Gr 

xexp [ - ;liS dxof dxJ.H int
] Z -1 

XII ;t,E A,f" 
S" A 

= (fl(E,A,A ),Gae-(S, -S")H,, ... e (8" 8" ,)Hfl(E,A,A» 
(1.12) 

The existence of fl (E,A,A ), its uniqueness and the finiteness 
of the ground state energy is a result of a general theory of 
semi groups preserving positively and the fact that e - tlf, , 

forms a self-adjoint, exponentially bounded, positivity pre
serving semigroup. 

A summary of the original bound from theP (cp )2 theory 
in our simplified models is given by part (b) of Theorem 1.1. 

Sketch of the proof of Theorem 1.1: One can prove this 
theorem by the same reasoning as in the P (cp )2 case. The 
following trivial observations imply that proof of Theorem 
V.12 from Ref. 2 can be repeated in our case without essen
tial changes. 

First note that because the regularization is local in time 
the random elements 

f dxofdXJ",/V(CP)I(X) (1.13) 

are measurable with respect to the a-algebra generated by 
the free Markov field cp supported in the time direction on 
the interval [a,b]. This fact implies that one can construct the 
transfer matrix in the time direction and show the semigroup 
property by use of the Markov property that holds for the 
free field in the time direction. By the simple estimate 

inf H',,1 (w);;' - ;lB"IA I 
(rlFS;(R" 

(1.14) 

we obtain the exponential bound 

(1.15) 
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from which we conclude that 

exp [ - Af dxl V I (tP,)(X)]E () L~fi" 
A p;;.1 

(1.16) 

Assumptions (ii), (ii'), respectively, are used for the proof of 
the last part via Duhamel's formula as in the original proofin 
Ref. 2. 

2. MAYER EQUATIONS 

In this section we will study the Schwinger functional of 
the theories described by self-interactions as in Theorem 1.1. 
We start with the formal considerations of the Feynman per
turbation expansion in the Euclidean domain to obtain the 
structures similar to those in the theory of classical gases. 
Next we concentrate on the mathematical precision of the 
earlier obtained results. In the end we present simple argu
ments to prove the divergence of the ultraviolet and volume 
cut-off Feynman perturbation series when the self-interac
tion is a unbounded function of the field. 

2.1 Correlation functions 

We define the Schwinger generating functional for the 
self-interacting, Euclidean, boson, scalar field: 

(2.1) 
I 

In the following we restrict ourselves to the caseP (rp) = rp!. 
The general case with our without Wick ordering may be 
considered quite analogically. 

Using the result of Sec. 1 and the Bochner-Minlos theo
rem, we have that SE,A is a Fourier transform of some proba
bilistic cylinder set measure on BorellT-algebra of sets in 
S ;(R d + I). The quantity 

ZE,A = L; dpo(rp ) exp( - A L rp! dX) (2.2) 

will be called the partition function and its expansion in pow
ers of A, the grand partition function Z •. A: 

(2.3) 

It is well known that this power series is divergent for arbitrary 
values of A =!=¢J andA:;;t:O. In the end of this section we present 
(it seems to us) new proof of this fact. 

Now we use the formal power series (2.3) and the formal 
substitution 

rp !(x)=D, (e'<P,(X» = ~(/<P.(X» I . 
dt' ,= 0 

(2.4) 

The meaning of this will be discussed in subsection 2.3. 
We express (2. 1 ) in terms of the Feynman perturbation expan
sion and substitute (2.4) to obtain 

(2.5) 

We used the following expression for the Laplace's transform of the Gaussian measure dflo 

( dflo(CP )l!<p<>(f) = e(z'12)llflli 
Js; (2.6) 

and 

f(x) = (f*SE)(X) = f f(y)Six - y)dy. 

By the Mayer trick, 

IT e;tf'(x(,) = IT [(/tf'(x,) - I) + I J, 
i:;:=- t i= 1 

symmetry of the integrands in (2.5), and definition (2.3), we obtain 

SA,/f) 

= e - (l/2)llfll' I { ! ~ { ···f IT dx; IT Du 
r ~ 0 r. J A A ; ~ 1 ; = 1 
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where we defined the grand correlation functions by the following formal power series in A.: 

P~iXlth""X,1.) = Z'-:Al 
00 (_ A. )n+ • ( ( n • 

xL 1, "'1, IJdx.+1IJDt ; 

X {Y{e:~.(x'-:~)} A A i= 1 j= 1 

4j= 1 

We observe on the formal perturbation level that the grand correlation functions may be written as 

P~iXlt" ... ,x,1.) = expansion in A. of( - A. Y i .IT el.'P,(X.l[ exp - A. f cP !(y)dydllo(CP) X Z .-)]. 
s .• = 1 A 

This suggests the definition of the correlation function in canonical Gibb's ensamble: 

P~ .• (Xltl""'X,1.) = ( - ...1.)'1. dllo(CP)IT el,'P'(X,) exp [ - A. f cP !(Y)dY ] X z;;/ 
s, 1= 1 A 

This will be studied in the next subsection. 

2.2 Integral equations for the grand correlation 
functions 

(2.9) 

(2.10) 

(2.11) 

We see from (2.8) that the only nontrivial volume dependence of SA,,, comes from that ofp~,., We show that formula (2.8) 
exactly hold with p A,. replacing p~,E' Now we concentrate on P~,., On the formal peturbation level we state: 

Proposition 2.2.1: For any multi-index s = (Si)' i = 1,2,,,,,si integer, such that I <S.i<)' the grand correlation functions 
fulfill the following systems of linear integral equations: 

(2.12) 

P~,.(Xltl""'X,1.) = ( - A. )"exp [ ± i tlp.(xi - x) ]x {P~~/·(x,., /s, . """,xl.) i= lj= 1 

K[~:::~~rl:ll'''''~J = i[rl{exP[jt?P.(Xi-Y) )-I}, (2,13) 

Proof It is abstracted from Ref. 13. From the r-point correlation functionp~.f we first set apart the contribution from the 
s. <r particles: 

(2,14) 

Using this, we have 

Now repeat the trick: 

exp[itlj~~: I t,tPiX~))= qtoJt{exp[jtl t,/pixj -
x ,/) )-I} 
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Now we change the variables 

Xr+j-Yi' 

tr + j -1Jj 

and write 
r -[ 1 s, r ] '" k (- A)k + r jly {r r jly [tl ... ts, I1JI"'1Jq ] 

PA,ixhth, .. ,Xlr) = exp 2;~lj~1 tlpix ; - Xj k~O q~l q!(k _ q)! j~lID1JJ JA JAj~lldy.;K xI",x
s
, YI"'Yq 

In the last step we change the order of summation and used the definition (2.9) of the grand correlation functions. Q.E.D. 

2.3 Mathematical motivations 

This subsection is devoted to mathematical motivations 
of the formal manipulation made in subsections 2.1 and 2,2. 
We start from the following lemma which can be easily ex
tracted from Ref. 14 but we present here its simple proof for 
the reader convenience. 

Lemma 2.3.1. Let! M,J.,dv J be a measure space with 
finite total mass, i.e., f M dv < 00, Let G be an open region in 
the n- fold tensor product of the complex plane C. Let r; be a 
map from G to L 00 (M,dv) such that 

(i) r; is continuous in strong L 2(dv) topology. 

(ii) r; has first complex derivatives in the strong L 2(dv) 
sense, such that up to a set of measure zero the following 
hold: 

G- A . A s- (~+i~]rl;=O' 
1;= (z""z,,)'EI l, ... ,ni ax; ay; 

(2.15) 
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(iii) For any compact nCG, r H 
-SUPI;EHIF; 1< 00. 

The the following holds: 

(1) All the strong L2 derivatives of the map r exist. 

(2) The following Cauchy-Bochner formulas holds: 

A r;= _1_J: IT dU;; - g)-Ir,;-, (2.16) 
I;EG (21TiY JII, ; = I 

aiR I ar , + .. , + r" 
--=----
ag~R) ag~' ... dg'N' 

(2.17) 

Up to a set of measures zero this representations does not 
depend of the concrete polidisk lls lying in G. 
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Proof From assumptions and Schwartz inequality we 
easily deduce that the following function, 

(2.18) 

defined on G X G is holomorphic function in (5,5') variables. 
We use the Cauchy integral fromula for it. Let JI s be any 
polidisk in G containing the point S in its interior. 

Using the Fubini-Tonelli theorem [by assumption (iii)] 
and definition, we see that it is posssible that 

IM df,lr sr s' 

= _I_A: d;A: d;' 
(2m)2nh( hI, 

X L dv(m)(5' - 0'1(5 - O'lrr;rr;" 

On the other hand, 

( dV(m)(rr; - _1_ A: ds(5 _ 0'lrs)2 
JM (2m)" hI, 

= Hc;l) - _2_A: (5 - ;Ylflc;ls)ds 
(21Ti)"hl, 

- _1 _A: A: (5 - 0'1(5' - O'lfl (5,s '). 
(2myn hI, h( 

This means that up to a set of measure zero 

re; = _1_. A: ds (5 - O'lr". 
. (2myjll, . 

To prove statement (1) we observe 

(2.19) 

{I dV(m)[~r] _~A: ds (5-0-(R+1)rs}2 
as(R) r; (21Ti)Rh', 

= [ a
2
!RI H]c;,O- 2R! A: ds (5-0-(R+1) 

a; Ra; R (21TiY j 

aiR! (R !)l 
X --H(5,;) ---a; (R) (2myr 

xA: A: dsds'(5-S)-(R+1) 
hI, hI, 

X (5'-0-(R+1)H(5,s') 

=0. 

We used assumption (iii) to change the order of the integra
tion with the differentation. 

Q.E.D. 
Let us now define the following cutoff on the Euclidean field 
9?c (x): 

{
9?f(X) if i9?c(x)i «N, 

(9?JN(X) = 0 th' o erWlse. 
(2.20) 

This makes the field bounded function on S r. The following 
holds: 

1272 

Lemma 2.3.2: The maps 
N 

r = r = rr eZ'(<p,)y(x,) 
Z (ZI •... 'Z\') 

i= 1 
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(2.21) 

from Gee N (G arbitrary region in eN) to L ;;;., fulfill the 
condition of Lemma 2.3.1 so that 

aiR! R'i --rz = -'- d ~(~ - z) - (R + 1)r/;. 
az(R) (2m), II, 

(2.22) 

Moreover 

IT (9?c)1t(x) = (4!)NN A: d ~ ~i- 5eS,{<P,)M(x,) 
; ~ I (2m) hI" 

(2.23) 

with probability one. 

Proof We use the fact that for any fixed x1,oo.,xn the 
maps are cylindric functions on S'. The assumptions (i)-(iii) 
of Lemma 2.3.1 can be easily extracted from the following 
formula for the cylindric functions integrated with respect to 
the Gaussian measure df,lo 

1 2 1 
df,lo(9?)r z = --------

s; (21T)N !2det(scCxI - x) 

I
+
N I+N N ( N ) 

X _ N ••• 0'0 N ;DI dq,exp ;~1 2z7q7 

X exp ( _1. L q,qp c- I(X; - X)], 
2 ij 

L S £ I(X; - x)Six; - x) = Dij' 
iJ 

(2.24) 

Q.E.D. 

Now we use the results of Ref. 7 which stated that in the 
case of the bounded ultraviolet cutoff self-interaction the 
Feynman perturbation series are absolutely convergent for 
small values of coupling constant A. 

Because (9?c)t is a bounded function it may be repre
sented as uniform closure in L Xc (df,lo) of the functions of the 
following kind: 

I e;aq\(X)df,l~ (a), (2.25) 

where df,l~ is a net of measures with bounded variation and 
such that 

df,l~( - a) = df,l~ (a) (2.25a) 

and 

li~I e;a<p,(x)df,l~(a) = (9?c)t(x) (2.25b) 

This approximation together with the diagonal procedure is 
used to show that Mayer given by Prop. 2.2.1 exactly hold 
for the canonical functions given by formula (2.11). The fol
lowing easily to prove proposition is critical to show that 
Prop. 2.2.1 hold also on the rigorous, nonperturbative level. 

Proposition 2.3.3: For any p > 1, N integer the following 
limits 

lim fi ez,(<P,h(x')e - A ),(<P,);,(x) dx 
lV-+=i = I 

exist in all L P(df,lo) spaces and equal 

rrM z;(<p,)(x,) - A J ,<P:(x)dx e e . 
; Cc I 

(2.26) 

(2.27) 
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Proof This is a simple consequence of the Holder in
equality and expressions for the cylindric integral with re
spect to the Guassian measure d{to. 

From the discussion above we finally obtain 

Theorem: The equations given in Prop. 2.2.1 exactly 
hold for the canonical correlation functions in place of the 
pro 

2.4 The Kirkwood-Salsburg type equations and 
the divergence of the perturbation expansion 

The equations given by Prop. 2.2.1 in the casesj = 1 for 
all i have a structure identical to the Kirkwood-Salsburg 
equations in the theory of classical gases. 8 However because 
of 

exp[jJ~! z;Zpixj - x) ~ jJt! r r/(8, + 8)Six i - x) 

(2.28) 

with 

we conclude that the following bound 

/exp[,t! it! Z;ZflAx j - x) ]/ "in'r:s,(o) 

is optimal. Here 

r. = max! Irill. 
i 

(2.28a) 

(2.29) 

(2.29a) 

But this means that the gas with interior degrees of freedom 
described by complex parameters Zj and interaction of the 
form z;zfl.(xj - x) is unstable so that the well-known con
traction principle cannot be used in our case. The unstability 
of the interaction combined with Theorem 3.2.2 from Ref. 9 
and absence of screening leads to 

Proposition 2.4.1: In the case of unbounded self-interac-
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tion the volume and ultraviolet cutoff Feynman perturba
tion expansions for the partition functions are divergent. 

Remark: The unstability itself does not necessarily im
ply the divergence of correlation functions in the big canoni
cal ensamble. See Ref. 1 for this point. 
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Factored irreducible symmetry operators and space groups 
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Induction techniques for the systematic construction of factorized irreducible symmetry operators (FISO) 
are applied to general space groups. Detailed results are given for the diamond structure space group and 
space double group. In the case of the diamond structure it is shown how the relations provided by time
reversal symmetry may be efficiently utilized to simplify calculations. 

I. INTRODUCTION 

General techniques for the systematic construction of 
factored irreducible symmetry operators (FISO's) for finite 
groups are described in a previous paper} hereafter referred 
to as Ref. 1. In this paper these techniques are applied to and 
facilitate the symmetry analysis of space groups and space 
double groups. Explicit results are given for the case of the 
diamond structure. The diamond structure is chosen for 
purposes of illustration because of the extensive interest in 
crystals having this structure, and because FISO's for special 
points on the surface of the Brillouin zone are of interest in 
themselves and have not been reported previously. A further 
objective is to demonstrate how time-reversal symmetry 
may be treated simply and directly using FISO's. 

The presentation of this paper reflects certain simplifi
cations afforded by FISO's. In general an irreducible sym
metry operator (ISO) is defined 

(1) 

where the n A X n A matrices A = ! D A (g) ) are an irreducible 
unitary representation (IUR) A of group G. ISO's display the 
following properties: 

[P(A )ij]t = P(A »)j, (2) 

gP (A )ij = L P (A )j,,)} A (g)m)' (3) 
m 

P(A )yP(B)mn = {jA~j~(A )m)' 

g = L L L P(A )m~A(g)nm' 
A m n 

(4) 

(5) 

where in Eq. (2) the superscript dagger means adjoint. It 
follows that the lOS's for a given IUR A are completely 
described by the partner operators P(A )l),j = 1, ... ,nA, 
because 

(6) 

In the case of the space group, FISO's are obtained by 
induction with respect to a subgroup H having IUR a and 
partner ISO's P(a)\i' If the entire space group is G = SH 
where S = Is} = e,s2, ... ,sn ) is a set ofleft coset generators, 
then 

(7) 

are a set of partner operators for unitary representation A of 
the space group. Such an induced representation is an IUR if 

the irreducibility conditions 

P(aL sp P (a») Sp- 1 = 0, ij = 1, ... ,na , P = 2, ... ,n .(8) 

are satisfied. In Ref. 1 it was shown that Eqs. (8) are neces
sary and sufficient conditions that A be an IUR. Equations 
(8) are a restatement of the group orthogonality conditions 
in the language of ISO's. Thus, a complete description of 
space group IUR is given by listingP(a)l) and the setSofleft 
coset generators for the partner operators. This does not 
constitute a sacrifice in practicality for the sake of brevity, 
since only the partner operators are needed in any practical 
application. 

The construction ofFISO's for space groups in general 
is treated in Sec. II. The FISO's for the diamond structure 
and the use of time-reversal symmetry are presented and 
discussed in Sec. III. 

II. IRREDUCIBLE SYMMETRY OPERATORS FOR 
SPACE GROUPS 

A space group is the set of rotation-translation opera
tors which leave a crystal structure invariant. A general 
space group operator ghas theformg = [gITg] which acts on 
a position vector x as 

(9) 

where g represents a rotation about a point and T g is a trans
lation vector. The translation group 7 = It (R) ) consisting of 
a set of pure translation operators t (R) = [el R] by a lattice 
vector R is a normal, Abelian subgroup of the space group. 
Any space group may be expressed as S7 where 
S = ! s}e,S2,''' J is a set ofS 0 rotation-translations whose trans
lational parts are smaller in magnitUde than any lattice vec
tor. Any space group operator is representable in the form 
g = sJ (R) wheresj = g. In general Sis not a group, although 
the corresponding set S = I e,S2,''') of point rotation opera
tors is a subgroup of the point group of the lattice. 

The construction of FISO's for a general space group is 
approached as the systematic decomposition of the regular 
representation space of the space group, first into noninter
acting subspaces and then into irreducible subspaces.} 

It is convenient and usual to treat the translation sub
group as a finite group by imposing periodic boundary con
ditions (PBC's). This is done explicitly by defining a Born
Von Karman (BVK) lattice! Rc I in terms of primitive BVK 
lattice vectors Aj = N,aj, i = 1,2,3, which are integer N; mul-
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tiplies of the Bravais lattice vectors 8;. PBC's allow only 
functions which are invariant to translations by a BVK lat
tice vector. In this sense lattice vectors which differ by a 
BVK lattice vector are equivalent. 7" nonequivalent lattice 
vectors may be chosen in a BVK cell bounded by the primi
tive BVK lattice vectors. The ISO's for the translation group 
with PBC's are 

T (k) = J.-I exp( - k·iR)t (R), 
7"R 

(10) 

where the sum on R is restricted to lattice vectors in the BVK 
cell, and the vectors k (K) are reciprocal to the BVK (space) 
lattice. 

k.Rc = 21TN, (K·R = 21TN'), 

where N (N ') is an integer. Thus, 

T(k + K) = T(k), 

(11) 

(12) 

and, in the sense that k' = k + K and k have identical trans
lation ISO's, k and k' are equivalent. The set of 7" nonequiva
lent k vectors may be chosen in a contiguous region of recip
rocal space called the BriIlouin zone. The properties of the 
translation group ISO's, paralleling Eqs. (2)-(5) are 

T(k) t = T (k), (13) 

t(R)T(k) = exp(ik.R)T(k), 

T(k)T(k') = Ll (k,k')T(k), 

e = teO) = I T(k), 
k 

(14) 

(15) 

(16) 

where Ll (k,k') = 1(0) if k is (non)equivalent to k' and the 
sum on k includes the r" inequivalent k vectors from the 
Brillouin zone. 

For each T(k) the carrier space ST(k) is stable and in
duces a unitary representation of the space group. This in
duced representation is irreducible if the conditions of Eq. 
(8) are fulfilled. It may be shown in general that, for space 
group operator g, 

gT(k)g-1 = T( gk). 

Thus, the irreducibility conditions require that 

T(k)T(f;k) = 0, i = 2, ... ,So 

(17) 

(18) 

or that all f;k, i = 2, ... ,So be inequivalent to k. Points in the 
Brillouin zone which satisfy Eq. (18) are called general 
points. 

Symmetry points, lines and planes in the Brillouin zone 
induce reducible representations from space ST(k). An n
dimensional subspace Sk T(k) = 1 hI = e,hz, ... ,hn J T(k) is 
defined consisting of T (k) and all other components of ST (k) 
which fail the irreducibility conditions Eq. (18). The set of 
rotational operators Hk = (e,Ji;, ... ,h" J of elements of Sk 
!Rrm a point group called the group of the k-vector. Let 
'!J. = exp( - ik'T)h;~(k). ~ h;hj = hmtJ.Rijm) aEd 
h;k = k + K;, then h,lij = hm, Rijm = h/Tj + hm-1(T; - Tm)' 
and 

~~ A 

h/zj = exp[iK>Tj + lKm'(T; - T m)]hm . (19) 

For points inside the Brillouin zone h,k = k(K; = 0) the 
phase factor in Eq. (19) is unitary and components of the 

1275 J. Math. Phys., Vol. 20, No.6, June 1979 

space ilk = {~,£, ... ,h" J are isomorphic to the point group 
Hk . In general, for points on the surface ofthe Brillouin ~ne 
the phase factor is not unitary and the components of Hk 
form a multiplier group. 

The space ilk is a subspace of ST (k) which is stable with 
respect to operations of the space subgroup Sk T and may be 
transformed into irreducible subspaces with respect to SkT 
using the induction techniques as described in this paper and 
Ref. 1 or other methods. In general components of these 
irreducible subspaces may be chosen to be ISO's P(ka)ij 
which are expressible in the factored form of T (k) times a 
linear combination .0/ (ka)ij of elements of Sk with complex 
coefficients, 

P(ka);j = T(k) 3P (ka)ij = .9'(ka)ijT(k). (20) 

The ISO's for the space group ST are induced with the "star" 
left coset generatorsSk* = (SI* =e,s2*,,,,,Sm*J of the 
space group with respect to SkT, ST = Sk*(SkT). The part
ner ISO's for the space group have the form 

P(kA )(II)(P}) =sp*P(ka),j' (21) 

and a general induced ISO is 

P(kA )(q,)(P}) = Sp*P (ka)1j Sq*-I. 

In this case the irreducibility conditions, Eq. (8), 

P(ka);pp*P(ka)i!p* -1 

= 9ka);;T(k)T(sp*k)sp*9(ka)i!p*-1 = 0, 

iJ = 1, ... ,na , p = 2, ... ,m, 

(22) 

are satisfied because T(k)T(s;,*k) = O. By the definition of 
Sk* k is inequivalent to sp*k, p = 2, ... ,m. The set I sp*k J of 
symmetry-related, but inequivalent k-vectors is called the 
star of the k-vector. Thus, the decompositon of the regular 
representation space of a general space group is completed. 
It may be helpful to verify this statement directly by review
ing the derivation and checking to see that all S 07" operators 
are included. First, the 7" inequivalent translation group op
erators were transformed to form 7" stable subspaces ST (k) 
each of dimension So. For a given k, m of these subspaces 
ST(sp*k),p = l, ... ,m are symmetry-related and there are 
Sam components associated with the star ofk. The decom
postion of this (S am )-dimensional space began by reducing 
the n-dimensional subspace Sk T(k) into irreducible sub
spaces labeled a of dimension na' For each IUR a of SkT the 
induction using S k* produced an (mna )-dimensional IUR 
of ST. The total number of such ISO's is (mna)Z for each IUR 
a. Thus, the total number of ISO's is 
~imna)Z = m2~an~ = m'n = Sam because~an~ = n, thedi
mension of Sk T(k), and by definition So = mn. 

In describing the FISO's for the diamond structure in 
Sec. III only the "angular" factors for the partner operators 
9(ka)lj defined by Eq. (20) and the members of the star 
coset Sk* are given. The remaining operators may be con
structed as described above. 

III. FISO's FOR THE DIAMOND STRUCTURE 

The space lattice for the diamond structure is face-cen
tered-cubic with primitive lattice vectors 8 1 = (0,1,1)a12, 
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TABLE 1. Selected space group operators for the diamond structure. The operators listed correspond to the coset expansion Sr of the space group with respect 
to the translation group T. The coset generators are S = Td(E,l) where Td = (E, T" T i)(E, Cx)(E, Cy)(E,ID.) is the tetrahedral group. The origin of coordinates 
is chosen to be a tetrahedral site with the equivalent tetrahedral site at d = (1,1, I )a/ 4. Short and full symbols for the operators are listed in the first two columns 
of the table. The effect of the 3-space rotation operators on a point vector (x,y,z) is shown in column 3. Spin-space operators listed in column 4 are represented in 

,r... A ... I /\,. A. "" A .... ;-: 

terms of 182.' rotations aRu about selected symmetry axes Ru: T", = (1,1,1)/ v 3, Cx = (1,0,0), C, = (0,1,0), C, = (0,0,1), D, = (0, - I, I)!V 2. Then, 
aR" = - iRa'(J, where CT" i = 1,2,3 are matrices isomorphic to the Pauli spin matrices. A 360' rotation in spin space is denoted "E, and the identity by "E 

Operator Operator 
(short) (long) 

E ['EIO]"E 
E, ['EIO]"£, 
T. [TlIOJ'T. 

n [T~IO]"n 
C, ['C,\O]"Cx 

C" ['C"IO]"Cv 

c, ['CzIO]"Cz 
/D, 1'/DxIO]"ID, 
I 1'/ld]OI 
D, ['Dxld]"D, 

a2 = (1,O,1)a/2, a3 = (l,1,0)a/2 expressed in terms of the 
conventional cube distance a. The corresponding reciprocal 
lattice is body-centered-cubic with primitive lattice vectors 
b l = (- 1,1,1)21l'/a, b2 = (1, - 1,1)21l'/a, b3 = (1,1, - 1) 
X 2'TT/a. The point group is the full cubic group and the high
est site symmetry group is the tetrahedral group Td . 

Both the relativistic (double) space group and the non
relativistic space group will be treated. In the double space 
group each rotation in 3-space is accompanied by a rotation 
in spin-space. Selected space group operators are defined in 
Table I. Only those ten elements of the 96 cubic double group 
elements which appear explicitly in the FISO's are listed. 
The remaining operators may be obtained as products of 
those listed. A presuperscript sea) distinguishes between 
3(spin)~space operators in situations where an ambiguity 
might arise; otherwise the superscripts are suppressed. 

As shown in Ref. 1 alternative spin representations may 
be obtained by associating the Pauli spin matrices 

'TT3 = (1 0 ) 
o -1 

with an orthogonal set of unit vectors Ill, i = 1,2,3(111 
= I1 l XI1 3). The spin matrices corresponding to the coor

diante axes Xj ,j = 1,2,3 are then 

aj = x/<1, 

where 

(23) 

(24) 

The spin matrices aj are isomorphic to the Pauli spin matri
ces 'TTj • The time-reversal operator is defined 

(25) 

where Ko is the complex conjugation operator, The time
reversal operator commutes with each space group operator. 
In this paper only two-dimensional spinors will be treated. 
The results may be extended easily to four-dimensional 
(Dirac equation) spinors. 
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Three-space spin-space 
rotations rotations 

(x,y,z) "E 
(x,y.z) - "£ 
(y,z,x) [ - "£ + (3)'" "Tw]!2 
(z,x,y) ( - "£ - (3)'" "T,,)!2 
(x, - y, - z) "Cx 
(- x,y, - z) °Cy 
(- x, - y,z) "C, 
(x,z,y) aD, ... 

(-x, - y, -z) "£ 
( - x, -- z, - y) ClD..; 

The flexibility obtained in choosing the spin representa
tion is used to simplify the time-reversal properties of the 
FISO's and aids in their construction. For all the points and 
lines of the diamond structure two distinct spin representa
tions are used. For the line A and the points rand L, 

n2 = ~ = (0, - 1,I)N2, 11) = Tw = (1,},I)N3. and 

11 I = ~ X Tw = ( - 2,1,1 )N6. The corresponding spin
space rotations (presuperscript a is suppressed) are defined: 

(Ca = - ifia '(1), 

C WD = (- 2Cx + Cy + Cz)N6, 

CD= (- Cy + C)N2, 

C w = (Cx + Cy + Cz)Ni 

(26) 

(27) 

(28) 

For the lines..::1,~, and Z and the points X and W n2 =~, 
/'.., ./"... .......... '" 1-

113 = Cx = (1,0,0) and III = DxXCx = (0,1,1)/ V 2. The 
corresponding spin-space rotations (presuperscripts sup
pressed) are defined: 

C XD = (Cy + Cz)/Y2, 

CD = (- Cy + Cz)!Y2, 

The operator sets (C WD'C /pC W), (C XD'C D'C X ), and 

(29) 

(30) 

(31) 

(C x' C y, C z) are isomorphic to one another. In both represen
tations °Dx = °CD and the time-reversal operator is 
K= -KooDx= -KooCD• 

It may be helpful to the reader to be aware of the mne
monic significance inherent in the notation used to symbol
ize the group elements The notation for proper rotations 
makes specific reference to the axis of the rotation. The rota
tions fx,fA(z are 1800 rotations about the cubic coordinate 
axes CX,Cy,Cz. The rotat~ns T, are 240° rotations about the 
principle threefold axis Tw' The subscript w here comes 
somewhat lamely from the observati9.n that ~e ~maini~ 
symmetry-related threefold axes are Tx = CxTw,Ty = CyTw, 
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TABLE II. Multiplication and commutation relations for selected operators. The relations are expressed in terms of double space group operators. They may 
be specialized to relations for point group operators by setting translations by lattice vectors a j , i = 1,2,3 to zero. Relations involving nonhybrid operators may 
be specialized to space (spin) operators by setting the spin (space) parts to unity. Relations between hybrid space-spin operators may be specialized to spin 
operators by setting the space parts to unity. 

A. Relations between space double group operators. 
C; = C; = C; = ID; = E" T,T~ = I' = E, CyCz = E,CzCy = Cx' CzCx = E,CxCz = Cy, 
CxCy = E,CyCX = Cz' CxT, = T]Cy' CyT, = T,Cz' CzT, = T,Cx' C,T~ = T~Cz' CyT~ = T~Cx' 
CzT~ = T~CY' CJDx = E,IDxC" C)Dx = E,IDxCz' C/Dx = E,IDxC" T JD, = IDxTi, T~ID, = IDxT), 
I (IDJ = IDJ = Dx' TJ = IT" ICx = t (a,)CJ, IC, = t (a,)C/, ICz = t(a)C;' 

B. Relations involving hybrid operators Eqs. (26)-(31). 
C~D=ct=c~=ciD=E" CwT,=T)Cw, CwT~=TiCw' CDCw=E,C .. C[)=CWD' CwCwD=E,CWDCW=CD, 
CW[)CD = E,CDCWD = C w, CDCX= E,CxC[) = CXD, C,CxD=E,CXDCX= C[)' CX[)C[) = E,CDCxD = Cx, 

CDT, = T)CD( - E - Y3Cw)l2, T,C[) = CD( - E + Y3C w) Tj2, 

C[)T~ = T~CD( - E + Y3Cw)/2, T~C[) = C[)( - E - Y 3Cw )Ti!2, IDxC w = E,C .. 1D" IDxCD = - E,CJDx' 

'" A 

Tz = CzTw • The rotation D x is a 1800 rotation about the dihe-

dral axis Dx. Similarly, the notation for the hybrid operators 
explicitly refers to the symmetry axis or related orthogonal 
axis with respect to which the hybrid operators were formed. 

As shown in Ref. 1 the key to obtaining FISO's for the 
double cubic group is found in the construction of "hybrid" 
operators for the double space subgroup D V = (E,C x' 
C y,C z )(E,E2). Since, the operators of D Vare isomorphic to 
the spin operators aDV = (Ea,aCX,aCy,acz ) x (aE,aE2), it 
follows that the hybrid operator sets defined by Eqs. (26)
(28) and Eqs. (29)-(30) are isomorphic to the operator set 
(Cx,Cy,Cz) of DV. 

Selected multiplication and commutation properties of 
the space double group elements with themselves and with 
the hybrid operators are listed in Table II. Only those rela
tions are listed which help one to directly verify the proper
ties of the FISO. The FISO's for the diamond structure are 
listed in Tables III-V. These tables are intended to be essen
tially independent of the text. Each table includes nonrelati
vistic (Part A) and relativistic (Part B) FISO's for related 
symmetry points and lines. Each table caption specifies the 
relevant point groups of the k-vector and the associated co
sets which generate the star of the k-vector. The FISO's al
Iowa very compact notation. The connection between the 
present notation and the conventional notations of Bouck
aert, Smoluchowski, and Wigner2 (with an obvious modifi
cation to indicate inversion symmetry) and Koster3 are given 
in each caption. An exception is the point W where the 
IUR's found here have a similar form, but differ in detail 
from the results found by Koster. The expressions for the 
FISO's and the choice of degenerate IUR's used here are not 
unique. The choices made here reflect such considerations as 
the desirability of being able to determine compatibility be
tween FISO's (IURs) for associated symmetry points and 
lines by inspection and the use of time-reversal to simplify 
the calculation of matrix elements with symmetry-adapted 
functions. A property common to all FISO's which are pro
jection operators is that the individual factors may be placed 
in any order. 
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Also, in each of Tables 111-V are listed relativistic sym
metry-adapted functions (Parts C) in the form oflinear com
binations of products of nonrelativistic symmetry-adapted 
functions with appropriate spinors. The role of time-reversal 
symmetry here merits a more detailed discussion. 

The time-reversal operator K commutes with the Ha
miltonian of the system and the operators of the space group. 
However, because K involves a complex conjugation Ko it 
has a distinctly different nature from the space group opera
tors. An excellent summary of the properties of K is given by 
Lax. 4 In applications K performs one of two useful roles. 
Either it provides an additional relationship between func
tions which are symmetry related, or it leads to additional 
degeneracy. In the former case the additional relationship 
may be used to choose functions which give real Hamilton
ian matrix elements. 

Time-reversal symmetry has been approached here by 
first treating the nonrelativistic case where Ko alone com
mutes with the nonrelativistic Hamiltonian Ho and the dia
mond structure group elements. It is easy to show in general 
that all nonrelativistic eigenfunctions of Hot/! E may be chosen 
to satisfy the relation 

IKot/!E= t/!E' 

Since a plane wave 

./. ...::.[ I_k • ....:..,( f_-=d=-I_2)'-"..l 
'f'k = exp . 

\Iv 

(32) 

(33) 

satisfies Eq. (32), it follows that matrix elements of plane 
waves with an operator Ho, which commutes with IKo, 

(t/!k,HOt/!k)* = (IKot/!kHJKot/!k') = (t/!k,HOt/!k)' (34) 

are real. Thus, a Hamiltonian matrix formed with respect to 
a complete set of plane waves will be real and the eigenfunc
tions t/!E = '1.kCkt/!k may be chosen to have real coefficients 
ck · Hence, IKot/!E = t/!E and any other basis functions may 
be chosen to have the property Eq. (32). In particular sym
metry-adapted basis functions, 

(35) 

generated with ISO P (ka) Ij from a basis function which satis-
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TABLE III. FISO's and symmetry-adapted functions for symmetry points gamma, (kr = 0) and L (k f . = (I, 1,I)rr/a), and the associated symmetry line 

lambda (k" = (p,p,p)rr/a, 0 <p < I). The point groups of the k-vector are: G" = (E,T"n)(E,ID,), G f . = G" (E,I), and Gr = GdE,C.)(E,C). The generators 
for the stars of the k-vector are Sf. = (E,Cx)(E,C,), S" = Sf. (E,I), and Sr = E. The connection between the conventional irreducible representation labels and 

the notation used here is A + + ,r, A +- ,rr A -+ ,r, A - - ,r,. Ep,r'2p T - + ,r]y T - - ,r",T + + ,r"., 

T + - ,r" B - p,r"p B + p,r7p Fp,r.p A + ,A, A - ,A, A 3,A, A' - ,A. A' + A, A ',A6 L + p,L,p L - p,L 2P L 3p,L,p L' - p, 

L,p L' + p,Lsp L 'p,L"p' In the tables below only the angular dependent factors [Eq. (20)] of the FISO's are listed. The FISO's are to be completed by 
multiplying by an appropriate translation operator. The factors in projection operators may be arranged in any order. 

A. Nonrelativistic angular factors for FISO's [s,p = + 1 - ,w = exp(2rri/3»). 
peAs) = (E + T, + n)(E + sIDx)/6, P(Lsp) = peAsleE + pl)!2, P(Asp) = P(Lsp)(E + C,)(E + Cz)!4. 

peA 3)" = (2E - T, - n)(E + IDJ/6, peA 3)" = (T, - TDP(A 3),/\/3, peL 3p)'J = peA 3),lE + pl)!2, 

P(Ep)'J = peL 3p),/,E + Cx)(E + Q/4, j = 1,2, P(Tsp)" = (E + Cx)(E - Cz)(E - sID)(E + pI )/16, 

P(Tsp)'J = n 'P(Tsp)", j= 1,2,3. 

All operators commute with IKo. 
B. Angular factors for relativistic FISO's. 
(s,p = + 1 - ,w = exp(2rri/3)) 
peA 's) = (E + T, + n)(E + isIDx)(E - E,)/12, peL 'sp) = peA 's)(E + pl)12, 

P(Fp)" = (E + T, + T)(E + pl)(E - iC,,)(E - £,)124, 

P(Fp)" = IDJ'(Fp)", P(Fp)" = CJ'(Fp)", P(Fp)" = ID,CoP(Fp)", 

peA ')" = (E + w*T, + wn)(E - E,)/6, peA ,)" = ID.P(A ,)", 

peL 'p)'J = peA I,iE + pl)!2, j = 1,2, 

P(Bsp)'J = peL 'p),lE - iCw)(E - sID,Co )/4, j = 1,2 

Time-reversal: ID,IKP(D)'J = P(D),JD,IK, D = A ',L 'p,Bsp,Fp, 

IKP(A '.I) = peA '- s)IK, IKP(L 'sp) = P(L' - sp)IK. 

C. Symmetrized relativistic functions. [The spin-space representation is defined by Eqs. (26)-(28).] 

a = (~).P = (~).y" = (w 2nY2a + w"P)/Y3 = "T~Yo,yn = ( - w2"a + Y2w")/Y3 = "T'{y',KP = a,Ky" = y", 

"D,Yo = Y',"DxY, = y' "DxY, = y'. 

,p (A I" = Y~ASP){3, 
,p (L 'p)" = V sI/J(Lsp){3, 

,p(Bsp)" = Y-;I/;(Asp){3, 

,p (A's) = Y-;j(if!(A 3)" - il/J(A 3),,)a + is(I/J(A 3)" + il/J(A 3),,){3 ]12, 

,p (A I" = - sY-;.i(As)a, 

<p (L 'p)" = - sY sI/J(Lsp)a, 

<p (Bsp) " = - sY-;W(Bsp)a, 

,peL 'sp) = Y s [(I/J(L 3p)1l - iif;(L 3p)1l)a + is(if;(L,p)" + il/J(L 3p)12){31!2, _ 

<p (A )" = (I/J(A 3)" + il/J(A 3),,)aN 2, _1> (A I" = (I/J(A 3)" - iif;(A 3),,){3 IY 2, _ 

1> (L 'p)" = (I/;(L 3p)" + il/J(L 3p)12)acJ 2, 1> (L 'p)" = (if;(L 3p)" - il/J(L 3p),,)I1IY 2, 

1> (FpL = (ifl(Ep)" + iI/J(Ep)12){3 N 2, _,p (Fp)12 = - (I/J(£p)" - iif;(Ep)12)a/Y 2, _ 

q,(Fp)" = - (1/1(Ep)" + iI/J(Ep)11)a/Y2, q,(Fp)" = - (I/J(Ep)" - il/;(Ep)dPlY2 

q, (Bsp) " = Y-;(tK!sp)"yo + w*t/t(Tsp)12Y' + wl/;(Tsp)"yyV3, _ 

q, (Bsp) " = - sY s [I/J(Tsp)"Y' + wW(Tsp)"y' + w*W(Tspll'Y']lY 3, 

q, (Fp) 'I = V-; [,p{TSP)llYO+ ,,&<TsP)12Y, + ,p(Tsp)"y,]lY 3, _ 

q, (Fp) " = - sY--.! [I/J(TSP)llY' + ,,&<Tsp).,y' + ,p(Tsp)\Jy']lY 3, _ 

q, (Fp) I' = - Y sj "&<Tsp),,y" + w*I/;(Tsp)l2yl + wI/J(Tsp)"y'l/Y 3.1. 

1> (Fp)" = - sY s [I/J(Tsp)"y" + (ut/t(Tsp)"y, + w*W(Tsp) "y,]lY 3. 

Time reversal: IDJKf!> (D )'j = f!> (D ),)' D = 11 ',L' P,Bsp,Fp,lK1> (11 rs) = - 1> (11 ' - s), IK1> (L rsp) = - q, (L ' - sp). All nonrelativistic functions 1/1 
satisfy IKo1/1 = 1/1. 

fies Eq. (32) will itself satisfy Eq. (32) provided P (ka)lj com
mutes with 1Ko. All nonrelativistic FISO's listed in Tables 
111-V are chosen to commute with IKo, and matrix elements 

ifkair)/,H,f(k'aj'( r)J) 

= Dkk·8aa,8jj,(f(r)/,HoP (ka)ll!(r),) (36) 

with any other operator Ho that commutes with the relevant 
group and 1Ko are real. 
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The symmetry-adapted relativistic functions ¢(A')lj of 
Tables III-V are obtained by applying relativistic ISO's 
P (A ') lj to the product of a symmetry-adapted nonrelativis
tic function tf!(ka)li and a spinor y, 

(37) 

where Na is a normalization factor. Having specified all rel
evant transformation properties of I/J(ka)li' all that remains 
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TABLE IV. FISO's and symmetry-adapted functions for the symmetry point X (kx = (2,0,0)17/a), and the associated symmetry lines (k<1 = (P,O,O)l7/ 

a,O <p < 2) and (kI = (O,p,p,)l7/a,O <p < 2). The point groups of the k-vector are G<1 = (E,Cx) (E,lD.)(E,lCz),GI = (E,IDx)(E,lCx)' and Gx = G<1(E,l). The 
stars of the k-vector are generated by Sx = (E,T"T~), S<1 = Sx(E,l), andSI = Sx(E,Cx)(E,Cz)' The connection between the conventional irreducible repre

sentation labels and the notation used here is .1 + + ,.1 1 .1 + - ,.1 2" .1 -+ ,.1, .1 - - ,.1,. .1".1, .1' + ,.1, .1' - ,.1 , I + + ,II I +- , 
I, I - + ,I. I - - ,I, I ',I, X +,xl X -,x, X' + ,X, X' -,x. X ',X,. In the tables below only the angular dependent factors of the 
FISO's are listed. The complete FISO's are obtained by multiplying by an appropriate translation operator. The factors in projection operators may be arranged 
in any order. 

A. Nonrelativistic angular factors for FISO's. (s,t = + I - . e = exp( - ik.d). (Where k is the k-vector for the FISO.) 
P(L1st) = (E + Cx)(E + sIDx)(E + teIC)/8, P(XS)II = P(L1s +), P(XS)12 = IP (Xs) I I, 

P(L1')11 = (E - C.)(E + eIC)/4, P(L1')12 = ID'p(L1,)", 

P(X'S)II = (E - CJ(E + sIDx)(E + /)/8, P(X'S)12 = elC/, (X's) I I 

P(Ist) = (E + sIDx )(E + telCx )/4. 
All operators commute with IKo• 

B. Angular factors for relativistic operators. (s = + I - . e = exp( - ik·d». 
P(L1 'S)II = (E + iCx)(E - seIDJCD)(E - E,)l8, P(L1 'S)12 = ID'p(L1 'S)I" 
P(X')II = P(L1 '- )1" P(X')12 = IDxP(X'),,, P(X')ll = IP(X),,, 

P(X)14 = D.P(X,),,, P(I )11 = (E + ieICx)(E - E,)/4, P(I)12 = ID'p(I )1" 

Time-reversal: All FISO's commute with IDJK. 

C. Symmetrized relativistic functions. [The spin-space representation is defined by Eqs. (26)-(28). a = (.\), {J = (~).) 

IjJ (.1 :S)11 = v'~L1st )a, 1jJ. (.1 'St)12 = sV;l/;(L1st ){J, 

IjJ (.1 S)II = Y iU!b<L1,)" - ISI/;(L1')ll){J IY 2.1-

IjJ (.1 'S)ll = iSY is (1/;(.1')11 + iSI/;(L1')12)aN..b 

IjJ (I' )11 = Y!..l/J(Is + )a, IjJ (I)12 = sY sl/J(,l:s + ){J, 

IjJ(I')II=YsI/;(Is-){J, IjJ(I)12 = -sYsI/;(Is-)a, 
IjJ (X')II = il/;(X - )l1a, IjJ (X)ll = - il/;(X - )11 {J, IjJ (X)" = il/;(X - )12a, IjJ(X')14 = - il/;(X - )./3, 

IjJ(X' )11 = I/;(X + )Ila, IjJ (X)l1 = I/;(X + )11}, IjJ (X)lJ = I/;(X + lila, IjJ (X')14 = I/;(X + )113, 
IjJ(X' )11 = Vs [I/;(X'S)II + iSI/;(X'S)12]{J N 2, IjJ (X)12 = - sY S [I/;(X'S)II - iSI/;(X's)12]a/Vi 

IjJ (X')ll = Y~ [I/;(X'S)II - iSI/;(X'S)l1]{J Ni IjJ (X)14 = - sY~[I/;(X'S)11 + is(X's)12]a/\I2, 

Time-reversal: All relativistic functions IjJ satisfy IDJKIjJ = 1jJ. All nonrelativistic funtions l/J satisfy IK,I/J = 1jJ. 

TABLE V. FISO's and symmetry-adapted functions for symmetry point W (k w = (112,0,1 )217/ a) and the associated symmetry line Z (kz = (p,O,1 )217/ a, 

o <p < 1/2). The point groups of the k-vector are Gz = (E,Cx)(E,lCz) and G w = Gz(E,DJ. The generators of the stars of the k-vector areSw = (E,T"Tj)(E,/) 

and Sz = Sw(E,lDJ. In the tables below only the angular dependent factors of the FISO's are listed. The FISO's are completed by multiplying by an 
appropriate translation operator. The factors in projection operators may be arranged in any order. 

A. Nonrelativistic angular factors for FISO's. [s = + I -, Hybrid 3-space operators are defined: CD = e( - ICy + I1Cz)N 2, CXD = e(ICy + I1Cz)Nz 
where e = exp( - ik.d).) 
P(Z)II = (E + CD)12, P(Z)12 = iC.P(Z)", 

P(Ws)ll = (E + CD)(E + sDx)/4, P(WS)12 = iCxP(Ws)ll 

All FISO's commute with IKo. 

B. Angular factors for relativistic FISO's. [s,t,u = + I -, e = exp( - Ik·d») 
P(Z 'st) = (E + isCJ(E - teICz)(E - E,)/8, 

P(W'tu) = (E - iC.)(E - teICz)(E + iuDx)(E - E,)/16 

P(W't)11 = (E + iC.)(E - teICz)(E - E,)/8, P(W't)12 = D'p(W't)" 

Time-reversal: IKP(Z 'st) = P(Z 's - t )IK, IKP(W'tu) = P(W' - t - u)IK, 
IKD'p(W't)ij = P(W't),jKDx· 

C. Symmetrized relativistic functions. [The spin-space representation is defined by Eqs. (26)-(28),a = (.\), (J = ~.) 

IjJ(Z'st) = s-II'[I/;(Z)..{a + V;;{J) - isl/;(Z).,(a - Y-;-{J»)12, 
IjJ (W:tu) = exp.1. - il7/4)[I/;(W(tu»,,(~ + it{J) + il/J(W(tu»12(a - it{J)]l2 

IjJ (W t)11 = Y s [l/1!Vs)l1(a + t{J) - II/;(Ws)12(a - t{J)] 12 
IjJ (W't)12 = - tsY s [I/;(Ws)ll(a - t{J) - iI/;(Ws)12(a + t{J)]/2 
Time-reversal: IKIjJ(Z,st) = tljJ(Z's- t), IK(W'tu) = tljJ(W' - t- u), 
IKDX¢ (W't)ij = IjJ (W't ),r All nonrelativistic functions l/J satisfy IKol/J = l/J. 
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free to choose are the spin representation, the IUR for the 
degenerate FISO's and an overall phase factor. The relativis
tic ISO's cannot be chosen to commute with IK and 
IK¢(ka)IiY is orthogonal to ¢(ka)IjY' so an exact parallel to 
the nonrelativistic treatment of time-reversal symmetry is 
not possible. Degenerate relativistic FISO's were chosen so 
that either 1Dx or Dx produces partner ISO's and they all 
commute with either IDxfK or DxfK. The spin representa
tions used in Eqs. (26)-(31) were chosen to simplify these 
operators, 

IDxfK = sD~o or DxfK = sDxfKo. (38) 

The phase factor for degenerate symmetry-adapted relativis-

1280 J. Math. Phys., Vol. 20, No.6, June 1979 

tic functions ¢ is chosen to satisfy 

IDxfK¢ = ¢ or DxfK¢ = ¢. (39) 

In the case of nondegenerate symmetry-adapted relativistic 
functions, IK provides an additional degeneracy and the 
phase factor was chosen to give a simple relation between the 
time-reversal related functions. 

'N.O. FoJland, J. Math. Phys. 18, 31 (\977). 
'L.P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev. SO, 58 
(1936). 
lG.F. Koster, Solid State Physics (Academic, New York, 1957), Vol. V, 174. 
'M. Lax, Symmetry Principles in Solid State and Molecular Physics (Wiley, 
New York, 1974). 
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Inhomogeneous local gauge transformations in spacetimes 
with torsion 

Francis J. Flahertya) and G. David Kerlickb) 
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(Received \0 July 1978) 

The fonnalism of bundle maps is developed. then applied to several situations of physical interest. The 
bundle isomorphisms are defined to be inhomogeneous gauge transformations. First. we examine the 
compatibility between local gauge invariance with respect to an internal symmetry and the minimal 
coupling of the free gauge field Lagrangian to spacetime. In both homogeneous and inhomogeneous cases. 
restrictions arise which limit the torsion of the spacetime covariant derivative when applied to the gauge 
potential. Second. we examine the group of dilTeomorphisms as a spacetime symmetry in the local gauge 
theoretic approaches to general relativity and the Einstein-Cartan theory of gravity. 

1. INTRODUCTION 

Symmetry principles are fundamental to most physical 
theories. The framework of local gauge invariance1-4 fixes 
this idea in a concrete form, yielding not only conservation 
laws corresponding to each observed symmetry but also new 
physical fields and field equations. For example, invariance 
of a matter field with respect to local phase transformations 
[circle group SO(2) or U(l)] yields Maxwell's field Filv. 

In general relativity, it is often stated that the entire 
group of diffeomorphisms of spacetime are the symmetries. 
Yet this group fits imperfectly into the local gauge frame
work, since the diffeomorphisms act on spacetime itseJf rath
er than internally (on the fibers). Our purpose here is to 
provide a better formalism for dealing with diffeomorphisms 
as a gauge symmetry, for which purpose we shall introduce 
bundle mappings and "inhomogeneous gauge 
transformations. " 

In what follows, we shall consider only classical field 
theory, thus reserving questions of quantization or symme
try breaking for later investigation. 

Let P be a principal bundle over a manifold M (space
time) with group G. The group G acts naturally on P by left 
or right multiplication. The right action is the global gauge 
group. Denote the projection of P-+Mby 1T. Since P is a local 
product of M with G, local coordinates x on M and s in G 
provide local coordinates (x,s) on P. A bundle map of P is a 
smooth function 1/: P-P that maps fibers into fibers and 
commutes with the left action of G. The map 1/ then induces 
a map h: M-+M and the following diagram commutes: 

1/ 
P 

.' P 

1T ! ! 1T 

h 
M "M. 

In terms of local coordinates, 

1/(x,s) = (h (x), s~(x». 

a)Research partially supported by NSF Grant MCS-7704868. 
bl'fhe authors wish to thank the referee for his helpful comments. 

(1) 

[The ~(x) is written on the right because 1/ commutes with 
left multiplication.] This generalizes the usual notion oflocal 
gauge transformation. Indeed, if 1/ induces the identity on M 
or 

1/(x,s) = (x, s~(x», (2) 

then 1/ is an ordinary homogeneous local gauge transforma
tion (compare: Atiyah, Hitchen, Singer'; Souriau6

; 

UtiyamaJ
). The most interesting specialization of bundle 

maps occurs when 1/ is an isomorphism, in which case 1/ has 
an inverse which is also a bundle map. Clearly, this is the 
case when 1/ induces a diffeomorphism on M. Such an iso
morphism will be called an inhomogeneous (local) gauge 
transformation. Denoting the group of gauge transforma
tions (those inducing the identity on M) by G and the group 
of diffeomorphisms of M by 9, it is easy to see that G is a 
normal subgroup of I, the group of inhomogeneous gauge 
transformations and that the quotient group I/G is isomor
phic to 9. Hence I is isomorphic to a direct product of 9 
with G (in contrast to the semidirect product which occurs in 
the Poincare group). So if 1/ is in I, then 

1/ = (h, ~), h in 9, and 1j in G. 

Further 1/ = (h, idp)·(idM ·, 1j), and we shall identify h with (h, 
id p), 1j with (idM ·, 1j), and write 1/ = h1j. 

For simplicity let us assume tht G is a subgroup of the 
general linear group in k-real variables. A gauge potential A 
in P then has a local representation 

(3) 

with () a k Xk matrix of I-forms locally defined on M. One 
can think of () as coming from a covariant derivative on the 
associated vector bundle to P with fiber dimension k. The 
effect of the gauge transformation 1/ = h1j on A, denoted by 
1/·A is 

1/·A = 1j-1h *(A )1j + 1j-1d1j. (4) 

Note that h * (A ) makes sense, since h is being identified with 
(h, idp ). The effect of an inhomogeneous gauge transforma
tion on the gauge field or curvature form is readily computed 
to be 

1/·F = ii-1h *(F)ii, 

withF=dA +Atd. 
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Thus, we see that gauge in variance extends to inhomo
geneous gauge transformations if we act not only by the ho
mogeneous part but also pullback via the diffeomorphism. 

Any form that behaves as the gauge field under an inho
mogeneous gauge transformation is said to satisfy the natur
ality condition. Moreover, any gauge theory whose gauge 
field satisfies the naturality condition will be called a natural 
gauge theory. 

2. EXAMPLES OF INHOMOGENEOUS LOCAL 
GAUGE TRANSFORATIONS 
A. Maxwell's Theory 

In the ordinary (homogeneous) gauge theory of electro
magnetism, if the matter field t/; undergoes the global gauge 
transformation t/;-Ifi = eiAt/;, the action remains invariant. 
Requiring invariance of the action under the local transfor
mation t/;-Ifi = eiA (Xlt/; means one must modify the deriva
tive dt/;; thus, 

dt/;-dt/; + ieAt/;, (5) 

where the gauge potential A transforms inhomogeneously 
under the gauge transformation 

A-A =A +dA. 

The gauge field, 

F=dA, 

and the action for the free gauge field, 

S=fFI\*F, 

remain invariant under a gauge transformation. 

(6) 

(7) 

(8) 

In a relativistic theory, the equivalence principle sug
gests the principle of minimal coupling, namely d-+D every
where, where D is the covariant exterior derivative, which 
may have torsion. We shall assume that the metric of the 
base space is preserved under covariant differentiation, so 
Dg=O. 

This requirement does not effect the gauge potential (6) 
since DA = dA, but it does effect the gauge field F, since 
F: = DA implies 

F=DA =DA +D(dA). 

Thus, F = F implies that D must be torsionless. 

Hojman, Rosenbaum, Ryan, and Shepley7 (HRRS) at
tempt to circumvent this difficulty by modifying (6) to read 

A-+A =A + bdA, (9) 

where b is a field of (1, 1) tensors. We can interpret this in our 
picture as follows: The gauge group is pulled back under 
diffeomorphisms but the connection is left unchanged. In 
this case b corresponds to h *. Using (9) and assuming mini
mal coupling F = DA, one is led to 

F_F = DA + D (bdA ). (10) 

Requiring local gauge invariance, F = F, then implies 

D(bdA) = 0 (11) 
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(compare HRRS7, Eq. 15). The simple choice of b = e<.I, 1 
the unit tensor, implies a torsion proportional to the gradient 
of A., which can propagate. 

The assertion (9) violates the naturality condition be
cause the gauge potential A is introduced on the pullback 
bundle. Rather, an inhomogeneous local gauge theory 
would require 

A_A =h*(A +dA), (12) 

that is, the connection is also pulled back. Minimal coupling 
now implies, 

F= Dh *(A + dA) + h *(DA + DdA). (13) 

The condition ofnaturality, which generalizes local gauge 
invariance, is simply 

F= h *F, (14) 

which in turn implies 

Dh *(A + dA ) + h *(DdA ) = O. (15) 

Calculation then shows that the torsion of D must vanish as 
in the ordinary case. 

B. Yang-Mills Theory2 

Here the gauge group is SU(2), non-Abelian. A homo
geneous local gauge transformation ¢;eG takes t/; into ¢;t/; and 
takes a gauge potentialA into A ' = ¢; -IA¢; + ¢; -ld¢;. An inho
mogeneous transformation 1/ = h~ takes A into 

A = ~-lh *(A )~ + ~-ld~, 
where h *(A ) = s-lds + s-lh *s as in Sec. 1. If F = DA 
+ AAA, the naturality condition states 

1/·F = F = ~-lh *(F)~. 

Hence A satisfies the equation 

Dh *(A ).~ + D (d~) = 0, 

(16) 

(17) 

(18) 

which after a lengthy computation shows that D must be 
torsionless. 

C. Inhomogeneous local gauge theory of the 
Lorentz group (comments on the Einstein
Cartan theory) 

Here, we are dealing with a spacetime symmetry, but 
since the Lorentz group acts on the fibers of the bundle of 
orthonormal frames over M, we may regard it as the homo
geneous part of the gauge transformation just as in Yang
Mills. Note that the theory which results will not be a gauge 
theory of the Poincare group, but rather one of the direct 
product of the Lorentz group by the diffeomorphisms. 

The results look very much like the Yang-Mills field in 
the previous example. The rotational gauge potential (i.e., 
the gauge potential for the Lorentz group) A must transform 
as 

(19) 

where ~ is a Lorentz transformation. Minimal coupling and 
naturality again produce a constraint analogous to (18) 
which requires the connection to be torsionless. 
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How are we to interpret this? What we must remember 
is that, in gauge theories of spacetime symmetries another, 
additional assumption is made after the gauge potentials and 
gauge fields are derived. Namely, an identification is made 
between the gauge potentials and geometrical objects in a 
manifold different from the base space of the frame bundle. 
Thus, it is conventional to identify the Lorentz gauge poten
tial with the Ricci rotation coefficients in a Riemann-Cartan 
space.4

,8 Note, however, that this new space, which may have 
torsion, is not the same one as the base space of the frame 
bundle where we first constructed the gauge theory. A sec
ond assumption must now be made when we choose a La
grangian for the free gauge field, since the standard choice, 
quadratic in the curvature,9 yields equations of higher order 
than those of the Einstein-Cartan (E-C) theory. Thus we 
have reinforced the argument of Trautman 10 who claims that 
general relativity and the E-C theory are not local gauge 
theories. 

3. LAGRANGIANS AND FIELD EQUATIONS 

In this section we discuss inhomogeneous gauge trans
formations and their effect on Lagrangians and matter fields. 
To begin with, matter fields will be sections of a vector bun-

dle of fiber dimension k, V ----+M in which G is the group of the 

bundle. So if SI,", Sk is a local field of sections trivializing V, 
then any cross section tf; can be written locally as 

(20) 

where tf;a are smooth functions over M. Supposing that V is 
a covariant derivative on V, 

(21) 

where (O~) is a matrix of I-forms (same notation as Sec. 1). 
Working locally with 0 P = r Pi dyi 

and 

a· a· 
V= I-. Vi = _Vi, 

ay' ay' 

(v"tf;)a = atf;a Vi + rpitf;fv. 
ay' 

A diffeomorphism h acts on a field tf; by composition 
tf;----+lj; = tf;oh, thus, 

(22) 

(23) 

The problem now is tht tf;oh = lj; is a field over h, meaning 
1Tlj; = h. Such fields can be covariantly differentiated with 
respect to V, locally represented by (h *0 p). Using 
Xi = yioh as local coordinates, 

( - .7.)a = alj;a ah) u i 
Vu'f' ax} ax' 

(24) 

1283 J. Math. Phys., Vol. 20, No.6, June 1979 

Viewing a Lagrangian L (tf;,dtf;) as a scalar valued 4-form 

L (tf;,dtf;)----+L (lj;,v lj;) det h *, 

and by the change of variable theorem if h preserves 
orientation 

(25) 

(26) 

Invariance of the action SM under diffeomorphisms 
leads to a conservation law for energy-momentum. Suppose 
that a one-parameter subgroup of the diffeomorphisms ¢J(t) 
is generated by the vector field S i.e., S is tangent to ¢J(t ) at 
t = 0). Then Eq. (26) implies 

f [L (tf;,dtf;) - L (lj;,v lj;) det h *] = 0, (27) 

which further implies 

(28) 

Here, .Y s is the Lie derivative along S. Substitution of the 
Euler-Lagrange equation, 8L /8tf; = 0, into (28) and the fact 
that S is arbitrary together yield a conservation law of the 
form V,,Tf.1 V = O. For details of this calculation in the case of 
Einstein/s theory see Hawking and Ellis (Ref. 11, page 67). 

Several remarks are in order about action integrals and 
field equations. If G is semisimple, then using the Killing 
forml211 Wand the volume element w of M, 

111]'PW = IIh*(F)1I2, 

for all inhomogeneous gauge transformations 1] = h~. 

But 

can surely be invariant if h is an isometry. 

(29) 

(30) 

Now if V has an inner product structure in the fibers 
whose V-covariant derivative is zero, then the elementary 
symmetric functions of (FafJ) lead to the Pontryagin classes 
of V. IJ By the naturality of Pontryagin classes (see Milnor 
and Stasheff14

), the elementary symmetric functions of 
h *(FafJ) represent the same classes in the de Rham cohomo
logy). Hence the inhomogeneous gauge transformations pre
serve the Pontryagin classes and Pontrygain index, without 
any assumptions (semisimplicity or isometry). 

4. CONCLUSIONS 

General relativity (Einstein-Cartan) is not a gauge the
ory in the usual sense of Maxwell/s theory or Yang-Mills 
theory. The field equations of general relativity can be ob
tained from a gaugelike approach, but only after a geometri
cal reidentification of the gauge potentials and nonstandard 
choice of freefield Lagrangian. The usual choice according 
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to Yang-Mills is not possible simply because !iJ is such a 
large Lie group. 

In trying to append in variance under !iJ to a local gauge 
theory of internal symmetry, one inevitably meets two types 
of obstacles. First, in variance of the action integral allows 
only those diffeomorphisms which are isometries. Secondly, 
the naturality condition forces the torsion of the covariant 
derivative to vanish. Thus, ignoring the difficulties encoun
tered with the invariance of the action integral, the Einstein
Cartan theory cannot be considered a natural gauge theory. 
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Two-body gravidynamicsa) 
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We develope a theory of gravitational interaction between two massive punctual structureless particles, 
from the point of view of predictive relativistic mechanics, whose main characteristics are: (i) the 
geometric framework is Minkowski flat space-time, M.; (ii) it is a predictive theory as opposed to the 
heredity which characterizes the dynamics derived from the classical field theory; (iii) the interaction 
occurs through light cones with a second order covariant symmetrical tensorial function on (TM,)' which 
we call "field"; (iv) we do not impose any "field equation" on this field, but only certain symmetries 
which lead to a certain indeterminacy which appears in the dynamic; (v) the dynamic is invariant with 
respect to the Poincare group. From the outset, we adopt a fast motion approximation which consists of 
supposing that the dynamics can be developed in power series of the particle masses, and we evaluate this 
dynamic up to the second order of the masses. The comparison of the dynamics obtained from the 
Einstein, Infeld, and Hoffmann Lagrangian (which describes the gravitational interaction up to c 2 order 
in general relativity) helps us to fix five of the twelve arbitrary parameters which appear in our dynamics. 
It appears possible to explain all the gravitational experiments carried out up to now, in which neither 
light nor internal particle structure appear. 

I. INTRODUCTION 

The predictive relativistic mechanic was developed in 
two completely independent formalisms: the manifestly pre
dictive l and the manifestly invariant,2 although they are 
equivalent. J 

In the latter formalism, the evolution of an N pointlike 
structureless charge system is given by a second order differ
ential equation on the Minkowsky flat space-time M4.4 

dxa 
__ a = rr:. 

dJ.. a' 
(1.1) 

where the () ~ functions must satisfy: 

(1Ta()a) = 0, (1.2) 

a()a a() a 
1T P, __ a_ + () P, __ a_ = O. 

a axa'p a a~'p 
(1.3) 

Equation (1.3) is usually known as the "predictive" 
equations or the Droz-Vincent equations. 2 The invariance of 
the system under the Poincare group gives us a set of linear 
equations for the () ~ functions. 5 

The predictive relativistic mechanic has been used, with 
success, in a perturbation scheme, with the scalar interaction 
(short and long range) and vectorial interaction (particularly 
the electromagnetic interaction). 

The electrodynamic theory has the Minkowsky flat 
space-time M4 as the geometric framework. The electromag
netic field is represented by a second order antisymmetric 
covariant tensor Fa{3(~) in this space, which satisfies a lin
ear partial differential equation system, the Maxwell 
equations6

: 

a)Research supported by the Instituto de Estudios Nucleares, Madrid, 
Spain. 

b)Present address: Physics Department, Queen Mary CoIlege, London. 

aJu(3 = _ 417' j{3, 
c 

aJ{3y + apFya + a),Fa{3 = 0, (1.4) 

wherej'J is the current density which depends only on the 
source variables. For an N pointlike structureless charge sys
tem, the charge a is affected by a field obtained by means of 
Lienard-Wiechert retarded fields whose sources are the oth
er particles. 

We then postulate that the movement equations are the 
Lorentz equations 

X~(T) = eama- lXa/3 I F~f3[X~(T)J, (1.5) 
a' 

where X~(T) is the a trajectory, x~_dx~/dT, 
x~ - (xaXa) = 1, the a velocity in the XU point in M. 

A ,.,... a 

Fa'a{3(xP
)-Fa'qfJ [x;;,(ra.),x;'(l'a.),X~·(;a');XPJ, ;a' being such 

that (xl' - X~.(Ta.»)(Xp - x~p(;a.») = 0, XO >x~'(;a) and 
Fa , a/l (x' ) must satisfy (1.4) with current6 

j~, = ea' f-+ 0000 x~'(T)84 [xP - x~,(r) ] dr. 

Equation (1.5) can be put 

where the functionals W~a' are known. The (1.6) equation is 
not an ordinary differential equation, but a second order dif
ferential-difference equation system in which the difference 
is not a constant and about which Chern and Havas7 have 
demonstrated that there is not uniqueness. That is to say, 
different solutions can apear for the same initial conditions. 

The fact that the interaction propagates itself with a 
finite velocity, through light cones, leads us to hereditary 
dynamics, i.e., the positions and velocities of the particles 
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given at fixed times are not sufficient in predicting the later 
evolution of the system. 

In the predictive relativistic mechanic (1.6) is not con
sidered a motion equation but a complementary condition 
contributing to calculate the dynamics of the system, which 
is the solution of (1.1). 

Up to now, the predictive relativistic mechanic has not 
been applied to gravitational interaction whose geometric 
frame work is a curved space-time V4 • The gravitational field 
is represented by a symmetrical second order covariant ten

Sor ga/3 (xA
) on this manifold, which must verify the Einstein 

equations 

R 1 R - 81TG T a/3 - zgu/3 - -- a/3' 
c2 

(1.7) 

where Ra/3 is the Ricci tensor, R the scalar curvature, and 
Ta/3 the stress-energy tensor, which depends on the ga/3 and 
on the source variables. The no-linearity of the (1.7) equa
tion is the origin of many difficulties. Particularly for N 
pointlike structureless particle systems the interaction 
scheme is not as the electromagnetic interaction scheme. We 
could evaluate the gravitational field created by all the parti
cles of the system in any point of the space-time and then, 
the field which acts on a would be obtained from the preced
ing gravitational fields, thus eliminating the divergences. 

From the Bianchi identities and (1. 7) we obtain the mo
tion equations 

T u /3 - 0 ;/3 - . (1.8) 

From a pointlike particle system the stress-energy ten
sor is8

: 

(1.9) 

g det(ga/3)' 

By writing (1. 8) in terms of the particle variables and 
taking (1.9) into account, we obtain 

"U _ r a ( A)' P . u Xa - - pu Xa X;;Xa' 
(1.10) 

r;u=igaA(a~UA + aagpA - a~pa)' 

Obviously r~u(X~) is obtained from r~<T(x;{), by substitut
ing ~ for x~ and eliminating the divergences. 

Two different approximation methods have been devel
oped at this time: The slow motion approximation which 
consists in developingga/3 in series of c-1

, and the fast-motion 
approximation which consists in developing in series of G in 
the following way 
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The introduction of this development up to the first 
order in (I. 7) and (1.9), leads us t08

: 

DYa{3= - 161T L m 
C2 a a 

(1.11) 

(I )ga{3=Ya/3 -11Ja{3t;" x~ - (XaXa) = 1, 

where we have supposed that aPYa{3 = 0, which is equivalent 
to imposing the harmonic coordinate condition to the first 
order: a/3( ~ga/3) = O. Up to this order we dispose of a 
Lorentz covariant wave equation and the interaction propa
gates itself through light cones. If we consider the retarded 
solution as the physical solution and we take into account 
the geodesic equation (1.10) up to the first order in G, it is 
clear that (1.10) will lead us to a differential-difference 
system 

x~(r) = G L ma' Z~a,[x~(r).x~,(r), 
a' 

(1.12) 

where the Z ~a' functionals are known from (1.11) and (1.10). 

This equation is very similar to (1.6). That is to say, up 
to first order in G, there is a complete analogy between gravi
tational and electromagnetic interactions. Therefore, we try 
to develop the gravitational interaction in the Predictive rel
ativistic mechanic framework. 

In this paper we consider aftrst approximation to the 
gravitational interaction problem, considering a two particle 
system. In order to use (1.10) as motion equations, we must 
change the condition (1.2). Equation (1. 9) expresses a homo
geneity relation between accelerations and velocities and 
(1.2) is a orthogonality condition. Therefore, we replace (1.2) 
by a homogeneity condition/ 

ao n 

1f/, _a = 28baO~. (1.13) 
a~p 

Equations (1.3) and (U3) constitute which we shall call 
"Kiinzle Predictive system. to" 

We begin with a very simple hypothesis: We consider 
the Minkowsky flat space-time as the geometric framework 
and we do not impose any "field eqution" on the gravitation
al field but only certain symmetries which do not univocally 
determine it. We take mass series developments of each of 
the particles for the fundamental magnitudes which appear 
(i.e., field and dynamic magnitudes). We obtain the approxi
mate dynamic in masses for the two-body problem in a gravi
tational interaction which up to the C -2 order is the same as 
those obtained with the Einstein, Infeld, and Hoffmann 
Lagrangian. I I 

II. KUNZLE PREDICTIVE SYSTEM 
A. Definition and properties 

In the predictive relativistic mechanics framework, in 
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its covariant formalism, certain isolated and nonisolated N 
pointlike structureless particle systems can be described by 
Ktinzle predictive systems. 12 Such a system is, by definition, 
a second order autonomous ordinary differential system in 
M.: 

dxU 

_a_ = rf:. 
dJ.. a' 

dtT;.13 -- = e ~(Aj, 1TD, 
dJ.. 

which satisfies the following properties: 

(i) ~ - (1Ta 1Ta»O, 1T~>0 

ae u a(}a 
(ii)~, __ ~ + (}P, __ 0_ = ° 

axap a a~'p 

a(}a 
OJ) 1Tf, __ a = 2/jab(}~' 

a1Tbp 

(11.1) 

(1I.2a) 

(I1.2b) 

(1I.2c) 

The (II.2b) equations which we will henceforth call 
"Droz-Vincent equations," were introduced by Droz-Vin
cent.7 The (II.2c) equations which clearly represent a homo
geneity condition for the (} ~ functions, were introduced, in a 
more general way, by Kiinzle. 12 In order to study the geo
metric significance of the (11.2) conditions, we consider the 
general integral associated with the (11.1) system: 

(II. 3) 

.,x~ = f{J ~(.,x~,01T;;0), otT; = rP ~(.,x~,o1T;;O). 
It is easy to see that such conditions give the following 

properties: 

(j) rP ~rPaa(.,xb'01Tc;A) > 0, rP ~(.,xb,01Tc;A) > 0, (lI.4a) 

(ii) f{J ~ [f{J ~(.,x,01T ,Ab)'rP ;(.,x,01T;Ac);A ] = cp ~(.,x,01T;Aa + J.. ) 

( ... ) a( fJ Y. ~) _ a( J3 Y. ~ ) 
III cP a 0 Xb,pc o1Tc, /L - cP a O'~:b'O 1Tc' Pa /L • 

(lI.4b) 

(lI.4c) 

(1I.4a) expresses that the trajectories are oriented in 

time and towards the future. (1I.4b) indicates that if x~ is a 
set of N points in the trajectories obtained from certain initial 
conditions (0 X~,o1T ~ and if 1T ~ are the corresponding tan
gent vectors, then the trajectories which correspond to the 
initial conditions (x~,ni) are the same as those correspond
ing to (.,x~,otlt). This reduces the number of essential param
eters, on which the general integral depends, from SN to 7 N. 

The (II.4c) condition expresses that the general integral 
does not depend on the modulus of the tT; vectors, for we can 
take Pc o1Tc- I. This again reduces the number of essential 
parameters, of which the general integral depends, from 7N 
to 6N. 

Let us study the compatibility of the (11.2) conditions. 
It is clear that the general solution of (II.2c) can be written 

(11.5) 

where S ~ is an arbitrary function of its arguments. By substi
tuting (II.5) in the (II.2b) equation, we obtain 

aSa aSa 
u~, -~ + [S~, + (ua,Sa·)u~.] -~ = 0, (II. 6) 

axap auap 

with U~-1T a- 11T~. The differential conditions that the (} ~ 
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functions, which characterize a Kiinzle predictive system, 
must satisfy have been reduced to the (11.6) equation, which 
constitutes a nonlinear equation system in first order partial 
derivatives in the S ~ functions. Some nontrivial exact par
ticular solutions are known but they do not have a physical 
meaning and they are only interesting because they demon
strate that the concept of the Kiinzle predictive system is not 
trivial. 

B. Approximate solutions 

Equation (11.6) can obviously be rewritten in the form 

as~ 
Da'S~= -;P,--, 

a aua'p 

where 

(11.7) 

(II.S) 

We are going to try and find approximate solutions of 
(11.7) for the two particle case, N = 2. In order to do this, we 
shall assume that the function S ~ can be developed in series 
of two parameters, characteristic of the particles, rna (which 
we will call the masses of the particles). 

k a = ~ mrmS (r,s)k a 
~ a £. a a' ~a' 

r,s = 0 

where the (r,s)Sau function verifies 

(r.O)Sau 0, 

(11.9) 

(11.10) 

in such a way that (11.9) can be written up to r + s = 2 order 
in the following way 

S~ = rna' (I'Saa + m~. (Z'Saa + mama' (Z'Saa,a + .... 
(11.11) 

Hypothesis (11.10) is based on the following reasons: 
First of all, we shall deal with massive particles (i.e., mb *0) 
and secondly, we shall identify rna as a "strength" param
eter in the sense that the bigger (or smaller) the rna parameter 
is in comparison with rna" the bigger (or smaller) the influ
ence of the particle a on the particle a'. If, for example, rna' 
can be neglected in comparison with rna the influence of a' 
on a can be neglected, that is to say, the particle a is approxi
mately free (i.e., (} ~ = 0). This justifies condition (11.10). On 
the other hand, for the lower order we obtain a term 
rna' (I 'Saa for a, which is independent of the a mass. This is, 
up to this order, an "equivalence principle." 

By introducing (11.1) in (II.7) we obtain up to second 
order: 

Da, (['SaU = 0, 

Da, (2'SaU = 0, 

(II. 12a) 

(II. 12b) 

a (IlSa 
Da, (2)S~a' = - (I'{;P, a (II. 12c) 

a aua'p 

For each order, the equations which appear are of the 
form 

Da,Fa = -Aaa,(~,uD, (II. 13) 

whose general solution we will write in the form 
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Fa = F: + F~, whereF:is the general solution of the homo
geneous equation (D aF: = 0) and F: is a particular solution 
of the complete equation (DaF~ = - Aaa,). We can then see 
that the general solution of (II.13) can be written in two 
different ways (E = ± 1): 

where F: is an arbitrary function of its arguments, 

(II. IS) 

70 T/o(XU a) - Era' T/a:T/! = + 1, T/2 = - 1, 

and where the quantity under the integral sign, as the nota
tion indicates, can be obtained from the function A aa'(x~,u D, 
by making the change x~,-x~, - yu~,. lJ 

For further applications we will write in an explicit 
manner the development of the 5 ~ functions up to the sec
ond order 

(11.16) 

where (2'5 :a, (2'5 :~, are arbitrary functions of the arguments 

x~, x~, - 7aU~',U~), 

III. TWO PARTICLE GRAVIDYNAMICS 

In this section we study the dynamics of two particles 
which interact gravitationally. First, we develop the most 
general expression of the gravitational field between two par
ticles, by imposing certain symmetries. We then postulate 
the motion equations of the system and introduce a pertur
bative scheme in the masses. All this is used as a complemen
tary principle of the formalism which gives us the evolution 
of the system which we will suppose is given by a Kiinzle 
predictive system. This concept has been developed in the 
preceding section. 

A. Gravitational field created by particles 

Let us consider two particles in space-time, each char
acterized by a parameter which we can identify with the 
mass. We will suppose that the interaction scheme, as is usu
al in the classical field theory, has the following form 

particle a'-field due to a' -particle a, 

where the field created by a' will be described in this case by a 
symmetrical second order tensorial covariant function on 
(TM4)2,1' which we will indicate by ga'ap(x~,x~"u~,u~,), 
u~ - (UbU b ) = 1. Now we will impose the following con-
ditions on the field: 
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(i) Principle of constants economy: The only parameters 
which appear in thega'aP fields are the mb masses of the two 
particles, and the only universal constants which can appear 
are G and c, i.e., the gravitational universal constant and the 
velocity oflight in vacuum, To show this dependence we will 
write 

ga'ap(x~,x~"u~,u~,;ma,ma,;G,c). (III. 1) 

Generally, the field created by a' can depend on the 
characteristics of a (i.e., its ma mass) and its u~ velocity. 
Guided by the electrodynamics analogy we shall not consid
er the dependence on higher order derivatives possible. 

(ii) Symmetries: let us consider the instantaneous refer
ence system in which a' is at rest in x~, (i.e., u~, - og). We shall 
assume that the field created by a' is 

(a) invariant under the realization derived from the 
Aristoteles group!l on (TM.)2. This realization is defined by: 

x~' =x~-Ao, 
(111.2) 

x~ = R j(Xb - A 1, u~ = R j zlb' 

where A a are four real numbers and R j is a matrix of the 
rotation group. When we define ga'a(J as an invariant field we 
mean that it behaves as a tensorial function invariant under 
the (III.2) realization, i.e., 

u~, = og, 

where L f3 is a matrix of the Lorentz group having the 
structure: 

L a L 0-1 L 0 - L i -0 L i-R i La L - Ip - oa {J : 0=' i - 0=' j= j' p {J - {J' 

This property shows the space-time homogeneity and the 
isotropy of the field created by each particle in the instanta
neous reference system in which it is at rest. 

(b) static, that is to say, it is independent ofx~,. Invari
ance under space-time translations of ga'aP automatically 
implies that it depends on the difference of the xP x1 - xi 
positions and the staticity clearly implies that it does not 
depend on xO, so we will simply write 

and the condition (III.3) can then be written 

ga'a{J(R ~k,u~,R 1u~) = L a- J)'L {J- If.Lga').ixi,u~,~), 

(I1I.4) 

(III.S) 

which shows that go' a{J is a tensorial function of the vectorial 
variables, Xi, u~, with respect to the rotation group. 

(iii) Regularity: we will suppose that ga'a{J can be devel
oped in a power series of the mb masses in the following way: 

~ m r mS (r,s)g, ga'a{J = £.. a' a a ap (III.6) 
r,s = 0 

where the (r,s)ga'aP are independent of mb and verify: 
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(O,S)g =0 s> 0 a'a(3- , , 
(111.7) 

(r,O)g =(r)g (xP U U ) a'a(3- o'a(3 'a" 
This hypothesis is motivated by the following consider

ations. We believe that ga' a{3 are sufficiently regular functions 
of the masses [that is why we use (111.6)] and that when 
ma, <ma the field ga'a{3=1]a[J' We also believe that if ma<ma" 
e ~,~O and it is then logical to assume that ga'a(3 does not 

depend on u~. 

We can write (111.6) by introducing (111.7) up to the 
r + s = 2 order, in the following way: 

+ (I) + 2 (1) ga'a/3 = 1]a/3 m a, ga'a(3 rna' ga'u(3 

(111.8) 

where (I )ga'a{J(xP,u~,) and (' )gaaa(3 (xP,uJ' 

We can conclude as a corollary of this hypothesis that 
the field is dimensionless, for 1]a(3 is by hypothesis 
dimensionless. 

(111,9) 

(iv)S, invariance: As we believe we are dealing with two 
particles of the same type, i.e, each characterized only by its 
mass, we shall suppose that the field is invariant under the 
two element permutation group S" i.e" 

(111,10) 

Let us now see what restriction the four preceding con
ditions impose on ga'a{J' Let us first consider the term in 
ma,·m a in Eq. (111.8) which is the only one which can depend 
on u~ up to that order. Ifwe consider the instantaneous refer
ence system in which a' is at rest (i.e" u~,-8g) and we take 
into account (III.4), we can write this term as follows 

(nUl) 

Taking (111.9) into account, which demonstrates that 
the field is dimensionless, we can conclude that this term 
must necessarily be of the form 

(111.12) 

where ha'a{J are arbitrary functions of the specified dimen
sionless arguments, 

When we identify, in the usual manner, u~ 
(1 - v~/ c't l12

, u~=u~v~/ C, v~ being the 3-velocity of the a 
particle, we can rewrite (III. 12) as 

G'mama, h ' {J [Xl (1 _ V;) - 1/2 ,(1 _ V;) - 1/2 v~ ] 
C4r' a a r' c' c' c 

(III. 13) 

and supposing the differentiality of ha'a[J in a neighborhood 
ofc- l = 0, 
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we can then conclude that the term in ma.ma is of the form 

(111.14) 

meaning that it does not depend on u~ up to the c-4 order. 
Summing up, in the instantaneous reference system in which 
a' is at rest, the expression of the field which this particle 
creates up to the second order is 

(I) ( i'G)+ 2 (')g (i'G) ga'u(3 = rna' ga'a{J X, ,C rna' a'a(3 X, ,C 

+ mama' [l2>h a'a{J(xi;G,c) + o (c- S
)] + .... (111.15) 

Condition (111.5) breaks up, trivially, up to that order in 
the following way: 

ga'(x;(R ~Xk) = gu'oo(xi
), 

ga'o,(RVck
) = R i- lIga'o/(xm

), R ~R)- II< = 8;, (111.16) 

(R k I) R - II<R ... /I (m) g af) IX = i ) ga'kl X 

where ga'a{J must not include powers higher than c-· 16 in 
ma.m Q • It can be easily seen that the general form of ga',,{J' 
verifying (111.16), is: 

X,X 
gal) = ca.(r)8u + dAr) _J , 

r' 

(III. 17) 

whereaa " ba" ca" and da, which we will generically denote by 
fa, (r,ma"ma,G,c) are arbitrary functions of the specified ar
guments. The dimensionless character of la" for ga'a(3 is also 
dimensionless, and the (111.15) developments, together with 
the S, invariance shown in (111.10), lead to the following 
structure onfa,: 

(III,18a) 

where 

« '/: (O)d 0, (III. 18b) 

and (21. "1. "1.'" are arbitrary constants (real numbers), in 
such a way that up to that order they appear as a total of 
twelve arbitrary constants, This arbitrariness is the price we 
pay for not imposing any "field equation" on the field. 

Once the general form of ga'a(3 has been found, given by 
(IlL 17) and (111.18) in the instantaneous reference system in 
which a' is at rest [as we have supposed thatga'a[Jis a tensor
ial covariant second order function on (TM.)Z], obviously 
when the field created by a' moves with velocity, u~,*8b will 
be obtained taking into account the transformation law: 

g (x'!. uJ..) - L - lpL - lag [xi~L -, liXPJ 
Q' a(3 b' a' - a /3 a'pa ~ P , 

L {J- la : L a- 10 = - uaL 0- li = _ uiL j- Ii 

UiU. =oj+ __ i_, 

U
O + 1 
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which leads to: 

(111.20) 

where/a,,(ra,) is obtained from (III. 18) substituting the rargu 
ment by ra, + [X2 + (xuaYl1l2. 

B. Motion equations 

Let us consider the fields (E = ± 1): 

A ( Ap Aa. 'G) _ A ( A A )-ZdA 

A" ( A A )-1 ga'a{3 Xaa·,ua·,m b, ,C - Ca'1Ja{3 + Xaa,Ua' a,Xaa'aXaa'{3 + Xaa,Ua' 

(111.21) 

obtained from (111.20) considering light cone conditions, i.e., 

and thus obtaining/a' [E(Xaa,Ua,) 1 from (III. 18) with the substitution r---+E(Xaa"ua,). This field hereinafter will be called the 
advanced field (E = + 1) or retarded field (E = - 1) created by a'. It is interesting to note its analogy with the Linenard
Wiechert potentials in electrodynamics. 

Let us now consider the problem of the gravitational interaction of two pointlike structureless particles characterized by 
their masses, m b · We postulate that the motion x~ = cp ~(A.) of each of the particles must be a solution of the "geodesic 
equation" corresponding to the retarded field l7 ga'a{3 whose source is the rna' mass (the causality must be understood in this 
sense): 

" A. • A A '( aga' A aga'a' aga,pa) Aa,A a mU(A.)- ra para-IaA p+ A A.., 
or a - - a'p~ aCP a' a'pa=2ga' axaa axap - axaA ,ga' ga'A{3 = U{3' (111.22) 

with ga'a{3 given by (111.21). 

Note that the following is accepted: (a) the no-existence of self-interaction, (b) that the interaction propagates through 
light cones. All this has a formal analogy with electrodynamics, except for the nonlinearity of the theory. This would mean that 
for N> 2 we would have to choose between a forces superposition principle and a field superposition principle. 

(111.22) can be written 
"u '2 a {3 y A • ~1 'p . ~1 A a A • ~2 A "{j " 

cP a (A. ) = cP a(A. ) Wa [cp a(A. ),cp AA. ),cp a (A.)cp a(A. ),cp a' (A.)cp a'(A. );cp a' (A.)cp AA. ) 1 (111.23) 

with 
A "" AO A A A 

A. : cP aa' aifJ ~a' = 0, cP aa' > 0, cP ~a' cP ~(A. ) - cP ~.(A. ), 

and where the functional W~ is too lengthy to write here. We shall nevertheless say that (1II.23) is a differential-difference 
system of the same style as those obtained in the problem of two charges interacting electromagnetically using the retarded 
Lienard-Wiechert potential. There are no existence and uniqueness theorems for these systems. 

c. Predictivity and causality 

We see now that the (111.23) equations can be considered, in the framework of predictive relativistic mechanics, as 
complementary conditions which will contribute to determining univocally the dynamic of the system. 18 The causality, under
stood in the sense of the preceding paragraph, is then a complementary principle to the predictivity principle and not something 
which contradicts it. 

Supposing that the evolution of the system is given by a Kiinzle predictivity system, characterized by functions S ~(x~,uD 
[see (11.5)], it is easy to see that such functions must satisfy the functional relations which follow l9

: 

(111.24) 

X~' being an arbitrary point of the future cone (E = + 1) or past cone (E = - 1), whose vertex is atx~ and u~, a unitary vector 
in the x~, point. 

We now intend to use the (III.24) condition to calculate the developments of the s~ functions considered in Sec. II A. 
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Taking into account the structure of the W~ functions in (111.23) we can write the (111.24) conditions up to the second order in 

the following way: 

(1 't ~(~,x~"u~,U~) 
_ EGI a-: 3 ( {- 2Ia,(/- k){3}u~ + { - k 2a +A 2{3 + [A 2 - %<1- k)2] <I'd IX~a' 

+ la' { - k (2/- k)a + (2kl- 1 - k 2){3 + [A 2 - 2(1- k)2]( - E <I'b + (lld) + W - k)2 (lld lu~,), (II12Sa) 

(II12Sb) 

(11I.2Sc) 

where 

la' (xaa·ua.), l-(xao'ua) I a-: 1, k - (uaU a.) , A 2 k 2 - 1, 

-(1) a {3-(IJ c a== -, :::::::-, 
2 2 

N .=k(u ";(1» - (u i(I» u - as (1' u:' a' . 

(l1I.2S) is a system of recurrent relations adapted to the perturbation technique which we had previously adopted. According to 
(II. IS), 7a is a function of the arguments (x~,x~.,u~,) which is null for x~. = x~., so taking into account (11.16) the (II12S) 
conditions impose the following conditions on (1 't :a, (2's :", and (2lt :~.: 

where (l'W~, "'W~, and "'W~a' are the right-hand side of (11I.2S), respectively, 

(III.26a) 

(I1I.26b) 

(III.26c) 

In this way we see that the problem of building developments is reduced to determining, to each order, ( 'S'" which 
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depend on the arguments (x~,x~, - 7aU~',U~) and which verify (111.26). It can be seen that said functions are unique and have the 
structurel9

: 

After a rather lengthy calculation, the expressions (II. 16), (111.25), and (III.26) lead to: 

(l 's ~ = - Gra- 3<1 - 2f3Sa l U~ + ( - ak 2 + f3A 2 + (l 'd (A' - %t~) IX~a' 

X(x ,U ,)+lr-- ls2 Illb+(A2_'::t2)[ -r (l'b+(x ,U )'l'd]jua > aa a 2 a a 2 a a aa a' a' 

where 

(III.27a) 

(III.27b) 

(1I1.28) 

(III.29a) 

(III.29b) 

k - (UlU,), Sa (xaa'U a) - k (xaa'U a.)' .1 2 k 2 - I, ta-r;- ISa. (111.30) 

The term (2 'Saa' has not been exactly calculated because of its difficulty (in fact, we have supposed from the start that with 
the term in mama' inga 'a{3 we operated up to thec-4 order). We shall only calculate this term for its future use, up to thec-2 order 

(2)S' ,[xo=xo,xiUO=(l- V;) 1!2,zld u~v'cd]=G2C-21Jar-4(2a2-2af3-all)d+("q)xi+O(e-4). (111.31) 
aa a a' a' h - c2 

We note that in the expression (11I.29a) four arbitrary parameters appear: a,f3, (l )b, I "d; in (III. 29b) the same four parameters 
and four more appear: (2 )a, ("b, (2)e and (2)d and finally in (111.31), up to the c-4 order only ("Q..appears, besides a,f3, and (I'd. 

It can be verified that the e~; dynamic built in agreement with (11.5) satisfies: 

de :: 
E, -- = 0, E'l = + I, , (J 

dx" 
(III.32a) 

de" de" ) 
(b>/'I(] - b;:1J).JJ )(x~; __ 0 + II ~ __ a = (b'~1J,,) - (jI(,1JA1')(J r. 

dx~ dllf, 
(111.32b) 

If we call <p ~C~1"o1T~;A ) the general integral associated to the e ~ dynamic, we can easily conclude that it satisfies 

"[Llf( I' Af')LY -,J.1]_L['[[ /'( (J 1'.1) All] CPa fI (rXf>- 'IJ o"iJc,A - Il CPa oXh, 01Tc'/l. - , (III.33) 

where (L i;,A J) is an element of the Poincare group. (111.32) and (111.33) express the invariance of the dynamic system (II. I) 
under the Poincare group. That is to say, in the way it has been built, the theory is Poincare invariant. 

IV. COMPARISON WITH THE DYNAMIC 
OBTAINED FROM THE EIH LAGRANGIAN 

In this section we compare the accelerations which are 
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derived from the dynamics calculated in the preceding sec
tion with the accelerations obtained from the EIH Lagran
gian ll (Einstein, Infeld, Hoffmann) for the two-particle sys
tem. As we know, the accelerations derived from the said 
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Lagrangian are valid up to e-2 order, so that in order to carry 
out the comparison we need to make a development in e-1 of 
our approximate dynamic up to e-2 order. It can be clearly 
seen that the terms higher than the second order in masses, 
contain powers superior to e-2 order in such a way that there 
is no contradiction when we carry out this double develop
ment and operate in the indicated way. In this manner, we 
manage to fix five of the 12 parameters which appear in 
(111.18). 

A. EIH Lagrangian 

The EIH Lagrangian for a two-particle system is given 
by" 

_ G 2 m1mz(m1 + m 2) • 

2e2r 
(IV.l) 

This Lagrangian is obtained in general relativity for the 
approximate description ofthe two-body problem up to the e-2 

order and it is well known that it provides relativistic invar
iant trajectories. 20 

It can be easily shown that the accelerations obtained 
from this Lagrangian are: 

f-t~ = - Gma, Xi ,+ ~ ( Gma, [( v2 _ 2v2 

r3 aa e2 r3 a 

(IV,2) 

where 

The above e-2 development can be rewritten as the fol
lowing mass development: 

. G2. 
(2)11.' ,=5-x', 

raa e2l" aa' 

B. Dynamic development up to c-2 

(lV.3) 

(IV.4a) 

(IV.4b) 

(IV.4c) 

In the preceding section we obtained the dynamic in a 

1293 J. Math. Phys., Vol. 20, No.6, June 1979 

power series development of the masses of both particles. We 
have used a manifestly covariant formalism, imposing that 
the evolution of a system of 2-particles is determined by a 
Kiinzle predictive system, i.e., a dynamic system on M4 of 
the (ILl) type, fulfilling the (11.2) conditions. Let us now 
consider the ordinary differential system of second order on 
R 3N

, 

(IV.5) 

given by 

Il~(t,x{,v~ (1 - :: )(t~ - t~ ~ ) (IV.6a) 

with 

- a 0 . 0 Vd k 0 Ve 
[ ( 

2 ) _ 1/2 k ] 

=S a Xb = et,x~"Ud = 1 - --;;; ,Ue = Ue -;;- , 

(lV.6b) 

where S ~(~,uD is obtained from the () ~(~,1TD dynamic by 
means of (11.5). 

The equivalence of both descriptions can be easily dem
onstrated in the sense that any set of trajectories of the (11.1) 
system is a set of integral curves of the (IV. 5) system and vice 
versa. This last formalism is usually known as the manifestly 
predicitve formalism. 

From (IV.6), (111.29), and (111.31) we obtain, only up to 
the e-2 order, a development similar to (IV.3), with: 

(l)f-t~= G (axi ,+ ~{-av2_(-a+/3+(lld)V2 
r) aa e2 a 

. G2 . 
(2)11' =('2)a+2a/3-a'l)d)-x' , 

ra e2l" aa' 
(lV.7b) 

. G2 . 
(2)11' ,=(2a2-2a/3+a'l)d+'2)a\_x', (IV.7c) 
r= ~&l" = 

At the beginning of Sec, IV, we pointed out that all the 
terms which contribute up to e-2, appear in the terms up to 
second order in a development in the masses. Accordingly, 
(IV.4) and (IV,7) can be directly compared. We thus deduce 
that to obtain the same accelerations with our dynamic, as 
those we obtain from the EIH Lagrangian: 

a= -1, /3=1, (l)d=O, (2)a=2, (2)Q..=1. (IV.8) 

We then conclude that of the 12 arbitrary parameters 
which appear up to second order in a mass development, we 
must fix the following parameters in the (111.18) 
development: 
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order ma,: (Ila = - 2, (I'e = 2, (lId = 0, 

order m~, : (ZJa = 2, 

order mama' : (Z'a..= 1, 

(IV.9) 

leaving the rest arbitrary:()lb, (Z'b, (Z'~ (2'e, (Zlb (2'dand (Z'4.... 
if we want to obtain the EIH dynamic, The ga'afJ field given 
by (III. 17) is then written: 

ora' o~, ora ora' 
ga'oo = - 1 + 2 - - 2 - - -- + ... 

r r r ' 

(
Or . o?:., or or,) X 

ga'Oi= illb_o + i21b_a + i21b_a
_

a
_ 7] ~ +''', 

r r - r a r 
(IV. to) 

( 
Or ' o?:., or or,) _ 1 2 a (Z, a (21 a a £ g ,- + -+ C-+ C--u·· 

alJ r r - r lJ 

(
O?:.' or or,) x· x· + (Zld_a + (lld_a_ a _ __ '_1 + ... 
r - r r ' 

where ora=Gma/cz is the Schwarzschild radius of the ma 
mass. 

Regarding the (IV. 1 0) metric, let us note that in the case 
ma1ma.<I, if we suppose (llb (Z'b -iZlfL 0 and that (lIe 
(respectively <2ld) is not negligible in comparison with (Z '.c. 
(respectively (214), we obtain: 

ora' o~, 
ga'oo = - 1 + 2 - - 2 - + "', ga'Oi = 0, 

r r 
(IV.It) 

ga'ij = (1 + 2 o:Q' )Oij + o~' (e'COij + l2ld X;i ) + ... 

which is the approximate metric21 which leads to the expla
nation of three classical effects: advance of the perihelion of 
Mercury, bending of light, and red shift. 

V. CONCLUSIONS AND COMMENTARIES 

We have introduced a theory on gravitational interac
tion between two punctual structureless particles in the 
framework of predictive relativistic mechanics. We have 
adopted a variation of the formalism which is used for the 
description of other interactions2Z (scalar and vectorial, and 
in particular, electrodynamic) which we have called the 
Kiinzle predictive formalism and which is compatible with 
the motion equations postulated for the particles. We have 
also supposed that the interaction propagates through light 
cones and that it can be expressed by a symmetric second 
order covariant tensorial function ga{3 on (TM,)2 which we 
have called "field," thus committing certain language abuse 
as this field is not required to satisfy and "field equation," 
but only certain symmetries. The result of this very weak 
imposition on the field implies the appearance of a number of 
arbitrary parameters which become manifest in the particle 
accelerations. The comparison with the dynamic obtained 
from the EIR Lagrangian allows us to fix five of these pa
rameters, the remainder being arbitrary. On the other hand, 
our dynamics is valid for any velocity (for we have adopted 
fast motion approximation), 
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Let us note that because of the way the theory is built, it 
is Poincare invariant. We also believe that it will not be diffi
cult to build a Hamiltonization which is compatible with this 
group of symmetries,z3 and this will thus lead us to clearly 
define the ten conservative quantities: energy, momentum, 
angular momentum, and center of mass of the system. 

Regarding the possible explanation of all the gravita
tional experiments done up to now, we can say that those in 
which light does not playa role (Le., advance of the perihe
lion of Mercury) and do not require the interior structure of 
the particles, could be explained without any difficulty. In 
our opinion, light should be the object of a new 
interpretation.24 

Taking into consideration the preceding, the arbitrari
ness and generality of the calculations which we have carried 
out are clear, but we consider it important to show that from 
very general principles and in the framework of predicitve 
relativistic mechanics a theory can be developed for the 
gravitational interaction, which agrees with certain theoreti
cal results obtained with another theory (i.e, general 
relativity). 

Some remarkable aspects are that the geometric frame
work which we have used is Minkowsky flat space-time and 
that the theory, as it has been built, is invariant under the 
Poincare group. Finally, we are studying the possibility of 
introducing Lorentz invariant "field equations" in order to 
determine (univocally) the field. 
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An in variance requirement on the Lagrangian of type 
(7) has a doubtful meaning when transformations of the in
dependent variable! are involved. A symmetry for L is more 
commonly defined by 

L (q,q,t)_L (Q,Q',T) dT, 
dt 

(7') 

where we ignore the addition of a total time-derivative 
dG (Q,T)/dTto L on the right-hand side, because it is not 
needed for this paper. When (7') is taken as the starting 
point, the equation of motion always inherits the symmetry 
of the Lagrangian. In that case the paper should be regarded 
to deal from the beginning only with transformations of type 

(14). All statements and conclusions then remain valid if the 
following modifications are taken into account: 

Equation (19) should read: A (q,q,t) = L (Q,Q ',T) d, 

Equation (38) should read: L (q,q,t) = L,(tq,q)I(, 

Equation (53) should read: 

2'(q,q,t )_2'(q,d -'q,dt) d and tP (q,q,t) tP (q,d "q,d!), 

Equation (56) should read: 
n-J 

2' = I Lk(q,q,!)d k and 
k~O 

Ii-I 

tP = I ifJk(q,q,t). 
k=O 

I am indebted to Dr. R.L. Schafir for suggesting the 
modifications of this addendum. 
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tional red shift are interpreted as being due to the effect of the curvature of 
space-time in the presence of mass. For a different point of view, see A.B. 
Volkov, Canadian J. Phys. 49, 201 (1971), where the author interprets 
these effects as being due to the consequences of the energy-momentum 
conservation of photons in a gravitational field in a Minkowski flat space
time. 

Addendum to: Invariance and conservation laws for Lagrangian 
systems with one degree of freedom 
[J. Math. Phys. 19, 1049 (1978)] 

Willy Sarlet 
Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 271-S9, B - 9000 Gent, Belgium 
(Received 8 November 1978) 

An in variance requirement on the Lagrangian of type 
(7) has a doubtful meaning when transformations of the in
dependent variable! are involved. A symmetry for L is more 
commonly defined by 

L (q,q,t)_L (Q,Q',T) dT, 
dt 

(7') 

where we ignore the addition of a total time-derivative 
dG (Q,T)/dTto L on the right-hand side, because it is not 
needed for this paper. When (7') is taken as the starting 
point, the equation of motion always inherits the symmetry 
of the Lagrangian. In that case the paper should be regarded 
to deal from the beginning only with transformations of type 

(14). All statements and conclusions then remain valid if the 
following modifications are taken into account: 

Equation (19) should read: A (q,q,t) = L (Q,Q ',T) d, 

Equation (38) should read: L (q,q,t) = L,(tq,q)I(, 

Equation (53) should read: 

2'(q,q,t )_2'(q,d -'q,dt) d and tP (q,q,t) tP (q,d "q,d!), 

Equation (56) should read: 
n-J 

2' = I Lk(q,q,!)d k and 
k~O 

Ii-I 

tP = I ifJk(q,q,t). 
k=O 

I am indebted to Dr. R.L. Schafir for suggesting the 
modifications of this addendum. 
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